首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Female ROP Os/+ mice are partially protected by endogenous estrogens against progressive glomerulosclerosis (GS) during their reproductive period; however, ovariectomy accelerates GS progression. We examined the effects of continuous and intermittent 17beta-estradiol (E(2)) replacement and tamoxifen therapy on the development of GS in ovariectomized (Ovx) ROP Os/+ mice. Continuous E(2) replacement (CE(2)) throughout 9 months prevented microalbuminuria and excess extracellular matrix accumulation in Ovx ROP Os/+, not only compared to placebo-treated Ovx mice but also in comparison to intact female ROP Os/+. Tamoxifen had a similar effect, but of lesser magnitude. Intermittent 3-month on-off-on E(2) did not reduce the kidney changes. Mesangial cells (MCs) from CE(2) mice maintained their estrogen responsiveness. E(2) in vitro prevented transforming growth factor-beta1 stimulation of a Smad-responsive reporter construct and increased MMP-2 expression and activity in MCs isolated from CE(2) mice. MCs from mice on either placebo or intermittent E(2) treatment did not respond to added E(2), consistent with a stable alteration of their estrogen responsiveness. Tamoxifen protection against GS was less pronounced in ROP Os/+ mice. Thus, prolonged estrogen deficiency promotes GS and renders MCs insensitive to subsequent estrogen treatment. This underscores the importance of continuous estrogen exposure for maintaining glomerular function and structure in females susceptible to progressive GS.  相似文献   

2.
Immunoreactivities for estrogen receptor-alpha (ER-alpha) and ER-beta are expressed in sensory neurons of the dorsal root ganglia (DRG). It has not been established, however, if the two receptor subtypes coexist in the same neuron. Double-staining immunohistochemical techniques were used to determine if subpopulations of neurons in the lumbosacral DRG exist based on their content of ERs. Results indicate that some neurons (approximately 17%) of the L6-S1 DRG contain ER-alpha -, some (approximately 23%) contain ER-beta - immunoreactivity and some (approximately 5%) express immunoreactivity for both subtypes of the ER. These results suggest that many sensory neurons can respond to estrogens, but estrogens may produce different morphofunctional effects in different neurons based on their expression of ER subtypes.  相似文献   

3.
4.
We investigated the etiology and molecular mechanisms of bladder outlet obstruction (BOO). Transgenic (Tg) male mice overexpressing aromatase (Cyp19a1) under the ubiquitin C promoter in the estrogen-susceptible C57Bl/6J genetic background (AROM+/6J) developed inguinal hernia by 2 months and severe BOO by 9 to 10 months, with 100% penetrance. These mice gradually developed uremia, renal failure, renal retention, and finally died. The BOO bladders were threefold larger than in age-matched wild-type (WT) males and were filled with urine on necropsy. Hypotrophic smooth muscle cells formed the thin detrusor urinae muscle, and collagen III accumulation contributed to the reduced compliance of the bladder. p-AKT and ERα expression were up-regulated and Pten expression was down-regulated in the BOO bladder urothelium. Expression of only ERα in the intradetrusor fibroblasts suggests a specific role of this estrogen receptor form in urothelial proliferation. Inactivation of Pten, which in turn activated the p-AKT pathway, was strictly related to the activation of the ERα pathway in the BOO bladders. Human relevance for these findings was provided by increased expression of p-AKT, PCNA, and ERα and decreased expression of PTEN in severe human BOO samples, compared with subnormal to mild samples. These findings clarify the involvement of estrogen excess and/or imbalance of the androgen/estrogen ratio in the molecular pathogenetic mechanisms of BOO and provide a novel lead into potential treatment strategies for BOO.  相似文献   

