首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
OBJECTIVE: In an attempt to understand the basis of early relapse after antipsychotic withdrawal, the objective of this study was to determine whether the low occupancy of dopamine D2 receptors by clozapine and by quetiapine, as seen by brain imaging, could arise from a rapid release of some of the D2-bound clozapine or quetiapine by the brain imaging compounds and by the action of a physiological concentration of dopamine. METHOD: Human cloned D2 receptors were first pre-equilibrated with the [3H]antipsychotic drug, after which raclopride, iodobenzamide, or dopamine (at the physiological concentration in the synapse) was added, and the time course of release of the [3H]antipsychotic from the D2 receptor was measured. RESULTS: Within 5 minutes, low concentrations of raclopride and iodobenzamide displaced appreciable amounts of [3H]clozapine and [3H]quetiapine from the D2 receptors but, during the course of 1 hour, did not displace any of the other antipsychotic [[3H]ligands. [3H]Clozapine and [3H]quetiapine, moreover, were displaced by dopamine (100 nM) at least 100 times faster than the other antipsychotic [3H]ligands. CONCLUSIONS: Clozapine and quetiapine are loosely bound to the D2 receptor, and the injected radioactive ligand at its peak concentration may displace some of the D2-bound antipsychotic drug, resulting in apparently low D2 occupancies. Therefore, under clinical brain imaging conditions with [11C]raclopride, D2 occupancies by clozapine and by quetiapine may be higher than currently estimated. These considerations may result in high levels of the D2 receptors being occupied by therapeutic doses of clozapine or quetiapine. The rapid release of clozapine and quetiapine from D2 receptors by endogenous dopamine may contribute to low D2 receptor occupancy and to early clinical relapse upon withdrawal of these medications.  相似文献   

2.
OBJECTIVE: Clozapine, the prototype of atypical antipsychotics, remains unique in its efficacy in the treatment of refractory schizophrenia. Its affinity for dopamine D(4) receptors, serotonin 5-HT(2A) receptor antagonism, effects on the noradrenergic system, and its relatively moderate occupancy of D(2) receptors are unlikely to be the critical mechanism underlying its efficacy. In an attempt to elucidate the molecular/synaptic mechanism underlying clozapine's distinctiveness in refractory schizophrenia, the authors studied the in vivo D(1) and D(2) receptor profile of clozapine compared with other atypical antipsychotics. METHOD: Positron emission tomography with the radioligands [(11)C]SCH23390 and [(11)C]raclopride was used to investigate D(1) and D(2) receptor occupancy in vivo in 25 schizophrenia patients receiving atypical antipsychotic treatment with clozapine, olanzapine, quetiapine, or risperidone. RESULTS: Mean striatal D(1) occupancies ranged from 55% with clozapine to 12% with quetiapine (rank order: clozapine > olanzapine > risperidone > quetiapine). The striatal D(2) occupancy ranged from 81% with risperidone to 30% with quetiapine (rank order: risperidone > olanzapine > clozapine > quetiapine). The ratio of striatal D(1)/D(2) occupancy was significantly higher for clozapine (0.88) relative to olanzapine (0.54), quetiapine (0.41), or risperidone (0.31). CONCLUSIONS: Among the atypical antipsychotics, clozapine appears to have a simultaneous and equivalent occupancy of dopamine D(1) and D(2) receptors. Whether its effect on D(1) receptors represents agonism or antagonism is not yet clear, as this issue is still unresolved in the preclinical arena. This distinctive effect on D(1)/D(2) receptors may be responsible for clozapine's unique effectiveness in patients with schizophrenia refractory to other typical and atypical antipsychotics.  相似文献   

