首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dong G  Chen Z  Li ZY  Yeh NT  Bancroft CC  Van Waes C 《Cancer research》2001,61(15):5911-5918
The proangiogenic activity of hepatocyte growth factor (HGF)/scatter factor has been closely associated with its ability to stimulate endothelial cell chemotaxis, migration, proliferation, and capillary formation. However, the potential of HGF as a paracrine factor in regulating the expression of angiogenesis factors by tumor cells is not widely appreciated. We observed that increased HGF was correlated with higher levels of angiogenesis factors interleukin (IL)-8 and vascular endothelial growth factor (VEGF) in serum of patients with head and neck squamous cell carcinoma (HNSCC) as compared with that in normal volunteers and hypothesized that HGF may regulate angiogenesis factor production by tumor cells through the activation of its receptor c-Met, which is expressed by HNSCC cells. To test this hypothesis, we examined the effect of HGF treatment on IL-8 and VEGF expression by a panel of primary keratinocytes and HNSCC lines. HGF induced a significant dose-dependent increase in IL-8 and/or VEGF cytokine production in eight HNSCC lines tested, which is not observed in normal keratinocytes. In addition, HGF increased mRNA expression of IL-8 in 3 of 6 and VEGF in 5 of 6 HNSCC lines. The increase in induction of these factors by HGF corresponded to an increase in phosphorylation of c-Met in HNSCC. HGF-induced phosphorylation of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) pathway substrate p42/p44(erk) and phosphatidylinositol 3'-kinase (PI3K) pathway substrate Akt provided evidence for downstream activation of MEK and PI3K pathways in HNSCC. Inhibitors of MEK (U0126) and PI3K (LY294002) blocked p42/p44(erk) and Akt, respectively, and partially blocked HGF-induced production of IL-8 and VEGF, whereas the combination of U0126 and LY294002 completely inhibited expression of IL-8 and VEGF by UMSCC-11A. Our results demonstrate that HGF can promote expression of angiogenesis factors in tumor cells through both MEK- and PI3K-dependent pathways. Understanding HGF/Met paracrine regulatory mechanisms between tumor and host cells may provide critical information for targeting of therapies against angiogenesis.  相似文献   

2.
Iwasaki T  Sano H 《Leukemia & lymphoma》2003,44(8):1275-1279
Angiogenesis is a crucial process in the progression of multiple myeloma (MM). Vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) are multifunctional cytokines that potently stimulate angiogenesis during tumor neovascularization. VEGF is secreted by MM cells. It induces proliferation of MM cells and stimulates IL-6 expression by microvascular endothelial cells and bone marrow stroma cells, suggesting both autocrine and paracrine functions for VEGF in MM. HGF and the HGF receptor, c-Met, are expressed simultaneously in MM cell lines and in freshly isolated MM cells, suggesting a possible role for HGF in MM cell proliferation. This review focuses on the clinical significance of serum levels of VEGF and HGF in MM.  相似文献   

3.
Manganini M  Maier JA 《Oncogene》2000,19(1):124-133
Angiogenesis is a highly controlled event which depends on the proper equilibrium of activators and inhibitors present within the microenvironment. Hepatocyte Growth Factor (HGF) activates migration and proliferation of endothelial cells and is angiogenic, acting through the tyrosine kinase receptor encoded by the Met protooncogene. To get insights into the molecular mechanisms involved in HGF-induced angiogenesis, we searched for cDNAs differentially expressed in human endothelial cells exposed to HGF, a potent angiogenic factor. We found that HGF-treated endothelial cells upregulated the expression of Transforming Growth Factor (TGF) beta2. To understand the significance of this finding, we cultured endothelial cells with HGF and TGF beta2 simultaneously. We found that TGF beta2 impairs HGF-dependent proliferative and migratory responses. TGF beta2 did not prevent the tyrosine phosphorylation of Met, but it inhibited some signalling pathways activated by HGF. We show that endothelial proliferation induced by HGF required the activation of the MAPK cascade, while HGF-induced endothelial migration was dependent on the tyrosine phosphorylation of Src. Indeed, TGF beta2 inhibited HGF effects because it prevented HGF-induced MAP kinase activation and tyrosine phosphorylation of Src. We suggest that the induction of TGF beta2 by HGF in endothelial cells may represent a physiologic mechanism to counterbalance HGF angiogenic activity.  相似文献   

