首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The B cell antigen receptor, composed of membrane immunoglobulin (Ig) sheathed by the Igα/Igβ heterodimer plays a critical role in mediating B cell development and responses to antigen. The cytoplasmic tails of Igα and Igβ differ substantially but have been well conserved in evolution. Transfection experiments have revealed that, while these tails share an esssential tyrosine-based activation motif (ITAM), they perform differently in some but not all assays and have been proposed to recruit distinct downstream effectors. We have created transgenic mouse lines expressing chimeric receptors comprising an IgM fused to the cytoplasmic domain of each of the sheath polypeptides. IgM/α and IgM/β chimeras (but not an IgM/β with mutant ITAM) are each independently sufficient to mediate allelic exclusion, rescue B cell development in gene-targeted Igμ mice that lack endogenous antigen receptors, as well as signal for B7 upregulation. While the (IgM/α) × (IgM/β) double-transgenic mouse revealed somewhat more efficient allelic exclusion, our data indicate that each of the sheath polypeptides is sufficient to mediate many of the essential functions of the B cell antigen receptor, even if the combination gives optimal activity.  相似文献   

2.
Increased numbers of T cell receptor (TCR)-γ/δ cells have been observed in animal models of influenza and sendai virus infections, as well as in patients infected with human immunodeficiency virus and herpes simplex virus type 1 (HSV-1). However, a direct role for TCR-γ/δ cells in protective immunity for pathogenic viral infection has not been demonstrated. To define the role of TCR-γ/δ cells in anti–HSV-1 immunity, TCR-α−/− mice treated with anti– TCR-γ/δ monoclonal antibodies or TCR-γ/δ × TCR-α/β double-deficient mice were infected with HSV-1 by footpad or ocular routes of infection. In both models of HSV-1 infection, TCR-γ/δ cells limited severe HSV-1–induced epithelial lesions and greatly reduced mortality by preventing the development of lethal viral encephalitis. The observed protection resulted from TCR-γ/δ cell–mediated arrest of both viral replication and neurovirulence. The demonstration that TCR-γ/δ cells play an important protective role in murine HSV-1 infections supports their potential contribution to the immune responses in human HSV-1 infection. Thus, this study demonstrates that TCR-γ/δ cells may play an important regulatory role in human HSV-1 infections.  相似文献   

3.
We have investigated the role of common γ chain (γc)-signaling pathways for the development of T cell receptor for antigen (TCR)-γ/δ T cells. TCR-γ/δ–bearing cells were absent from the adult thymus, spleen, and skin of γc-deficient (γc) mice, whereas small numbers of thymocytes expressing low levels of TCR-γ/δ were detected during fetal life. Recent reports have suggested that signaling via interleukin (IL)-7 plays a major role in facilitating TCR-γ/δ development through induction of V-J (variable-joining) rearrangements at the TCR-γ locus. In contrast, we detected clearly TCR-γ rearrangements in fetal thymi from γc mice (which fail to signal in response to IL-7) and reduced TCR-γ rearrangements in adult γc thymi. No gross defects in TCR-δ or TCR-β rearrangements were observed in γc mice of any age. Introduction of productively rearranged TCR Vγ1 or TCR Vγ1/Vδ6 transgenes onto mice bearing the γc mutation did not restore TCR-γ/δ development to normal levels suggesting that γc-dependent pathways provide additional signals to developing γ/δ T cells other than for the recombination process. Bcl-2 levels in transgenic thymocytes from γc mice were dramatically reduced compared to γc+ transgenic littermates. We favor the concept that γc-dependent receptors are required for the maintenance of TCR-γ/δ cells and contribute to the completion of TCR-γ rearrangements primarily by promoting survival of cells committed to the TCR-γ/δ lineage.  相似文献   

4.
Immunization of mice with myelin components results in experimental autoimmune encephalomyelitis (EAE), which is mediated by myelin-specific CD4+ T cells and anti-myelin antibodies. Tumor necrosis factor α (TNF-α) and lymphotoxin α (LT-α) are thought to be involved in the events leading to inflammatory demyelination in the central nervous system. To ascertain this hypothesis 129 × C57BL/6 mice with an inactivation of the tnf and lta genes (129 × C57BL/6−/−) and SJL/J mice derived from backcrosses of the above mentioned mutant mice (SJL−/−) were immunized with mouse spinal cord homogenate (MSCH) or proteolipid protein. Both 129 × C57BL/6−/− mice and SJL−/− mice developed EAE. In SJL−/− mice immunized with MSCH, a very severe form of EAE with weight loss, paralysis of all four limbs, and lethal outcome was observed. The histologic hallmark was an intense perivascular and parenchymal infiltration with predominantly CD4+ T cells and some CD8+ T cells associated with demyelination in both brain and spinal cord. These results indicate that TNF-α and LT-α are not essential for the development of EAE.  相似文献   