3.
Atypical antipsychotics: mechanism of action.   总被引:23,自引:0,他引:23  
BACKGROUND: Although the principal brain target that all antipsychotic drugs attach to is the dopamine D2 receptor, traditional or typical antipsychotics, by attaching to it, induce extrapyramidal signs and symptoms (EPS). They also, by binding to the D2 receptor, elevate serum prolactin. Atypical antipsychotics given in dosages within the clinically effective range do not bring about these adverse clinical effects. To understand how these drugs work, it is important to examine the atypical antipsychotics' mechanism of action and how it differs from that of the more typical drugs. METHOD: This review analyzes the affinities, the occupancies, and the dissociation time-course of various antipsychotics at dopamine D2 receptors and at serotonin (5-HT) receptors, both in the test tube and in live patients. RESULTS: Of the 31 antipsychotics examined, the older traditional antipsychotics such as trifluperazine, pimozide, chlorpromazine, fluphenazine, haloperidol, and flupenthixol bind more tightly than dopamine itself to the dopamine D2 receptor, with dissociation constants that are lower than that for dopamine. The newer, atypical antipsychotics such as quetiapine, remoxipride, clozapine, olanzapine, sertindole, ziprasidone, and amisulpride all bind more loosely than dopamine to the dopamine D2 receptor and have dissociation constants higher than that for dopamine. These tight and loose binding data agree with the rates of antipsychotic dissociation from the human-cloned D2 receptor. For instance, radioactive haloperidol, chlorpromazine, and raclopride all dissociate very slowly over a 30-minute time span, while radioactive quetiapine, clozapine, remoxipride, and amisulpride dissociate rapidly, in less than 60 seconds. These data also match clinical brain-imaging findings that show haloperidol remaining constantly bound to D2 in humans undergoing 2 positron emission tomography (PET) scans 24 hours apart. Conversely, the occupation of D2 by clozapine or quetiapine has mostly disappeared after 24 hours. CONCLUSION: Atypicals clinically help patients by transiently occupying D2 receptors and then rapidly dissociating to allow normal dopamine neurotransmission. This keeps prolactin levels normal, spares cognition, and obviates EPS. One theory of atypicality is that the newer drugs block 5-HT2A receptors at the same time as they block dopamine receptors and that, somehow, this serotonin-dopamine balance confers atypicality. This, however, is not borne out by the results. While 5-HT2A receptors are readily blocked at low dosages of most atypical antipsychotic drugs (with the important exceptions of remoxipride and amisulpride, neither of which is available for use in Canada) the dosages at which this happens are below those needed to alleviate psychosis. In fact, the antipsychotic threshold occupancy of D2 for antipsychotic action remains at about 65% for both typical and atypical antipsychotic drugs, regardless of whether 5-HT2A receptors are blocked or not. At the same time, the antipsychotic threshold occupancy of D2 for eliciting EPS remains at about 80% for both typical and atypical antipsychotics, regardless of the occupancy of 5-HT2A receptors. RELEVANCE: The "fast-off-D2" theory, on the other hand, predicts which antipsychotic compounds will or will not produce EPS and hyperprolactinemia and which compounds present a relatively low risk for tardive dyskinesia. This theory also explains why L-dopa psychosis responds to low atypical antipsychotic dosages, and it suggests various individualized treatment strategies.  相似文献   

4.
Most antipsychotics were thought to induce antipsychotic action at an excess of 70% striatal dopamine D2 receptor occupancy, while the clinical dose of clozapine was reported to show less than 60% occupancy. High-dose clozapine could occupy as high as 80% of striatal dopamine D2 receptor in monkey PET studies. Although the time course of dopamine D2 receptor occupancy is an important property of antipsychotics, that by clozapine has not been investigated in a clinical setting. We measured the time course of extrastriatal dopamine D2 receptor occupancy with different doses of clozapine and evaluated whether the measured occupancies fitted the binding theory. Three consecutive PET scans with [11C]FLB 457 were performed for two patients with schizophrenia, chronically taking 600 mg/day and 200 mg/day of clozapine, respectively. Series of occupancies were also measured in combination with fluvoxamine or paroxetine in one patient. Dopamine D2 receptor occupancies were also simulated using individual clozapine plasma data and previously determined in vivo ED50 value. The occupancy of one patient with high plasma concentration (1207 ng/ml at peak time) was around 75% at peak and around 60% after 26 h. Another patient with medium plasma concentration (649 ng/ml at peak time) showed less than 50% occupancy at peak, decreasing to 15% after 25 h. The measured occupancy values fitted well with the simulated occupancy values. At high plasma concentration, clozapine can induce high extrastriatal dopamine D2 receptor occupancy in the human brain, and this finding fitted well with the theoretical estimation.  相似文献   