4.
Bigelow RL  Cardelli JA 《Oncogene》2006,25(13):1922-1930
The hepatocyte growth factor (HGF) receptor, Met, is a strong prognostic indicator of breast cancer patient outcome and survival, suggesting that therapies targeting Met may have beneficial outcomes in the clinic. (-)-Epigallocatechin-3-gallate (EGCG), a catechin found in green tea, has been recognized as a potential therapeutic agent. We assessed the ability of EGCG to inhibit HGF signaling in the immortalized, nontumorigenic breast cell line, MCF10A, and the invasive breast carcinoma cell line, MDA-MB-231. HGF treatment in both cell lines induced rapid, sustained activation of Met, ERK and AKT. Pretreatment of cells with concentrations of EGCG as low as 0.3 microM inhibited HGF-induced Met phosphorylation and downstream activation of AKT and ERK. Treatment with 5.0 microM EGCG blocked the ability of HGF to induce cell motility and invasion. We assessed the ability of alternative green tea catechins to inhibit HGF-induced signaling and motility. (-)-Epicatechin-3-gallate (ECG) functioned similar to EGCG by completely blocking HGF-induced signaling as low as 0.6 microM and motility at 5 microM in MCF10A cells; whereas, (-)-epicatechin (EC) was unable to inhibit HGF-induced events at any concentration tested. (-)-Epigallocatechin (EGC), however, completely repressed HGF-induced AKT and ERK phosphorylation at concentrations of 10 and 20 microM, but was incapable of blocking Met activation. Despite these observations, EGC did inhibit HGF-induced motility in MCF10A cells at 10 microM. These observations suggest that the R1 galloyl and the R2 hydroxyl groups are important in mediating the green tea catechins' inhibitory effect towards HGF/Met signaling. These combined in vitro studies reveal the possible benefits of green tea polyphenols as cancer therapeutic agents to inhibit Met signaling and potentially block invasive cancer growth.  相似文献   

5.
The hepatocyte growth factor (HGF)/MNNG HOS transforming gene (MET) pathway regulates cell growth, survival, and migration. MET is mutated or amplified in several malignancies. In myeloma, MET is not mutated, but patients have high plasma concentrations of HGF, high levels of MET expression, and gene copy number, which are associated with poor prognosis and advanced disease. Our previous studies demonstrated that MET is critical for myeloma cell survival and its knockdown induces apoptosis. In our current study, we tested tivantinib (ARQ 197), a small-molecule pharmacological MET inhibitor. At clinically achievable concentrations, tivantinib induced apoptosis by > 50% in all 12 human myeloma cell lines tested. This biologic response was associated with down-regulation of MET signaling and inhibition of the mitogen-activated protein kinase and phosphoinositide 3-kinase pathways, which are downstream of the HGF/MET axis. Tivantinib was equally effective in inducing apoptosis in myeloma cell lines resistant to standard chemotherapy (melphalan, dexamethasone, bortezomib, and lenalidomide) as well as in cells that were co-cultured with a protective bone marrow microenvironment or with exogenous cytokines. Tivantinib induced apoptosis in CD138 + plasma cells from patients and demonstrated efficacy in a myeloma xenograft mouse model. On the basis of these data, we initiated a clinical trial for relapsed/refractory multiple myeloma (MM). In conclusion, MET inhibitors may be an attractive target-based strategy for the treatment of MM.Abbreviations: GAPDH, glyceraldehyde 3-phosphate dehydrogenase; GSK-3β, glycogen synthase kinase-3; HGF, hepatocyte growth factor; IC50, half maximal inhibitory concentration; MAPK, mitogen-activated protein kinase; MET, MNNG HOS transforming gene; MM, multiple myeloma; PARP, poly (ADP-ribose) polymerase; PI, propidium iodide  相似文献   

