首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The treatment of advanced renal cell carcinoma (RCC) has evolved significantly following the identification of the von Hippel–Lindau (VHL) gene and the function of its protein, and subsequent development of antiangiogenic therapies. A series of clinical trials resulted in the approval of three new agents with significant activity in this disease. Additional studies are now underway to identify subsets of patients most likely to benefit. This article reviews the current therapy for advanced RCC and the development of biomarkers in RCC. This requires the identification of disease characteristics at a clinical, genetic and molecular level associated with response and/or surrogate measures of clinical benefit. Currently, a variety of prognostic factors (lactate dehydrogenase, performance status, disease-free interval, hemoglobin and calcium levels) are utilized to predict the survival of RCC patients. The use of validated biomarkers in either serum/plasma, urine or tissue could enhance this process, as well as define at the molecular and genetic levels, factors associated with response to therapy and/or the development of resistance. Examples include plasma VEGF levels, VHL gene mutation status and carbonic anhydrase IX levels in tumor tissue, among others. Validation of such biomarkers is crucial in order for them to be clinically useful.  相似文献   

3.
4.
The treatment of advanced renal cell carcinoma (RCC) has evolved significantly following the identification of the von Hippel-Lindau (VHL) gene and the function of its protein, and subsequent development of antiangiogenic therapies. A series of clinical trials resulted in the approval of three new agents with significant activity in this disease. Additional studies are now underway to identify subsets of patients most likely to benefit. This article reviews the current therapy for advanced RCC and the development of biomarkers in RCC. This requires the identification of disease characteristics at a clinical, genetic and molecular level associated with response and/or surrogate measures of clinical benefit. Currently, a variety of prognostic factors (lactate dehydrogenase, performance status, disease-free interval, hemoglobin and calcium levels) are utilized to predict the survival of RCC patients. The use of validated biomarkers in either serum/plasma, urine or tissue could enhance this process, as well as define at the molecular and genetic levels, factors associated with response to therapy and/or the development of resistance. Examples include plasma VEGF levels, VHL gene mutation status and carbonic anhydrase IX levels in tumor tissue, among others. Validation of such biomarkers is crucial in order for them to be clinically useful.  相似文献   

5.
The unique signal transduction pathways that distinguish non-small cell lung carcinoma (NSCLC) from small cell lung carcinoma (SCLC) are poorly understood. We investigated the ability of edelfosine, an inhibitor of phosphatidylinositol-specific phospholipase C (PLC) to inhibit cell viability among four NSCLC cell lines and four SCLC cell lines. The differential sensitivity of cells to edelfosine's cytostatic and cytotoxic effects has been attributed to edelfosine-induced changes in the activities of many enzymes, including c-Jun NH2-terminal kinase (JNK), extracellular signal-regulated kinases (ERK), p38 kinase, and poly(ADP-ribose) polymerase (PARP). To investigate the role of these enzymes in edelfosine-induced cytotoxicity, we correlated edelfosine-induced changes in enzyme activity and cell viability among the different NSCLC and SCLC cell lines. We found that NSCLC cells are much more susceptible to the cytotoxic effects of this drug than are SCLC cells. Three out of the four edelfosine-sensitive NSCLC cell lines (NCI-H157, NCI-H520, NCI-H522) exhibit G2/M arrest, significant apoptosis and some degree of JNK activation in response to drug treatment. In contrast, none of the SCLC cell lines exhibit edelfosine-induced G2/M arrest or significant apoptosis. A comparison of the edelfosine-induced effects among the sensitive and resistant lung cancer lines indicates that there is little correlation between edelfosine-induced cytotoxicity and altered activities of JNK, ERK, p38, or cleavage of PARP. These results demonstrate that edelfosine-induced changes in JNK, ERK, p38, or PARP are not good predictors of cell susceptibility to edelfosine-induced cytotoxicity. Thus, edelfosine-induced inactivation of PLC may disrupt signaling cascades downstream of PLC that are unique to individual cellular environments. These findings also identify edelfosine as one of the few potential chemotherapeutic agents that has a greater cytotoxic effect against NSCLC cells than SCLC cells.  相似文献   