5.
6.
Intracellular concentrations of isoniazid and rifabutin resulting from administration of inhalable microparticles of these drugs to phorbol-differentiated THP-1 cells and the pharmacokinetics and biodistribution of these drugs upon inhalation of microparticles or intravenous administration of free drugs to mice were investigated. In cultured cells, both microparticles and dissolved drugs established peak concentrations of isoniazid (~1.4 and 1.1 μg/106 cells) and rifabutin (~2 μg/ml and ~1.4 μg/106 cells) within 10 min. Microparticles maintained the intracellular concentration of isoniazid for 24 h and rifabutin for 96 h, whereas dissolved drugs did not. The following pharmacokinetic parameters were calculated using WinNonlin from samples obtained after inhalation using an in-house apparatus (figures in parentheses refer to parameters obtained after intravenous administration of an equivalent amount, i.e., 100 μg of either drug, to parallel groups): isoniazid, serum half-life (t1/2) = 18.63 ± 5.89 h (3.91 ± 1.06 h), maximum concentration in serum (Cmax) = 2.37 ± 0.23 μg·ml−1 (3.24 ± 0.57 μg·ml−1), area under the concentration-time curve from 0 to 24 h (AUC0-24) = 55.34 ± 13.72 μg/ml−1 h−1 (16.64 ± 1.80 μg/ml−1 h−1), and clearance (CL) = 63.90 ± 13.32 ml·h−1 (4.43 ± 1.85 ml·h−1); rifabutin, t1/2 = 119.49 ± 29.62 h (20.18 ± 4.02 h), Cmax = 1.59 ± 0.01 μg·ml−1 (3.47 ± 0.33 μg·ml−1), AUC0-96 = 109.35 ± 14.78 μg/ml−1 h−1 (90.82 ± 7.46 μg/ml−1 h−1), and CL = 11.68 ± 7.00 ml·h−1 (1.03 ± 0.11 ml·h−1). Drug targeting to the lungs in general and alveolar macrophages in particular was observed. It was concluded that inhaled microparticles can reduce dose frequency and improve the pharmacologic index of the drug combination.  相似文献   

7.
Transforming growth factor β1 (TGF-β1) regulates leukocytes and epithelial cells. To determine whether the pleiotropic effects of TGF-β1, a cytokine that is produced by both keratinocytes and Langerhans cells (LC), extend to epidermal leukocytes, we characterized LC (the epidermal contingent of the dendritic cell [DC] lineage) and dendritic epidermal T cells (DETC) in TGF-β1 null (TGF-β1 −/−) mice. I-A+ LC were not detected in epidermal cell suspensions or epidermal sheets prepared from TGF-β1 −/− mice, and epidermal cell suspensions were devoid of allostimulatory activity. In contrast, TCR-γδ+ DETC were normal in number and appearance in TGF-β1 −/− mice and, importantly, DETC represented the only leukocytes in the epidermis. Immunolocalization studies revealed CD11c+ DC in lymph nodes from TGF-β1 −/− mice, although gp40+ DC were absent. Treatment of TGF-β1 −/− mice with rapamycin abrogated the characteristic inflammatory wasting syndrome and prolonged survival indefinitely, but did not result in population of the epidermis with LC. Thus, the LC abnormality in TGF-β1 −/− mice is not a consequence of inflammation in skin or other organs, and LC development is not simply delayed in these animals. We conclude that endogenous TGF-β1 is essential for normal murine LC development or epidermal localization.  相似文献   