6.
7.
Primary effusion lymphoma (PEL) harbors consistent infection by human herpesvirus-8, preferentially develops in immunodeficient patients and selectively localizes to the serous body cavities. Histogenetic analysis has suggested that PEL originates from post-germinal center, pre-terminally differentiated B cells sharing phenotypic features with plasma cells. Here we have investigated the expression status and functional integrity of the Met tyrosine kinase receptor and of its ligand hepatocyte growth factor (HGF). Thirteen PEL (nine cell lines and four primary specimens) were analyzed for Met and HGF expression and function by multiple assays. For comparison, a panel of 34 high grade B cell non-Hodgkin lymphomas (NHL) other than PEL was also investigated. Co-expression of Met and HGF was found in all PEL analyzed, whereas it was restricted to 1/34 B cell NHL other than PEL (P < 0.001; chi2 test). The Met protein expressed by PEL displays biochemical characteristics typical of Met expressed by other cell types and is capable of tyrosine autophosphorylation. By using a combination of immunological and biological assays, production and secretion of a functional HGF species was identified in all PEL cell lines analyzed. HGF stimulation of PEL cells rapidly induces Met tyrosine phosphorylation, demonstrating the functional integrity of the Met/HGF loop. Because of the well known mitogenic and motogenic properties of Met/HGF interactions, these data may bear implications for PEL growth and dissemination. Among B cell neoplasms, Met/HGF co-expression selectively clusters with PEL and, as demonstrated by previous studies, with multiple myeloma plasma cells, thus reinforcing the notion that PEL displays biologic similarities with tumors derived from late stages of B cell differentiation.  相似文献   

8.
Malignant mesotheliomas (MMs) are very aggressive tumors that respond poorly to standard chemotherapeutic approaches. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway has been implicated in tumor aggressiveness, in part by mediating cell survival and reducing sensitivity to chemotherapy. Using antibodies recognizing the phosphorylated/activated form of AKT kinases, we observed elevated phospho-AKT staining in 17 of 26 (65%) human MM specimens. In addition, AKT phosphorylation was consistently observed in MMs arising in asbestos-treated mice and in MM cell xenografts. Consistent with reports implicating hepatocyte growth factor (HGF)/Met receptor signaling in MM, all 14 human and murine MM cell lines had HGF-inducible AKT activity. One of nine human MM cell lines had elevated AKT activity under serum-starvation conditions, which was associated with a homozygous deletion of PTEN, the first reported in MM. Treatment of this cell line with the mTOR inhibitor rapamycin resulted in growth arrest in G1 phase. Treatment of MM cells with the PI3K inhibitor LY294002 in combination with cisplatin had greater efficacy in inhibiting cell proliferation and inducing apoptosis than either agent alone. Collectively, these data indicate that MMs frequently express elevated AKT activity, which may be targeted pharmacologically to enhance chemotherapeutic efficacy. These findings also suggest that mouse models of MM may be useful for future preclinical studies of pharmaceuticals targeting the PI3K/AKT pathway.  相似文献   

9.
In this study we demonstrate that tumor necrosis factor alpha (TNFalpha) triggers only modest proliferation, as well as p44/p42 mitogen-activated protein kinase (MAPK) and NF-kappaB activation, in MM.1S multiple myeloma (MM) cells. TNFalpha also activates NF-kappaB and markedly upregulates (fivefold) secretion of interleukin-6 (IL-6), a myeloma growth and survival factor, in bone marrow stromal cells (BMSCs). TNFalpha in both a dose and time dependent fashion induced expression of CD11a (LFA-1), CD54 (intercellular adhesion molecule-1, ICAM-1), CD106 (vascular cell adhesion molecule-1, VCAM-1), CD49d (very late activating antigen-4, VLA-4), and/or MUC-1 on MM cell lines; as well as CD106 (VCAM-1) and CD54 (ICAM-1) expression on BMSCs. This resulted in increased (2-4-fold) per cent specific binding of MM cells to BMSCs, with related IL-6 secretion. Importantly, the proteasome inhibitor PS-341 abrogated TNFalpha-induced NF-kappaB activation, induction of ICAM-1 or VCAM-1, and increased adhesion of MM cells to BMSCs. Agents which act to inhibit TNFalpha may therefore abrogate the paracrine growth and survival advantage conferred by MM cell adhesion in the BM microenvironment.  相似文献   