5.
Positron emission tomography (PET) and single photon emission computed tomography (SPECT) studies have demonstrated consistent findings of high dopamine D2 receptor occupancy (> 65-70%) in patients treated with antipsychotic drugs. Further, the risk of extrapyramidal side effects has been shown high in patients with occupancy above 80%. On the basis of these findings, an optimal interval for D2 receptor occupancy between 70% and 80% has been suggested. It has also been shown that several atypical antipsychotics induce marked occupancy of central 5-HT2 and D2 receptors in vivo. However, a low D2 occupancy has been observed in patients with clinical dose of clozapine or quetiapine. The antipsychotic effect of these atypical drugs with a low D2 receptor occupancy has been widely discussed with respect to actions on other receptor systems, limbic selectivity of antipsychotic action and episodic transient occupancy. The recent advances in PET/SPECT and developments of new radioligands have made it possible to evaluate antipsychotic drug actions directly in humans. The empirical data from occupancy measurements will enable us to open future directions of investigation of antipsychotic action and improvement of antipsychotic treatment.  相似文献   

6.
OBJECTIVE: The authors added haloperidol, a potent D(2) blocker, to ongoing treatment with clozapine in patients with schizophrenia to determine the effects of this combination on dopamine D(2) receptor blockade, prolactin level, and extrapyramidal side effects. METHOD: At baseline and 4-8 weeks after the addition of haloperidol (4 mg/day) to ongoing clozapine treatment, five patients were examined for prolactin elevation, extrapyramidal side effects, drug plasma levels, and D(2) receptor occupancy measured with [(11)C]raclopride and positron emission tomography imaging. RESULTS: Adding haloperidol significantly increased D(2) receptor occupancy, from a mean of 55% to 79%, and significantly increased the prolactin level. One patient developed akathisia, and another manifested mild extrapyramidal side effects. CONCLUSIONS: Adding a modest dose of haloperidol to clozapine results in the high D(2) receptor occupancy and sustained prolactin elevation usually associated with typical antipsychotics. These findings suggest that the lack of prolactin elevation associated with clozapine derives mainly from low D(2) receptor occupancy and not from the medication's effects on other receptors.  相似文献   

7.
In Japan, antipsychotic polypharmacy with high doses for schizophrenia has been traditionally used. However, antipsychotic polyphamacy with high doses provide disadvantages for patient. Recent PET studies show that dopamine D2 occupancy with antipsychotics is important for the treatment of schizophrenia. First, antipsychotics become effective only at which their D2 occupancy exceeds 65%. Second, antipsychotics with D2 occupancy below 90% rarely causes occupancy exceeds 65%. Second, antipsychotics with D2 occupancy below 90% rarely causes extrapyramidal side effect. These results suggest that monopharmacy which uses a single antipsychotic agent with appropriate dose is recommended for schizophrenia treatment.  相似文献   