6.
目的:研究桥接整合因子1(bridging intergrator 1,Bin1)基因过表达后对非小细胞肺癌细胞株H1975细胞周期的影响及其作用机制。方法:构建携带Bin1基因的CMV-MCS-GFP-SV40-Neomycin-Bin1质粒,并转染H1975细胞(Bin1+组),另设置空白质粒转染组(Bin1-组)及空白对照组(Ctrl组),利用RT-PCR和Western blotting分别检测3组细胞中Bin1在mRNA和蛋白质水平的表达情况。流式细胞术检测不同处理组H1975细胞周期的变化,Western boltting分别检测各组中AKT、mTOR磷酸化水平及细胞周期相关蛋白(周期蛋白D1、CDK4、Rb)的表达情况。结果:与Bin1-组、Ctrl组比较,Bin1+组H1975细胞中Bin1在mRNA、蛋白水平表达明显上调(均P<0.05); H1975细胞阻滞在G1期\[(60.53±1.89)% vs(46.14±1.56)%、(47.33±2.07)%,均P<0.05\]; Bin1+组H1975细胞内p-AKT、p-mTOR表达下调(均P<0.05),AKT、mTOR表达变化无统计学差异(P>0.05);周期蛋白D1、CDK4的表达量均明显下调(P<0.05),Rb表达量明显增加(P<0.05)。结论:Bin1基因在H1975细胞株过表达后明显诱导细胞周期阻滞,其机制可能是通过抑制AKT-mTOR通路及其细胞周期相关蛋白实现的。  相似文献   

7.
8.
9.
An epithelial cell line COLO 16 has been established from a human squamous carcinoma, characterized and maintained for over two years. The cells produce a parathyroid-like hormone and carcinoembryonic antigen. The line is definitely not a "HeLa contaminant." The cell line is available to other investigators.  相似文献   

10.
Allogeneic hematopoietic stem cell transplantation from a compatible donor has been utilized as adoptive immunotherapy in metastatic, cytokine-refractory renal cell carcinoma (RCC). Since the year 2000, several investigators have established that RCC is susceptible to a graft-versus-tumor effect: they reported that patients with renal cancer may have partial or complete disease responses, in the 20-40% range, after allogeneic transplantation following a reduced-intensity regimen. However, transplant-related mortality is still high in the 10-20% range, and responses are rarely durable. Experimental evidence suggests that donor-derived T cells and natural killer cells are the main mediators of the graft-versus-RCC effect upon allogeneic hematopoietic stem-cell transplantation. Isolation of CD8(+) cytotoxic T lymphocyte clones recognizing several target antigens of graft-versus-RCC effect (minor histocompatibility antigens on RCC cells; a peptide epitope derived from human endogenous retrovirus type E; the tumor-associated antigen encoded by the Wilms' tumor 1 gene) has increased our knowledge of the disease and has opened up the possibility of antigen-specific adoptive cell therapy. The introduction in the clinic of molecularly targeted agents that interfere with neoangiogenesis, both monoclonal antibodies and small tyrosine-kinase inhibitor molecules (e.g., sunitinib, sorafenib and bevacizumab), has decreased the use of allogeneic transplantation. Although not curative, novel targeted agents may be combined with allogeneic transplantation or with adoptive cell therapy in order to maximize the chances of cure.  相似文献   

11.
干细胞、肿瘤干细胞与肿瘤的关系   总被引:8,自引:2,他引:8  
干细胞理论认为肿瘤是一种干细胞疾病,该理论为肿瘤的研究及治疗提供了新的方向和靶点。干细胞(stem cell)是一类具有自我更新和增殖分化能力的细胞,肿瘤细胞是一类具有无限增殖和失去分化为成熟细胞能力的细胞,肿瘤干细胞(cancer stem cell)是存在于肿瘤组织中的一小部分具有干细胞性质的细胞群体,能够驱使肿瘤的形成。本文拟综述干细胞、肿瘤干细胞与肿瘤发生发展之间的关系,为肿瘤的研究及临床治疗提供参考。  相似文献   