8.
The development of pre–T cells with productive TCR-β rearrangements can be mediated by each the pre–T cell receptor (pre-TCR), the TCR-αβ as well as the TCR-γδ, albeit by distinct mechanisms. Although the TCR-γδ affects CD48 precursor cells irrespective of their rearrangement status by TCR-β mechanisms not involving TCR-β selection, both the preTCR and the TCR-αβ select only cells with productive TCR-β genes for expansion and maturation. The TCR-αβ appears to be much less effective than the pre-TCR because of the paucity of TCR-α proteins in TCR-β–positive precursors since an early expressed transgenic TCR-αβ can largely substitute for the pre-TCR. Thus, the TCR-αβ can assume a role not only in the rescue from programmed cell death of CD4+8+ but also of CD48 thymocytes. In evolution this double function of the TCR-αβ may have been responsible for the maturation of αβ T cells before the advent of the pre–TCR-α chain.  相似文献   

9.
Although individual T lymphocytes have the potential to generate two distinct T cell receptor (TCR)-β chains, they usually express only one allele, a phenomenon termed allelic exclusion. Expression of a functional TCR-β chain during early T cell development leads to the formation of a pre-T cell receptor (pre-TCR) complex and, at the same developmental stage, arrest of further TCR-β rearrangements, suggesting a role of the pre-TCR in mediating allelic exclusion. To investigate the potential link between pre-TCR formation and inhibition of further TCR-β rearrangements, we have studied the efficiency of allelic exclusion in mice lacking the pre-TCR-α (pTα) chain, a core component of the pre-TCR. Staining of CD3+ thymocytes and lymph node cells with antibodies specific for Vβ6 or Vβ8 and a pool of antibodies specific for most other Vβ elements, did not reveal any violation of allelic exclusion at the level of cell surface expression. This was also true for pTα-deficient mice expressing a functionally rearranged TCR-β transgene. Interestingly, although the transgenic TCR-β chain significantly influenced thymocyte development even in the absence of pTα, it was not able to inhibit fully endogeneous TCR-β rearrangements either in total thymocytes or in sorted CD25+ pre-T cells of pTα−/− mice, clearly indicating an involvement of the pre-TCR in allelic exclusion.  相似文献   

10.
The formation of the pre-B cell receptor (BCR) corresponds to an important checkpoint in B cell development that selects pro-B (pre-BI) cells expressing a functionally rearranged immunoglobulin μ (Igμ) heavy chain protein to undergo the transition to the pre-B (pre-BII) cell stage. The pre-BCR contains, in addition to Igμ, the surrogate light chains λ5 and VpreB and the signal transducing proteins Igα and Igβ. The absence of one of these pre-BCR components is known to arrest B cell development at the pre-BI cell stage. Disruption of the Pax5 gene, which codes for the B cell–specific activator protein (BSAP), also blocks adult B lymphopoiesis at the pre-BI cell stage. Moreover, expression of the mb-1 (Igα) gene and VH-to-DHJH recombination at the IgH locus are reduced in Pax5-deficient B lymphocytes ∼10- and ∼50-fold, respectively. Here we demonstrate that complementation of these deficiencies in pre-BCR components by expression of functionally rearranged Igμ and chimeric Igμ-Igβ transgenes fails to advance B cell development to the pre-BII cell stage in Pax5 (−/−) mice in contrast to RAG2 (−/−) mice. Furthermore, the pre-BCR is stably expressed on cultured pre-BI cells from Igμ transgenic, Pax5-deficient bone marrow, but is unable to elicit its normal signaling responses. In addition, the early developmental block is unlikely to be caused by the absence of a survival signal, as it could not be rescued by expression of a bcl2 transgene in Pax5-deficient pre-BI cells. Together, these data demonstrate that the absence of Pax5 arrests adult B lymphopoiesis at an early developmental stage that is unresponsive to pre-BCR signaling.  相似文献   

11.
The pre-B cell receptor is a key checkpoint regulator in developing B cells. Early events that are controlled by the pre-B cell receptor include positive selection for cells express membrane immunoglobulin heavy chains and negative selection against cells expressing truncated immunoglobulins that lack a complete variable region (Dμ). Positive selection is known to be mediated by membrane immunoglobulin heavy chains through Igα-Igβ, whereas the mechanism for counterselection against Dμ has not been determined. We have examined the role of the Igα-Igβ signal transducers in counterselection against Dμ using mice that lack Igβ. We found that Dμ expression is not selected against in developing B cells in Igβ mutant mice. Thus, the molecular mechanism for counterselection against Dμ in pre-B cells resembles positive selection in that it requires interaction between mDμ and Igα-Igβ.  相似文献   