8.
Antipsychotic drugs were introduced in the early 50s on the basis of clinical observations in patients with schizophrenia. Experimental studies later revealed that antagonism at the D(2) dopamine receptor is a common characteristic of all antipsychotic drugs. In the 80s, the advent of brain imaging technologies such as positron emission tomography (PET) allowed for direct noninvasive studies of drug binding in treated patients. The concept receptor occupancy is defined as the fraction (%) of a receptor population that is occupied during treatment with an unlabelled drug. With regard to antipsychotic drugs, the radioligand [(11) C]-raclopride has been the most widely used for binding to the D(2) /D(3) -dopamine receptors. The present review discusses the contribution from molecular imaging to the current understanding of mechanism of action (MoA) of antipsychotic drugs. Consistent initial PET-findings of high D2-receptor occupancy in the striatum of patients responding to different antipsychotic drug treatments provided clinical support for the dopamine hypothesis of antipsychotic drug action. It has subsequently been demonstrated that patients with extrapyramidal syndromes (EPS) have higher occupancy (above 80%) than patients with good response but no EPS (65-80%). The PET-defined interval for optimal antipsychotic drug treatment has been implemented in the evolvement of dose recommendations for classical as well as more recently developed drugs. Another consistent finding is lower D(2) -occupancy during treatment with the prototype atypical antipsychotic clozapine. The MoA of clozapine remains to be fully understood and may include nondopaminergic mechanisms. A general limitation is that currently available PET-radioligands are not selective for any of the five dopamine receptor subtypes. Current attempts at developing such ligands may provide the tools required to refine further the MoA of antipsychotic drugs.  相似文献   

9.
Novel antipsychotics represent a significant advance in the treatment of schizophrenia after many years of few developments. The conventional antipsychotics are potent D2 antagonists, but fail to achieve a response in about 30% of cases. They are also associated with a high rate of extrapyramidal side effects. The greater and broader spectrum of efficacy combined with the reduced short- and long-term side effects of the new drugs such as quetiapine, risperidone, olanzapine and ziprasidone, contribute to a fresh optimism for the pharmacotherapy of schizophrenia. These novel agents are now driving further advances in schizophrenia research through a growing understanding of their pharmacological and clinical profiles. Clozapine, the first novel antipsychotic, has relatively low activity at D2 receptors, a high affinity for D4 receptors and a greater 5-HT2 (serotonin) than D2 antagonism. Hence, clozapine and other novel antipsychotics can be classified as such by this latter characteristic. However, some of these drugs have D2 occupancy greater than 60% (the clinical response threshold), while others have a lower D2 occupancy. The novel antipsychotics according have also been classified according to their activity on different neurotransmitter systems. While more effective, novel antipsychotics are not a panacea; they have limitations and side effects. In clinical practice, the American Psychiatric Association recommends either a conventional or novel antipsychotic for initial treatment of schizophrenia, whereas Canadian guidelines recommend novel agents. These agents should also be considered for treatment of refractory schizophrenia. Patients whose schizophrenia does not respond to one of these agents may respond to another. Future research should involve longer clinical trials, given the long periods needed to establish efficacy, and should address many remaining questions about the novel agents.  相似文献   

10.
Alpha-adrenoceptor modulation hypothesis of antipsychotic atypicality   总被引:4,自引:0,他引:4  
Although all currently used antipsychotic drugs act as dopamine (DA) D2 receptor antagonists, clozapine, the prototype for atypical antipsychotics, shows superior efficacy, especially regarding negative and cognitive symptoms, in spite of a significantly reduced central D2 receptor occupancy compared with typical (conventional) antipsychotic drugs. Clozapine, as well as several other atypicals, displays significant affinities also for several other neurotransmitter receptors, including other dopaminergic receptors, alpha-adrenergic receptors and different serotonergic and cholinergic receptors, which in several ways may contribute to the clinical effectiveness of the drugs. Preclinical and clinical results suggest a dysregulated mesocorticolimbic DA system in schizophrenia, with an impaired prefrontal DA projection, which may relate to negative and cognitive symptoms, concomitant with an overactive or overreactive striatal DA projection, with bearing on psychotic (positive) symptomatology. Available data suggest that blockage of alpha1-adrenoceptors by antipsychotics may contribute to suppress positive symptoms, especially in acute schizophrenia, whereas alpha2-adrenoceptor blockage, a prominent effect of clozapine and, to some extent, risperidone but not other antipsychotics, may rather be involved in relief of negative and cognitive symptoms. Whereas alpha1-adrenoceptor blockage may act by suppressing, at the presynaptic level, striatal hyperdopaminergia, alpha2-adrenoceptor blockage may act by augmenting and improving prefrontal dopaminergic functioning. Thus, the prominent alpha1- and alpha2-adrenoceptor blocking effects of clozapine may generally serve to stabilize dysregulated central dopaminergic systems in schizophrenia, allowing for improved efficacy in spite of a reduced central D2 receptor occupancy compared with typical antipsychotic drugs.  相似文献   