12.
: Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions.  相似文献   

13.
When effector lymphocytes were reacted with cultured human tumors, the total cytotoxic reaction could be divided into selective and nonselective components. The nonselective part of the reaction was due to a cell type called N cells. Fractionation of effector suspension indicated that N cells were neither T nor B cells. Like B cells, N cells did not form rosettes with sheep erythrocytes; they were retained by columns coated with lg or antiserum to lg and died preferentially when stored at an ambient temperature. However, N cells were differentiated from B cells by their inability to form complement-receptor rosettes and by their survival when incubated at 30 degrees C. The effect of the nonselective cytotoxic cell must be differentiated from selective activity in studies of specificity for cell-mediated cytotoxicity.  相似文献   

14.

Background

Recently, the anti-tumor activity of N-myc downstream-regulated gene 2 (NDRG2) was shown decreased expression in clear cell renal cell carcinoma (CCRCC), but the role of the down-expression of NDRG2 has not been described.

Methods

The NDRG2 recombinant adenovirus plasmid was constructed. The proliferation rate and NDRG2 expression of cell infected with recombinant plasmid were mesured by MTT, Flow cytometry analysis and western blot.

Results

The CCRCC cell A-498 re-expressed NDRG2 when infected by NDRG2 recombinant adenovirus and significantly decreased the proliferation rate. Fluorescence activated cell sorter analysis showed that 25.00% of cells expressed NDRG2 were in S-phase compared to 40.67% of control cells, whereas 62.08% of cells expressed NDRG2 were in G1-phase compared to 54.39% of control cells (P < 0.05). In addition, there were much more apoptotic cells in NDRG2-expressing cells than in the controls (P < 0.05). Moreover, upregulation of NDRG2 protein was associated with a reduction in cyclin D1, cyclin E, whereas cyclinD2, cyclinD3 and cdk2 were not affected examined by western blot. Furthermore, we found that p53 could upregulate NDRG2 expression in A-498 cell.

Conclusions

We found that NDRG2 can inhibit the proliferation of the renal carcinoma cells and induce arrest at G1 phase. p53 can up-regulate the expression of NDRG2. Our results showed that NDRG2 may function as a tumor suppressor in CCRCC.  相似文献   

15.
S-adenosylhomocysteine hydrolase (AHCY) hydrolyzes S-adenosylhomocysteine to adenosine and l-homocysteine, and it is already known that inhibition of AHCY decreased cell proliferation by G2/M arrest in MCF7 cells. However, the previous study has not indicated what mechanism the cell cycle arrest is induced by. In this study, we aimed to investigate the different cell cycle mechanisms in both p53 wild-typed MCF7 and p53 mutant-typed MCF7-ADR by suppressing AHCY. We extensively proved that AHCY knockdown has an anti-proliferative effect by using the WST-1 assay, BrdU assay, and cell cytometry analysis and an anti-invasive, migration effect by wound-healing assay and trans-well analysis. Our study showed that down-regulation of AHCY effectively suppressed cell proliferation by regulating the MEK/ERK signaling pathway and through cell cycle arrests. The cell cycle arrest occurred at the G2/M checkpoint by inhibiting degradation of cyclinB1 and phosphorylation of CDC2 in MCF7 cells and at the G1 phase by inhibiting cyclinD1 and CDK6 in MCF7-ADR cells. Finally, we determined that AHCY regulates the expression of ATM kinase that phosphorylates p53 and affects to arrest of G2/M phase in MCF7 cells. The findings of this study significantly suggest that AHCY is an important regulator of cell proliferation through different mechanism in between MCF7 and MCF7-ADR cells as p53 status.  相似文献   