5.
目的: 研究雌二醇(E2)对前列腺间质细胞中基质金属蛋白酶(MMP-2、MMP-9)及其组织抑制因子1(TIMP-1)、TIMP-2和雌激素受体α、β(ERα、ERβ)的影响。方法: 实时定量PCR法检测E2在前列腺间质细胞中对MMP-2、MMP-9、TIMP-1、TIMP-2 mRNA水平的影响;半定量RT-PCR法检测E2对ERα、ERβ mRNA水平的影响。酶谱电泳法检测MMP-2、MMP-9的活性。Western blotting检测E2在前列腺间质细胞中对ERα蛋白水平的影响。结果: 前列腺间质细胞中有MMP-2和ERα mRNA的表达,未检测到MMP-9 mRNA;培养液中检测到MMP-2前体(pro-MMP-2),未检测到其活性形式,也未检测到MMP-9前体及其活性形式。用E2处理间质细胞后MMP-2 mRNA水平降低,pro-MMP-2蛋白量减少,雌激素受体抑制剂ICI 182.780可抑制此作用。E2对TIMP-1,2 mRNA表达无显著影响。E2能够增加前列腺间质细胞中ERα mRNA及其蛋白表达的水平。结论: E2能够通过ERα下调前列腺间质细胞中MMP-2的表达。  相似文献   

6.
7.
Effects of coumestrol on neonatal and adult mice osteoblasts activities   总被引:3,自引:0,他引:3  
Estrogen replacement therapy has been shown to reduce postmenopausal osteoporosis. In the present study, we examined the effects of the phytoestrogen coumestrol on neonatal and adult osteoblasts metabolism. Two different sources of osteoblast cells (neonatal mice calvaria and adult mice long bone) cultures were used in this study. The effects of coumestrol on the cellular activities were analyzed by the mitochondrial tetrazolium (MTT) assay, secretion of alkaline phosphatase (ALP), intracellular calcium content (Ca), and the gene expression of bone matrix protein, estrogen receptors (ER-alpha, ER-beta), and osteoprotegerin (OPG) and osteoprotegerin ligand (OPGL). The results showed that the proliferation of neonatal mice osteoblast cells was enhanced by treatment of coumestrol. In the presence of 10(-9)M coumestrol, the osteoblast proliferation attained 139.5% of the control and that the coumestrol can increase the intracellular calcium contents. Type I collagen gene expression was upregulated 167% at the 1st day's culture; ALP gene expression was upregulated 360% at the 7th day's culture; while the osteocalcin gene expression was upregulated 222% at the 14th day's culture. When adult mice osteoblasts were cultured in the presence of 10(-9)M coumestrol, the osteoblasts population increased significantly earlier and attained its maximal effect at the 21st day's culture with 207.4% of control group. The content of ER-beta and osteoprotegerin secretion by neonatal mice control cells gradually increased during osteoblasts differentiation, whereas the ER-alpha and OPGL content were decreased in this study. The cellular responses to the estradiol and counmestrol were quite different in the osteoblasts derived from different age.  相似文献   

8.
Keloids are pathologic proliferations of the dermal layer of the skin resulting from excessive collagen production and deposition. Hepatocyte growth factor (HGF) increases the expression of matrix metalloproteinase (MMP)-1 and suppresses collagen synthesis to modulate extracellular matrix turnover. To investigate the anti-fibrotic effects of HGF, we examine the mRNA expression of collagen types I and III and matrix metalloproteinase (MMP-1, MMP-3) on human dermal fibroblast (HDF) cell lines and keloid fibroblasts (KFs, n = 5) after adding various amount of HGF protein. We also evaluated the enzymatic activity of MMP-2, MMP-9 by zymograghy. In HDFs treated with TGF-β1 and HGF protein simultaneously, both type I and III collagen mRNA expression significantly decreased (P < 0.05). Expression of MMP-1, MMP-3 mRNA also decreased. However, the mRNA expression of MMP-1, MMP-3 significantly increased in KFs with increasing amount of HGF in dose dependent manner (P < 0.05). The enzymatic activities of MMP-2 increased with increasing HGF protein in a dose-dependent manner. However, the enzymatic activity of MMP-9 did not change. These results suggest that the anti-fibrotic effects of HGF may have therapeutic effects on keloids by reversing pathologic fibrosis.  相似文献   