10.
We reported that NK4, composed of the N-terminal hairpin and subsequent four kringle domains of hepatocyte growth factor (HGF), acts as the competitive antagonist for HGF. We now provide the first evidence that NK4 inhibits tumor growth and metastasis as an angiogenesis inhibitor as well as an HGF antagonist. Administration of NK4 suppressed primary tumor growth and lung metastasis of Lewis lung carcinoma and Jyg-MC(A) mammary carcinoma s.c. implanted into mice, although neither HGF nor NK4 affected proliferation and survival of these tumor cells in vitro. NK4 treatment resulted in a remarkable decrease in microvessel density and an increase of apoptotic tumor cells in primary tumors, which suggests that the inhibition of primary tumor growth by NK4 may be achieved by suppression of tumor angiogenesis. In vivo, NK4 inhibited angiogenesis in chick chorioallantoic membranes and in rabbit corneal neovascularization induced by basic fibroblast growth factor (bFGF). In vitro, NK4 inhibited growth and migration of human microvascular endothelial cells induced by bFGF and vascular endothelial growth factor (VEGF) as well as by HGF. HGF and VEGF activated the Met/HGF receptor and the KDR/VEGF receptor, respectively, whereas NK4 inhibited HGF-induced Met tyrosine phosphorylation but not VEGF-induced KDR phosphorylation. NK4 inhibited HGF-induced ERK1/2 (p44/42 mitogen-activated protein kinase) activation, but allowed for bFGF- and VEGF-induced ERK1/2 activation. These results indicate that NK4 is an angiogenesis inhibitor as well as an HGF antagonist, and that the antiangiogenic action of NK4 is independent of its activity as HGF antagonist. The bifunctional properties of NK4 to act as an angiogenesis inhibitor and as an HGF antagonist raises the possibility that NK4 may prove therapeutic for cancer patients.  相似文献   

11.
F Frasca  P Vigneri  V Vella  R Vigneri  J Y Wang 《Oncogene》2001,20(29):3845-3856
The Hepatocyte Growth Factor (HGF) and its receptor Met are physiological regulators of cell migration. HGF and Met have also been implicated in tumor progression and metastasis. We show here that the tyrosine kinase inhibitor STI571 has a stimulatory effect on HGF-induced migration and branching morphogenesis in thyroid cancer but not in primary or immortalized thyroid epithelial cells. These stimulatory effects of STI571 are observed at a concentration that is clinically relevant. The STI571-enhanced motile response can be correlated with an increase in the Met receptor tyrosine phosphorylation as well as ERK and Akt activation by HGF. Interestingly, one of the targets of STI571, namely the c-Abl tyrosine kinase, is activated by HGF and is recruited at the migrating edge of thyroid cancer cells. These data suggests that c-Abl and/or STI571-inhibited tyrosine kinases can negatively regulate the Met receptor to restrain the motile response in thyroid cancer cells.  相似文献   

12.
背景与目的:肝细胞生长因子(hepatocyte growth factor,HGF)诱导敏感非小细胞肺癌(nonsmall cell lung cancer,NSCLC)细胞对表皮生长因子受体酪氨酸激酶抑制剂(epidermal growth factor receptor-tyrosine kinase inhibitor,EGFR-TKI)耐药,其机制与c-Met激活有关。本研究探讨c-Met抑制剂SU11274逆转HGF诱导的不同EGFR基因型NSCLC细胞株对吉非替尼耐药及逆转耐药机制。方法:选择人NSCLC细胞株PC9(EGFR突变型)、H292(EGFR野生型)和A549(EGFR野生型),应用吉非替尼和SU11274单独或联合作用于HGF诱导的细胞株。实验分为6组:C组(不加药对照组)、H组(HGF处理组)、G组(吉非替尼处理组)、S(SU11274处理组)、HG组(HGF+吉非替尼处理组)和HGS组(HGF+吉非替尼+SU11274处理组)。MTT法检测对细胞增殖的影响,流式细胞术检测细胞凋亡的影响;应用蛋白质印迹法(Western blot)检测细胞中c-Met及其下游通道Stat3、Akt和Erk1/2蛋白表达水平。结果:吉非替尼对3种细胞的生长抑制作用均呈浓度依赖性,HGF处理能够缓解吉非替尼的增殖抑制作用(P<0.05);不同浓度吉非替尼联合SU11274作用于HGF诱导细胞时,3种细胞株存活率比吉非替尼单独作用于HGF诱导细胞时明显降低(P<0.05);HGS组的细胞凋亡比HG组明显增加(P<0.05);HGS组的c-Met、Stat3、Akt和Erk1/2活化蛋白量比HG组明显减少。结论:c-Met抑制剂SU11274可逆转HGF诱导的不同EGFR基因型NSCLC细胞株对吉非替尼耐药,其机制可能与抑制HGF活化的c-Met及其下游通道蛋白表达有关。  相似文献   