11.
OBJECTIVE: Since all antipsychotics block dopamine D(2) receptors, the authors investigated how well D(2) receptor occupancy in vivo predicts clinical response, extrapyramidal side effects, and hyperprolactinemia. METHOD: In a double-blind study, 22 patients with first-episode schizophrenia were randomly assigned to 1.0 or 2. 5 mg/day of haloperidol. After 2 weeks of treatment, D(2) receptor occupancy was determined with [(11)C]raclopride and positron emission tomography, and clinical response, extrapyramidal side effects, and prolactin levels were measured. Patients who showed adequate responses continued taking their initial doses, those who did not respond had their doses increased to 5.0 mg/day, and evaluations were repeated at 4 weeks for all patients. RESULTS: The patients showed a wide range of D(2) occupancy (38%-87%). The degree of receptor occupancy predicted clinical improvement, hyperprolactinemia, and extrapyramidal side effects. The likelihood of clinical response, hyperprolactinemia, and extrapyramidal side effects increased significantly as D(2) occupancy exceeded 65%, 72%, and 78%, respectively. CONCLUSIONS: The study confirms that D(2) occupancy is an important mediator of response and side effects in antipsychotic treatment. The data are consistent with a "target and trigger" hypothesis of antipsychotic action, i.e., that the D(2) receptor specificity of antipsychotics permits them to target discrete neurons and that their antagonist properties trigger within those neurons intracellular changes that ultimately beget antipsychotic response. While limited to haloperidol, the relationship between D(2) occupancy and side effects in this study helps explain many of the observed clinical differences between typical and atypical antipsychotics.  相似文献   

12.
OBJECTIVE: Aripiprazole has a unique pharmacological profile that includes partial agonism at D(2) receptors, antagonism at 5-HT(2) receptors, and partial agonism at 5-HT(1A) receptors. The authors conducted a positron emission tomography (PET) study to characterize the simultaneous effects of aripiprazole at the D(2), 5-HT(2), and 5-HT(1A) receptors in patients with schizophrenia or schizoaffective disorder. METHOD: Twelve patients who had previously received antipsychotic treatment were randomly assigned to receive 10 mg, 15 mg, 20 mg, or 30 mg of aripiprazole. After at least 14 days of treatment, participants underwent high-resolution PET scans using [(11)C]raclopride, [(18)F]setoperone, and [(11)C]WAY100635. RESULTS: Very high occupancy was observed at striatal D(2) receptors (average putamen, 87%; caudate, 93%; and ventral striatum, 91%), lower occupancy at 5-HT(2) receptors (54%-60%), and even lower occupancy at 5-HT(1A) receptors (16%). D(2) occupancy levels were significantly correlated with plasma drug concentrations, and even the lowest dose (10 mg) led to 85% D(2) occupancy. Extrapyramidal side effects were seen only in two of the four participants with occupancies exceeding 90%. CONCLUSIONS: Aripiprazole exhibits a unique occupancy profile as compared with other conventional and atypical antipsychotics. The threshold for response appears to be higher than 60%, extrapyramidal side effects appear to be uncommon even at occupancies that exceed the conventional extrapyramidal side effects threshold of 80%, and 5-HT(2) occupancy is lower than D(2) occupancy. Implications for aripiprazole's mechanism of action are discussed.  相似文献   