9.
目的 探讨糖尿病肾病大鼠肾局部金属蛋白酶9(MMP-9)在糖尿病肾病发生发展的作用.方法 健康雌性清洁级大鼠,随机分成糖尿病组和正常对照组,采用腹腔注射链脲佐菌素制备糖尿病大鼠模型.分别于4、8周处死,应用免疫组化及酶谱分析方法(zymography)观察各组肾组织MMP9的蛋白表达及其活性水平,分析MMP-9与细胞外基质Ⅳ型胶原、层粘连蛋白(LN)的相关性.结果 MMP-9在正常对照组肾小球、肾小管细胞均有阳性表达(4周,26.63%+2.94%;8周,29.86%±0.89%);而糖尿病组随病程延长表达明显减弱(4W,16.11%±2.86%;8周,13.14%±2.68%),MMP-9活性也明显降低(正常组4周110.47±7.12;8周,111.50±6.95;糖尿病组4周82.74±10.92;8周,80.05±12.83),两组间各项指标的差异有统计学意义(均P<0.01).MMP-9活性与Ⅳ型胶原(r=-0.852,-0.795,P<0.01)、LN(r=-0.897,-0.832,P<0.01)呈显著负相关.结论 糖尿病肾病时肾组织中MMP-9表达水平降低,糖尿病肾病的发病机制可能与MMP-9水平降低有关.  相似文献   

10.
11.
Degradation of the extracellular matrix, facilitated by matrix metalloproteinases (MMPs), can lead to mechanical failure of vascular constructs, suggesting that MMP inhibition could improve survival of constructs. Therefore, we investigated the role of MMP-9 in collagen remodeling in vitro, focusing on the three major steps of production, degradation, and organization. Because an adequate blood supply is essential for survival of tissue-engineered constructs, we also evaluated the influence of MMP-9 deficiency on angiogenesis in vivo by implantation of thin biodegradable polymer scaffolds. Using aortic smooth muscle cells (SMCs) from wild-type and genetically deficient (9KO) mice, we examined the role of MMP-9 in collagen mRNA expression and protein accumulation, both with and without ascorbic acid treatment. We measured collagen assembly in a fibrillogenesis assay. We investigated in vivo angiogenesis and cell invasion, using fluorescence microangiography and histology. MMP-9 deficiency did not affect collagen mRNA production or polymer scaffold degradation, but collagen accumulation was greater in cultures of 9KO SMCs than in wild-type SMCs. Both MMP-9 deficiency and chemical inhibition impaired collagen degradation. Ascorbic acid treatment enhanced collagen production by 9KO SMCs compared with wild-type SMCs at 3 days, but by 7 days this effect was reversed. MMP-9 improved fibrillogenesis of collagen, significantly more on ascorbic acid treatment. MMP-9 deficiency dramatically decreased inflammatory cell invasion, but also capillary formation within biodegradable polymer scaffolds in vivo. Our data suggest that MMP inhibition, by impairing collagen organization and angiogenesis, might have detrimental effects on the survival of vascular constructs.  相似文献   

12.
Although 17beta-estradiol (E2) administration after trauma-hemorrhage (T-H) reduces tissue neutrophil sequestration in male rodents, it remains unknown which of the estrogen receptor (ER) subtypes mediates this effect and whether the same ER subtype is involved in all the tissues. We hypothesized that the salutary effects of E2 on attenuation of neutrophil accumulation following T-H are tissue and receptor subtype-specific. Male Sprague-Dawley rats underwent sham operation or T-H (mean blood pressure, 40 mmHg for 90 min and then resuscitation). E2 (50 microg/kg), ER-alpha agonist propyl pyrazole triol (PPT; 5 microg/kg), ER-beta agonist diarylpropiolnitrile (DPN; 5 microg/kg), or vehicle (10% dimethyl sulfoxide) was administered subcutaneously during resuscitation. Twenty-four hours thereafter, tissue myeloperoxidase (MPO) activity (a marker of neutrophil sequestration), cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-3, and intercellular adhesion molecule (ICAM)-1 levels in the liver, intestine, and lung were measured (n = 6 rats/group). ER-alpha and ER-beta mRNA levels in sham-operated rats were also determined. T-H increased MPO activity, CINC-1, CINC-3, and ICAM-1 levels in the liver, intestine, and lung. These parameters were improved significantly in rats receiving E2 after T-H. Administration of the ER-alpha agonist PPT but not the ER-beta agonist DPN improved the measured parameters in the liver. In contrast, DPN but not PPT significantly improved these parameters in the lung. In the intestine, ER subtype specificity was not observed. ER-alpha mRNA expression was highest in the liver, whereas ER-beta mRNA expression was greatest in the lung. Thus, the salutary effects of E2 administration on tissue neutrophil sequestration following T-H are receptor subtype and tissue-specific.  相似文献   