13.
14.
Soluble interleukin-6 receptor (sIL-6R) is part of IL-6 receptor that may stimulate cells that do not express the whole molecule. It may enhance myeloma cell proliferation and furthermore angiogenesis. The aim of the study was to evaluate the clinical significance and the relationship between serum levels of sIL-6R, with various stimulators of angiogenesis, such as hepatocyte growth factor (HGF) and interleukin-18 (IL-18) and with markers of proliferation, such as beta-2 microglobulin (B2M) levels and plasma cell Ki-67 proliferation index in the bone marrow, in patients with multiple myeloma (MM). We studied 45 newly diagnosed MM patients. Serum levels of sIL-6R, HGF, IL-18, and B2M and Ki-67 proliferation index (Ki-67 PI) in bone marrow’s plasma cells were determined. The mean concentrations of sIL-6R, HGF, IL-18, and B2M and the value of Ki-67 were significantly higher in the patients compared to controls and with increasing disease stage. sIL-6R was strongly positively correlated with HGF, IL-18, B2M, and Ki-67 PI. There is a positive correlation between plasma cell growth, as determined by Ki-67 PI, and different angiogenic cytokines, such as HGF and IL-18, with sIL-6R. This relationship suggests the significant role of these cytokines in the proliferation and disease activity in MM patients.  相似文献   

15.
Tu Y  Gardner A  Lichtenstein A 《Cancer research》2000,60(23):6763-6770
Interleukin 6 (IL-6) and insulin-like growth factor I (IGF-I) induce proliferative and antiapoptotic responses in multiple myeloma (MM) plasma cells. Because these cytokines may activate the phosphatidylinositol 3-kinase (PI 3-K)/AKT kinase pathway in other cell types, we investigated the role of PI 3-K/AKT in MM cell responses. IGF-I effectively activated PI 3-K in 8226 and OCI-My5 MM cells, but IL-6 was ineffective. However, IL-6 successfully activated PI 3-K in AF-10 MM cells and IL-6-dependent MH.60 plasmacytoma/hybridoma cells. IGF-I also successfully activated PI 3-K in four of four MM patient specimens, and IL-6 activated PI 3-K in three of four specimens. Inhibition of PI 3-K activity with wortmannin or Ly294002 blocked the antiapoptotic effect of IGF-I and the proliferative effect of IL-6 in the myeloma cell lines. Furthermore, a dominant negative PI 3-K construct, expressed in AF-10 cells by adenoviral infection, also significantly inhibited the IL-6 proliferative response in MM cells. In correlation with activation of PI 3-K, IGF-I also effectively activated the AKT kinase in 8226 and OCI-My5 cells, and IL-6 activated AKT in AF-10 and MH.60 cells. However, although incapable of activating PI 3-K in 8226 and OCI-My5 cells, IL-6 successfully activated AKT in these MM lines, suggesting PI 3-K-independent mechanisms of AKT activation. The prevention of a myeloma cell proliferative response resulting from inhibition of PI 3-K activity was not associated with an inhibition of IL-6-dependent extracellular signal-regulated kinase (ERK) activation. These results support a role for the PI 3-K/AKT pathway in cytokine-dependent responses in myeloma cells, which is independent of any activation of the ERK pathway.  相似文献   