13.
Antagonism of D2-like dopamine receptors is the putative mechanism underlying the antipsychotic efficacy of psychotropic drugs. Positron emission tomographic studies suggest that the antipsychotic effect of dopamine receptor antagonists occurs within a therapeutic window between 60% and 80% (striatal) D2 receptor occupancy. The incidence of extrapyramidal side effects increases above the 80% threshold. However, the novel atypical antipsychotic drug, aripiprazole, occupies up to 95% of striatal D2-like dopamine receptors at clinical doses, and the incidence of extrapyramidal side effects with aripiprazole is no higher than with placebo. The most likely explanation for this finding is aripiprazole's weak partial agonism at D2-like dopamine receptors. This particular pharmacologic feature characterizes a new class of atypical antipsychotics that does not match the original concept of a therapeutic occupancy window for antagonist antipsychotics. When not involving pure antagonists, it implies a need to adjust the expected receptor occupancy (measured using positron emission tomography) for the therapeutic window.  相似文献   

14.
1. Muscle rigidity was assessed quantitatively and objectively as increases in electromyographic (EMG) activity (muscle rigidity) in the hindlimb muscles of the rat following subcutaneous administration of haloperidol, fluphenazine and thioridazine. 2. Behavioural changes were assessed as increases in the catalepsy score, defined as the time taken for an animal to move off an inclined grid. 3. Increased tonic EMG activity, or the presence of catalepsy was related to the level of occupancy of dopamine D2 receptors in the striatum and substantia nigra of the brain, measured using ex vivo quantitative autoradiography. 4. Increases in tonic EMG activity and the induction of catalepsy were associated with >80% occupancy of striatal and nigral D2 receptors by fluphenazine, while haloperidol increased tonic EMG activity at D2 occupancies of >57%. 5. Thioridazine at doses ranging from 1-15 mg/kg failed to increase EMG activity and occupied <61% of striatal D2 receptors. 6. Overall the findings support the hypothesis that muscle rigidity is observed when a threshold level of D2 receptors in the striatum and substantia nigra are occupied by antipsychotic drugs. 7. This conclusion is consistent with the results of positron emission tomography (PET) studies in humans, and those from our past studies in rats using raclopride, chlorpromazine and clozapine, in which a threshold of approximately 70% striatal and nigral D2 receptor occupancy has been demonstrated.  相似文献   

15.
OBJECTIVE: Ziprasidone is an atypical antipsychotic drug that shows a higher affinity for serotonin 5-HT(2) receptors compared with dopamine D(2) receptors in vitro. The affinity of ziprasidone for these receptors in vivo in patients was examined in a positron emission tomography (PET) study. METHOD: The authors conducted a PET study to evaluate D(2) occupancy (using [(11)C]raclopride) and 5-HT(2) occupancy (using [(18)F]setoperone) in brain regions of interest in 16 patients with schizophrenia or schizoaffective disorder randomly assigned to receive 40, 80, 120, or 160 mg/day of ziprasidone, which reflected the recommended dose range. PET scanning was done after 3 weeks of administration and at trough plasma levels, i.e., 12-16 hours after the last dose. RESULTS: The mean 5-HT(2) receptor occupancy was significantly higher than the mean D(2) receptor occupancy (mean=76%, SD=15%, and mean=56%, SD=18%, respectively). The estimated plasma ziprasidone concentration associated with 50% maximal 5-HT(2) receptor occupancy was almost four times lower than that for D(2) receptor occupancy. CONCLUSIONS: These data affirm that ziprasidone is similar to other novel antipsychotics in having greater 5-HT(2) than D(2) receptor occupancy at therapeutic doses and suggest that the optimal effective dose of ziprasidone is closer to 120 mg/day than to the lower doses suggested by previous PET studies. The relatively high D(2) receptor occupancy, even at trough plasma levels, suggests that ziprasidone is more similar to risperidone and olanzapine in receptor occupancy profile than to clozapine and quetiapine. Since ziprasidone plasma levels show significant (more than twofold) variation within a single dose cycle, studies that are aimed at peak plasma levels (6 hours after the last dose) and that examine extrastriatal regions are required to fully characterize the in vivo occupancy profile of ziprasidone.  相似文献   