13.
An oral administration of a single dose of beta-adrenoceptor agonist clenbuterol (15 mg/kg body weight) to mice resulted in an increased collagen distribution in the subendocardium and myocardium of the left ventricle. Abundant collagen accumulation is characteristic in myonecrotic regions and around blood vessels. Hydroxyproline assay and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of pepsin insoluble collagen confirmed this stimulated collagen proliferation. An MMP-activity assay of tissue extract by gelatin in gel zymography demonstrated a significant inhibition of MMP-9 activity in the beta-agonist-treated group. The results suggest that clenbuterol treatment is capable of inducing structural and functional remodeling of the extracellular matrix by down-regulating MMP-9 activity and thereby causing an impairment of collagen turnover. This may lead to changes in the different hemodynamic properties of the tissue, including ventricular compliance.  相似文献   

14.
Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85-100%) and low (40-60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice.  相似文献   

15.
Inter- and intra-species differences in social behavior and recognition-related hormones and receptors suggest that different distribution and/or expression patterns may relate to social recognition. We used qRT-PCR to investigate naturally occurring differences in expression of estrogen receptor-alpha (ERα), ER-beta (ERβ), progesterone receptor (PR), oxytocin (OT) and receptor, and vasopressin (AVP) and receptors in proestrous female mice. Following four 5 min exposures to the same two conspecifics, one was replaced with a novel mouse in the final trial (T5). Gene expression was examined in mice showing high (85–100%) and low (40–60%) social recognition scores (i.e., preferential novel mouse investigation in T5) in eight socially-relevant brain regions. Results supported OT and AVP involvement in social recognition, and suggest that in the medial preoptic area, increased OT and AVP mRNA, together with ERα and ERβ gene activation, relate to improved social recognition. Initial social investigation correlated with ERs, PR and OTR in the dorsolateral septum, suggesting that these receptors may modulate social interest without affecting social recognition. Finally, increased lateral amygdala gene activation in the LR mice may be associated with general learning impairments, while decreased lateral amygdala activity may indicate more efficient cognitive mechanisms in the HR mice.  相似文献   

16.
Estrogen deficiency may contribute to the development and progression of glomerulosclerosis in postmenopausal women. The responsiveness to estrogens could be controlled by genetic traits related to those that determine the susceptibility to glomerular scarring. This study was undertaken to determine whether the intensity of the sclerotic response was modified by the estrogen status in sclerosis-prone ROP Os/+ mice. Ovariectomized ROP Os/+ mice developed more severe renal dysfunction and glomerulosclerosis than intact, ie, estrogen sufficient age-matched female mice. Ovariectomized ROP Os/+ exhibited increased accumulation of extracellular matrix, predominantly of laminin, and a marked distortion of the glomerular architecture. We found an increase in macrophage infiltration in the mesangium of ovariectomized ROP Os/+. Estrogen deficiency decreased glomerular estrogen receptor expression in ROP Os/+ mice, which we had previously found to be low in the parental ROP strain. Thus, although physiological estrogen levels in young ROP Os/+ mice could not prevent the development of glomerulosclerosis, estrogen deficiency accelerated the progression of glomerular scarring in this mouse strain. This suggests that estrogen replacement will slow but not prevent the progression of glomerulosclerosis. It underscores the importance of the genetic composition of individuals that determines the susceptibility to diseases as well as the response to treatment.  相似文献   