16.
Sphingosine 1-phosphate (S1P) is a bioactive lipid involved in cancer progression through its binding to S1P receptors (S1PRs). However, the association between multiple myeloma (MM) and S1P is unclear. The current study aimed to investigate the potential anti-cancer effects of fingolimod and sphingosine kinase (SK) inhibitors in myeloma cells and the effects of S1P-induced chemoresistance and neovascularization on MM cell proliferation. MM cell lines were treated with the S1PR1 antagonist fingolimod and the SK inhibitors ABC294640 and SK1-I, after which cell proliferation was measured. Protein expression was also assessed under each condition using immunoblotting. Serum S1P levels in patients with MM, monoclonal gammopathy of undetermined significance and healthy volunteers were assessed. Human umbilical vessel cells (HUVECs) were co-cultured with anti-S1P agents to assess the effect on cell migration. All treatments suppressed myeloma cell proliferation and caspase-3-mediated apoptosis by suppressing S1P activity. These findings suggest that S1P activation is associated with proliferation and survival for MM cells. S1P attenuated the proteosome inhibitor (PI) effect, while the anti-S1P agents recovered the effect. In addition, S1P promoted the migration and proliferation of HUVECs, whereas the S1P inhibitors reduced the influence of S1P. This study highlights the therapeutic potential of anti-S1P agents for MM treatment. Inhibition of S1P function may overcome resistance to PI developed by myeloma cells and inhibit the changes to the bone marrow microenvironment via neovascularization.  相似文献   

17.
ABSTRACT: INTRODUCTION: Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have shown clinical efficacy in lung, colon, and pancreatic cancers. In lung cancer, resistance to EGFR TKIs correlates with amplification of the hepatocyte growth factor (HGF) receptor tyrosine kinase Met. Breast cancers do not respond to EGFR TKIs, even though EGFR is overexpressed. This intrinsic resistance to EGFR TKIs in breast cancer does not correlate with Met amplification. In several tissue monoculture models of human breast cancer, Met, although expressed, is not phosphorylated, suggesting a requirement for a paracrine-produced ligand. In fact, HGF, the ligand for Met, is not expressed in epithelial cells but is secreted by fibroblasts in the tumor stroma. We have identified a number of breast cancer cell lines that are sensitive to EGFR TKIs. This sensitivity is in conflict with the observed clinical resistance to EGFR TKIs in breast cancers. Here we demonstrate that fibroblast secretion of HGF activates Met and leads to EGFR/Met crosstalk and resistance to EGFR TKIs in triple-negative breast cancer (TNBC). METHODS: The SUM102 and SUM149 TNBC cell lines were used in this study. Recombinant HGF as well as conditioned media from fibroblasts expressing HGF were used as sources for Met activation. Furthermore, we co-cultured HGF-secreting fibroblasts with Met-expressing cancer cells to mimic the paracrine HGF/Met pathway, which is active in the tumor microenvironment. Cell growth, survival, and transformation were measured by cell counting, clonogenic and MTS assays, and soft agar colony formation, respectively. Student's t test was used for all statistical analysis. RESULTS: Here we demonstrate that treatment of breast cancer cells sensitive to EGFR TKIs with recombinant HGF confers a resistance to EGFR TKIs. Interestingly, knocking down EGFR abrogated HGF-mediated cell survival, suggesting a crosstalk between EGFR and Met. HGF is secreted as a single-chain pro-form, which has to be proteolytically cleaved in order to activate Met. To determine whether the proteases required to activate pro-HGF were present in the breast cancer cells, we utilized a fibroblast cell line expressing pro-HGF (RMF-HGF). Addition of pro-HGF-secreting conditioned fibroblast media to TNBC cells as well as co-culturing of TNBC cells with RMF-HGF fibroblasts resulted in robust phosphorylation of Met and stimulated proliferation in the presence of an EGFR TKI. CONCLUSIONS: Taken together, these data suggest a role for Met in clinical resistance to EGFR TKIs in breast cancer through EGFR/Met crosstalk mediated by tumor-stromal interactions.  相似文献   