16.
Although atypical antipsychotics have been associated with improvements in cognitive function in schizophrenia, the neurochemical basis for such effects is not well understood. Candidate neurotransmitter systems primarily involve dopamine and serotonin. The current study explored this issue by examining the cognitive abilities, social function and quality of life in patients with schizophrenia who were medicated with atypical antipsychotics. Comparisons were done for matched schizophrenia patients who were on antipsychotics with (i) an affinity for multiple receptors (olanzapine, clozapine, quetiapine) versus those that have preferential affinity for dopamine receptors (risperidone, amisulpride); and patients on medication with (ii) a high affinity for serotonin (5HT-2A) receptors (risperidone, olanzapine, clozapine) versus those with a low (or no) affinity for 5HT-2A receptors (quetiapine, amisulpride). No differences emerged between groups on any cognitive or social variable when the groups were compared for the dopaminergic properties of antipsychotic medication. By contrast, differences did emerge when patients were compared on the 5HT-2A affinity of their antipsychotic medications. Patients on low 5HT-2A-affinity antipsychotics exhibited a better performance on a measure of selective attention and adjustment to living. These findings accord with the notion that serotonergic mechanisms are important determinants of both the cognitive and the social effects of the atypical antipsychotics.  相似文献   

17.
Background: The dopamine D2 receptor is the common target for antipsychotics, and the antipsychotic clinical doses correlate with their affinities for this receptor. Antipsychotics quickly enter the brain to occupy 60–80% of brain D2 receptors in patients (the agonist aripiprazole occupies up to 90%), with most clinical improvement occurring within a few days. The D2 receptor can exist in a state of high‐affinity (D2High) or in a state of low‐affinity for dopamine (D2Low). Aim: The present aim is to review why individuals with schizophrenia are generally supersensitive to dopamine‐like drugs such as amphetamine or methyphenidate, and whether the D2High state is a common basis for dopamine supersensitivity in the animal models of schizophrenia. Results: All animal models of schizophrenia reveal elevations in D2High receptors. These models include brain lesions, sensitization by drugs (amphetamine, phencyclidine, cocaine, corticosterone), birth injury, social isolation, and gene deletions in pathways for NMDA, dopamine, GABA, acetylcholine, and norepinephrine. Conclusions: These multiple abnormal pathways converge to a final common pathway of dopamine supersensitivity and elevated D2High receptors, presumably responsible for psychotic symptoms. Although antipsychotics alleviate psychosis and reverse the elevation of D2High receptors, long‐term antipsychotics can further enhance dopamine supersensitivity in patients. Therefore, switching from a traditional antipsychotic to an agonist antipsychotic (aripiprazole) can result in psychotic signs and symptoms. Clozapine and quetiapine do not elicit parkinsonism or tardive dyskinesia because they are released from D2 within 12 to 24 h. Traditional antipsychotics remain attached to D2 receptors for days, preventing relapse, but allowing accumulation that can lead to tardive dyskinesia. Future goals include imaging D2High receptors and desensitizing them in early‐stage psychosis.  相似文献   

18.
OBJECTIVES: This paper gives an overview of studies on the association between dopaminergic neurotransmission and the subjective experience of patients with schizophrenia. METHODS: We undertook a review of the literature. RESULTS: Dopaminergic neurotransmission may be relevant for subjective experience. Higher striatal D2 receptor occupancy by typical and atypical antipsychotics is related to worse subjective experience, more severe negative symptoms, and depression. Individuals with lower baseline dopamine function are at an increased risk for dysphoric responses during antipsychotic therapy with dopaminergic-blocking drugs. There is preliminary evidence that a window of striatal D2 receptor occupancy between 60% and 70% is optimal for the subjective experience of patients. These occupancies are often reached even with low dosages of antipsychotic drugs. CONCLUSIONS: Reaching an optimal dopamine D2 receptor occupancy is clinically relevant, since subjective experience associated with antipsychotic medication is related to medication compliance. Antipsychotic drug dosages often need to be lower than levels in common use.  相似文献   