17.
Previous work has shown that integrin alpha1-null Alport mice exhibit attenuated glomerular disease with decreased matrix accumulation and live much longer than strain-matched Alport mice. However, the mechanism underlying this observation is unknown. Here we show that glomerular gelatinase expression, specifically matrix metalloproteinase-2 (MMP-2), MMP-9, and MMP-14, was significantly elevated in both integrin alpha1-null mice and integrin alpha1-null Alport mice relative to wild-type mice; however, only MMP-9 was elevated in glomeruli of Alport mice that express integrin alpha1. Similarly, cultured mesangial cells from alpha1-null mice showed elevated expression levels of all three MMPs, whereas mesangial cells from Alport mice show elevated expression levels of only MMP-9. In both glomeruli and cultured mesangial cells isolated from integrin alpha1-null mice, activation of the p38 and ERK branches of the mitogen-activated protein kinase pathway was also observed. The use of small molecule inhibitors demonstrated that the activation of the p38, but not ERK, pathway was linked to elevated MMP-2, -9, and -14 expression levels in mesangial cells from integrin alpha1-null mice. In contrast, elevated MMP-9 levels in mesangial cells from Alport mice were linked to ERK pathway activation. Blockade of gelatinase activity using a small molecule inhibitor (BAY-12-9566) ameliorated progression of proteinuria and restored the architecture of the glomerular basement membrane in alpha1 integrin-null Alport mice, suggesting that elevated gelatinase activity exacerbates glomerular disease progression in these mice.  相似文献   

18.
We examined the distribution of estrogen receptor (ER)-alpha and ER-beta immunoreactive (ir) cells in the dorsal (DRN) and median/paramedian (MPRN) raphe nuclei in male mice. ER-alpha ir neurons were scattered across the three subdivisions (ventral, dorsal, and lateral) of the DRN and the MPRN. Robust ER-beta ir cells were observed throughout the raphe nuclei, and were particularly abundant in the ventral and dorsal subdivisions of the DRN. Using dual-label immunocytochemistry for ER-alpha or ER-beta with tryptophan hydroxylase (TPH), the rate-limiting enzyme for 5-hydroxytryptamine (5-HT) synthesis, over 90% of ER-beta ir cells exhibited TPH-ir in all DRN subdivisions, whereas only 23% of ER-alpha ir cells contained TPH. Comparisons of ER-alpha knockout (alphaERKO) as well as ER-beta knockout (betaERKO) mice with their respective wild-type (WT) littermates revealed that gene disruption of either ER-alpha or ER-beta did not affect the other ER subtype expression in the raphe nuclei. In situ hybridization histochemistry revealed that there was a small but statistically significant decrease in TPH mRNA expression in the ventral DRN subdivision in betaERKO mice compared with betaWT mice, whereas TPH mRNA levels were not affected in alphaERKO mice. These findings support a hypothesis that ER-beta activation may contribute to the estrogenic regulation of neuroendocrine and behavioral functions, in part, by acting directly on 5-HT neurons in the raphe nuclei in male mice.  相似文献   

19.
20.
Matrix metalloproteinases (MMPs) play a major role in the degradation of the extracellular matrix (ECM) of skeletal muscle, and the inducible gelatinase MMP-9 in particular appears to be critical for the remodeling of muscle ECM during growth and repair. Here we determined the effects of MMP-9 gene inactivation on fiber type and size in the tibialis anterior (TA), gastrocnemius (GAST), and soleus (SOL) muscles in female mice. In the TA, the cross-sectional area (CSA) of the myosin heavy chain (MyHC) IIb-expressing fibers was significantly smaller in MMP-9 null mice while in the GAST, CSA of all three fast fiber types was decreased. In the SOL, MyHC type I-expressing fibers were significantly smaller in the MMP-9 null mice. The percentage of MyHC type IIb-expressing fibers was significantly increased in the TA and GAST of MMP-9 null mice, while the percentage of MyHC IId-expressing fibers significantly decreased in the GAST of MMP-9 null mice. Fiber percentages in the SOL were not significantly different between the two lines. Despite these changes in fiber size and type, in vivo hindlimb force production was not changed in MMP-9 null mice. Meanwhile, neither expression of the constitutive gelatinase MMP-2 nor immunohistochemical staining for type IV collagen was significantly altered by MMP-9 inactivation in any muscles examined. The present study demonstrates that MMP-9 inactivation results in changes in fiber size and type in adult mouse hindlimb muscles that may depend on indirect mechanisms involving reduced bone growth or nerve changes in response to MMP-9 inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号