12.
IL-7R-deficient mice have severely impaired expansion of early lymphocytes and lack γδ T cells. To elucidate the role of IL-7R on γδ T cell development, we analyzed the rearrangements of TCR-α, β, γ, and δ genes in the thymus of the IL-7R-deficient mice. Southern blot analysis with a Jγ1 probe revealed that more than 70% of Jγ1 and Jγ2 alleles are recombined to form distinct Vγ1.2–Jγ2 and Vγ2–Jγ1 fragments in control mice. On the contrary, no such recombination was detected in the mutant mice. The rearrangements in the TCR-α, β, and δ loci were comparably observed in control and mutant mice. PCR analysis indicated that the V–J recombination of all the Vγ genes is severely hampered in the mutant mice. The mRNA of RAG-1, RAG-2, Ku-80, and terminal deoxynucleotidyl transferase (TdT) genes was equally detected between control and mutant thymi, suggesting that the expression of common recombination machinery is not affected. These data demonstrated that the V–J recombination of the TCR γ genes is specifically blocked in the IL-7R-deficient mice and suggested the presence of highly specific regulation for TCR γ gene rearrangement.  相似文献   

13.
The differentiation of intestinal intraepithelial lymphocytes (IEL) remains controversial, which may be due in part to the phenotypic complexity of these T cells. We have investigated here the development of IEL in mice on the recombination activating gene (RAG)-2−/− background which express a T cell antigen receptor (TCR) transgene specific for an H-Y peptide presented by Db (H-Y/Db × RAG-2 mice). In contrast to the thymus, the small intestine in female H-Y/Db × RAG-2 mice is severely deficient in the number of IEL; TCR transgene+ CD8αα and CD8αβ are virtually absent. This is similar to the number and phenotype of IEL in transgenic mice that do not express the Db class I molecule, and which therefore fail positive selection. Paradoxically, in male mice, the small intestine contains large numbers of TCR+ IEL that express high levels of CD8αα homodimers. The IEL isolated from male mice are functional, as they respond upon TCR cross-linking, although they are not autoreactive to stimulator cells from male mice. We hypothesize that the H-Y/Db TCR fails to undergo selection in IEL of female mice due to the reduced avidity of the TCR for major histocompatibility complex peptide in conjunction with the CD8αα homodimers expressed by many cells in this lineage. By contrast, this reduced TCR/CD8αα avidity may permit positive rather than negative selection of this TCR in male mice. Therefore, the data presented provide conclusive evidence that a TCR which is positively selected in the thymus will not necessarily be selected in IEL, and furthermore, that the expression of a distinct CD8 isoform by IEL may be a critical determinant of the differential pattern of selection of these T cells.  相似文献   

14.
15.
The development of T cell–mediated autoimmune diseases hinges on the balance between effector and regulatory mechanisms. Using two transgenic mouse lines expressing identical myelin basic protein (MBP)–specific T cell receptor (TCR) genes, we have previously shown that mice bearing exclusively MBP-specific T cells (designated T/R) spontaneously develop experimental autoimmune encephalomyelitis (EAE), whereas mice bearing MBP-specific T cells as well as other lymphocytes (designated T/R+) did not. Here we demonstrate that T/R mice can be protected from EAE by the early transfer of total splenocytes or purified CD4+ T cells from normal donors. Moreover, whereas T/R+ mice crossed with B cell–deficient, γ/δ T cell–deficient, or major histocompatibility complex class I–deficient mice did not develop EAE spontaneously, T/R+ mice crossed with TCR-α and -β knockout mice developed EAE with the same incidence and severity as T/R mice. In addition, MBP-specific transgenic mice that lack only endogenous TCR-α chains developed EAE with high incidence but reduced severity. Surprisingly, two-thirds of MBP-specific transgenic mice lacking only endogenous TCR-β chains also developed EAE, suggesting that in T/R+ mice, cells with high protective activity escape TCR-β chain allelic exclusion. Our study identifies CD4+ T cells bearing endogenous α and β TCR chains as the lymphocytes that prevent spontaneous EAE in T/R+ mice.  相似文献   