18.
IL-6 has been reported to play a central role in growth and survival of multiple myeloma (MM) cells. However, recently we have demonstrated that in the presence of bone marrow stromal cells, survival of MM cells becomes independent of the IL-6/gp130/STAT3 pathway questioning the singular role of IL-6 in MM. Therefore, it was the aim of this study to identify additional factors and signaling pathways that might contribute to the growth and survival of MM cells. We found that in addition to IL-6 a number of bone marrow derived cytokines such as LIF, VEGF, bFGF, MIP-1alpha, SDF-1alpha, IL-1beta, SCF and IL-3 activate the MAPK pathway and induce proliferation of MM.1S and RPMI-8226 MM cells. In addition, these cytokines independently phosphorylate the forkhead family member FKHR via PI3-K/AKT and support survival of primary human MM cells. Inhibition of these pathways induces apoptosis in MM cell lines and primary MM cells. Thus, we provide evidence that in addition to IL-6 a number of different factors trigger important growth-promoting pathways to support the proliferation and survival of MM cells. Therefore, blocking such pathways, rather than blocking a single factor, might be a promising approach for the development of novel treatment strategies in MM.  相似文献   

19.
The migration of multiple myeloma (MM) cells from the circulation into the bone marrow (BM) implicates that they must have the capacity to cross the BM endothelium including the subendothelial basement membrane. In this study, human CD138+ MM cells were immunomagnetically isolated from BM samples of MM patients and their invasion through Matrigel, that is, a reconstituted basement membrane, was determined. We demonstrated that primary MM cells have the capacity to transmigrate through basement membrane and that this invasiveness was considerably increased when assessed on Matrigel filters coated with BM endothelial cells (EC) (4LHBMEC line) (transendothelial invasion). The isolated MM cells were shown by zymography to secrete matrix metalloproteinase (MMP)-9 and anti-MMP-9 antibodies inhibited transendothelial invasion, indicating that MMP-9 is involved in this process. BM EC were found to increase the MMP-9 secretion in MM cells, indicating that EC enhance MM cell invasion through stimulation of MMP-9 secretion. BM EC were found to produce hepatocyte growth factor (HGF), and this cytokine also stimulated MMP-9 secretion in MM cells, while anti-HGF antibodies significantly inhibited EC-stimulated MM cell invasion. In summary, our findings provide evidence that MM cell-BM EC interactions enhance the invasion of human MM cells through stimulation of MMP-9 secretion.  相似文献   

20.
Met tyrosine kinase, the receptor for HGF/SF, is important in various cellular functions, including proliferation, mitogenesis, formation of branching tubules, angiogenesis, and tumor cell invasion and metastasis. However, the role of Met/HGF signaling pathway in nasopharyngeal carcinoma (NPC) has not been evaluated. In this study, we determined the expression profile and clinical correlation of Met/HGF in 66 cases of advanced NPC and the activation mechanisms of Met receptor in five NPC cell lines. Immunofluorescent staining and quantitative image analysis showed that the Met protein was expressed throughout the tumors and normal nasopharyngeal epithelia. Compared with NPC, the Met expression level was higher in columnar nasopharyngeal epithelium but lower in squamous nasopharyngeal epithelium. The normal interstitial stromal tissue expressed the lowest level of Met protein. HGF was detected mainly in the normal interstitial tissue surrounding the tumor. Met protein expression level was inversely correlated with patients' survival time; the correlation coefficient was -0.319 (P = 0.009). The mean survival time was 118 months in low Met expression group versus 52 months in high expression group (P = 0.0004). The cumulative 5-year survival rate was 77.68% in low expression group versus 38.24% in high expression group. The clinical stage was also significantly more advanced in high Met expression group. In the multivariate analysis, both clinical stage and Met protein expression level were independent prognostic indicators for patient survival. All of the five NPC cell lines tested did not express hgf mRNA but expressed met mRNA, and tyrosine phosphorylation of Met protein was mainly induced by exogenous HGF stimulation in these cells. No mutation was found in the tyrosine kinase and the juxtamembrane domains of Met receptor in the five NPC cell lines tested. These results indicate that: (a) high Met protein expression level correlates with poorer survival in late-stage NPC and serves as an independent prognostic indicator; and (b) the Met receptor in NPC is activated by its paracrine ligand HGF from the interstitial tissues rather than by an autocrine loop or its activating mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号