16.
17.
The tumor microenvironment, comprised of tumor cells and tumor-infiltrating immune cells, is closely associated with the clinical outcome of clear cell renal cell carcinoma (ccRCC) patients. However, the landscape of immune infiltration in ccRCC has not been fully elucidated. Herein, we applied multiple computational methods and various datasets to reveal the immune infiltrative landscape of ccRCC patients. The tumor immune infiltration (TII) levels of 525 ccRCC patients using a single-sample gene were examined and further categorized into immune infiltration subgroups. The TII score was characterized by distinct clinical traits and showed a significant divergence based on gender, grade, and stage. A high TII score was associated with the ERBB signaling pathway, the TGF-β signaling pathway, and the MTOR signaling pathway, as well as a better prognosis. Furthermore, patients with high TII scores exhibited greater sensitivity to pazopanib. The low TII score was characterized by a high immune infiltration level of CD8+ T cells, T follicular helper cells, and regulatory T cells (Tregs). Moreover, the immune check point genes, including CTLA-4, LAG3, PD-1, and IDO1, presented a high expression level in the low TII score group. Patients in the high TII score group demonstrated significant therapeutic advantages and clinical benefits. The findings in this study have the potential to assist in the strategic design of immunotherapeutic treatments for ccRCC.  相似文献   

18.
IntroductionNotch signaling plays a key role in a wide variety of human neoplasms, and it can be either oncogenic or anti-proliferative. Moreover, Notch function in regulating cancer is unpredictable, and its outcome is strictly context-dependent.AimTo study the role of Notch1 signaling in human small cell lung carcinoma (SCLC) and its effect on cell invasion and metastasis.Materials and methodsWe used small interfering RNA (siRNA) technology, to down-regulate the expression of Notch1 in H69AR and SBC3 SCLC cells. On the other hand, we up-regulated Notch1 in H69 and H1688 SCLC cells through transfection with venus Notch1 intracellular domain (v.NICD) plasmid. In addition, H69 cells with v.NICD were xenotransplanted into immune-compromised Rag2(−/−) Jak3(−/−) mice, for analysis of ex vivo tumor epithelial mesenchymal transition (EMT) phenotype and for detection of metastatic cancer cells in the lung tissues. Moreover, we examined the metastatic ability for H69AR and SBC3 cells transfected with siRNA against Notch1, compared to their subsequent controls, by use of tail vein xenograft mouse models.ResultsNotch1 controls cell adhesion and EMT. Overexpression of Notch1 in SCLC switched off EMT, cell motility and cell metastatic potential.ConclusionOur results demonstrate that activation of Notch1 signaling pathway may represent a new strategy for treating human SCLC.  相似文献   

19.
20.
Squamous cell carcinoma antigen suppresses radiation-induced cell death   总被引:2,自引:0,他引:2  
Previous study has demonstrated that squamous cell carcinoma antigen (SCCA) 1 attenuates apoptosis induced by TNF alpha, NK cell or anticancer drug. In this study, we have examined the effect of SCCA2, which is highly homologous to SCCA1, but has different target specificity, against radiation-induced apoptosis, together with that of SCCA1. We demonstrated that cell death induced by radiation treatment was remarkably suppressed not only in SCCA1 cDNA-transfected cells, but also in SCCA2 cDNA-transfected cells. In these transfectants, caspase 3 activity and the expression of activated caspase 9 after radiation treatment were suppressed. Furthermore, the expression level of phosphorylated p38 mitogen-activated protein kinase (p38 MAPK) was suppressed compared to that of the control cells. The expression level of upstream stimulator of p38 MAPK, phosphorylated MKK3/MKK6, was also suppressed in the radiation-treated cells. Thus, both SCCA1 and SCCA2 may contribute to survival of the squamous cells from radiation-induced apoptosis by regulating p38 MAPK pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号