19.
BACKGROUND: All currently available atypical antipsychotics have, at clinically relevant doses: i) high serotonin (5-HT)2 occupancy; ii) greater 5-HT2 than dopamine (D)2 occupancy; and iii) a higher incidence of extrapyramidal side effects when their D2 occupancy exceeds 80%. A review of pharmacologic and behavioral data suggested that amoxapine should also conform to this profile; therefore, we undertook a positron-emission tomography (PET) study of its 5-HT2 and D2 occupancy. METHODS: Seven healthy volunteers received 50-250 mg/day of amoxapine for 5 days and then had [11C]-raclopride and [18F]-setoperone PET scans. RESULTS: 5-HT2 receptors showed near saturation at doses of 100 mg/day and above. The D2 receptor occupancies showed a dose-dependent increase, never exceeding 80%; at all doses 5-HT2 occupancy exceeded D2 occupancy. CONCLUSIONS: PET data show that amoxapine's profile is very similar to that of the established atypical antipsychotics. These data, together with amoxapine's in vitro pharmacologic profile, effectiveness in animal models, and efficacy in psychotic depression raise the possibility of amoxapine as an "atypical" antipsychotic agent in the treatment of schizophrenia.  相似文献   

20.
Considerable progress has been achieved over the past 15 years in uncovering the biological basis of major psychiatric disorders. To determine patterns of brain dysfunction and to uncover the mechanism of action of centrally active compounds we used single photon emission computerized tomography (SPECT) as well as positron emission tomography (PET) in patients diagnosed with schizophrenia, depression, bulimia and Tourette's disorder. Striatal D2 and 5-HT1A receptors were studied in schizophrenia and 5-HT transporters (5-HTT) in depression and bulimia. Patients were either drug-na?ve or drug free, or we studied the influence of specifically acting compounds on receptor/transporter occupancy. We could demonstrate that atypical antipsychotics have a dose-dependent (with the exception of clozapine and quetiapine) lower striatal D2 receptor occupancy rate compared with typical neuroleptics, paralleling the more favourable extrapyramidal side effects of atypical antipsychotics. However, no association between striatal D2 receptor occupancy rates and antipsychotic efficacy has been found. The measurement of 5-HT1A receptors in drug-na?ve schizophrenic patients using the in vivo PET methodology revealed an increase of cortical 5-HT1A receptor binding potential in schizophrenia. beta-CIT as a ligand for measurement of 5-HT transporter densities (5-HTT) revealed lower rates in depression compared to age- and sex-matching healthy controls, a measurement that has also been obtained for bulimia. We also documented seasonal variations in brain serotonergic function by our finding of reduced brain 5-HTT availability in winter (compared to summer) in healthy controls. Furthermore, displaceable [123I] beta-CIT binding in the area corresponding to the left striatum (representing predominantly the density of dopamine transporters) was significantly reduced in SAD patients compared to healthy controls. In depression as well as in bulimia, selective serotonin reuptake inhibitors significantly decreased the beta-CIT binding potential, however, no significant dose relationship has been obtained in depression. Genotyping depressed patients for the serotonin transporter promoter gene region (5-HTTLPR) did not provide evidence for in vivo functional regulation of 5-HTT availability by 5-HTTLPR in the thalamus-hypothalamus and mesencephalon-pons of healthy subjects. In patients suffering from Tourette's disorder (TD) we were unable to detect differences of dopamine transporter densities between psychotropic drug-na?ve TD patients and controls. Furthermore, no difference could be found between currently treated (with antipsychotics) and psychotropic drug-na?ve TD patients. Our data provide insight into the pathophysiology of neuropsychiatric disorders and may guide future psychopharmacological drug developments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号