16.
We have previously shown that nonobese diabetic (NOD) mice are selectively deficient in α/β-T cell receptor (TCR)+CD4CD8 NKT cells, a defect that may contribute to their susceptibility to the spontaneous development of insulin-dependent diabetes mellitus (IDDM). The role of NKT cells in protection from IDDM in NOD mice was studied by the infusion of thymocyte subsets into young female NOD mice. A single intravenous injection of 106 CD4−/lowCD8 or CD4CD8 thymocytes from female (BALB/c × NOD)F1 donors protected intact NOD mice from the spontaneous onset of clinical IDDM. Insulitis was still present in some recipient mice, although the cell infiltrates were principally periductal and periislet, rather than the intraislet pattern characteristic of insulitis in unmanipulated NOD mice. Protection was not associated with the induction of “allogenic tolerance” or systemic autoimmunity. Accelerated IDDM occurs after injection of splenocytes from NOD donors into irradiated adult NOD recipients. When α/β-TCR+ and α/β-TCR subsets of CD4CD8 thymocytes were transferred with diabetogenic splenocytes and compared for their ability to prevent the development of IDDM in irradiated adult recipients, only the α/β-TCR+ population was protective, confirming that NKT cells were responsible for this activity. The protective effect in the induced model of IDDM was neutralized by anti–IL-4 and anti–IL-10 monoclonal antibodies in vivo, indicating a role for at least one of these cytokines in NKT cell-mediated protection. These results have significant implications for the pathogenesis and potential prevention of IDDM in humans.  相似文献   

17.
CD19+CD10+ human B lineage bone marrow cells were separated into cycling or resting cells, which differ in their expression of CD34, VpreB, recombination activating gene (RAG-1), and terminal deoxynucleotidyl transferase (TdT). Polymerase chain reaction analyses developed for DHJH and VκJκ, VκJκK(de) and VκK(de) rearrangements with DNA of single cells and a comparison with B lineage cell development in mouse bone marrow, allow to delineate the human B lymphocyte pathway of development as follows: CD34+VpreB+RAG-1+TdT+, DHJH-rearranged, κL germline cycling pre-B I cells → CD34VpreB+μH chain+ (pre-B receptor+) RAG-1TdT, VHDHJH-rearranged, κL germline, cycling pre-B II cells → CD34VpreB, intracytoplasmic μH chain+ (pre-B receptor) RAG-1+/− TdT, VHDHJH-rearranged, mainly κL germline cycling pre-B II cells → CD34VpreB intracytoplasmic μH chain+, RAG-1+TdT, VHDHJH-rearranged, VκJκ-rearranged, IgM, resting pre-B II cells CD34+VpreB, sIgM+, RAG-1+TdT, VHDHJH- and VκJκ-rearranged IgM+ immature B cells → CD34, CD10, sIgM+/sIgD+ mature B cells. This order, for the first time established for human B lineage cells, shows striking similarities with that established for mouse B lineage cells in bone marrow.  相似文献   

18.
In this report, we have assessed the lineage relationships and cytokine dependency of natural killer (NK) T cells compared with mainstream TCR-αβ T cells and NK cells. For this purpose, we studied common γ chain (γc)-deficient mice, which demonstrate a selective defect in CD3 NK cell development relative to conventional TCR-αβ T cells. NK thymocytes differentiate in γc mice as shown by the normal percentage of TCR Vβ8+ CD4CD8 cells and the normal quantity of thymic Vα14–Jα281 mRNA that characterize the NK T repertoire. However, γc-deficient NK thymocytes fail to coexpress the NK-associated markers NKR-P1 or Ly49, yet retain characteristic expression of the cytokine receptors interleukin (IL)-7Rα and IL-2Rβ. Despite these phenotypic abnormalities, γc NK thymocytes could produce normal amounts of IL-4. These results define a maturational progression of NK thymocyte differentiation where intrathymic selection and IL-4–producing capacity can be clearly dissociated from the acquisition of the NK phenotype. Moreover, these data suggest a closer ontogenic relationship of NK T cells to TCR-αβ T cells than to NK cells with respect to cytokine dependency. We also failed to detect peripheral NK T cells in these mice, demonstrating that γc-dependent interactions are required for export and/or survival of NK T cells from the thymus. These results suggest a stepwise pattern of differentiation for thymically derived NK T cells: primary selection via their invariant TCR to confer the IL-4–producing phenotype, followed by acquisition of NK-associated markers and maturation/export to the periphery.  相似文献   

19.
The development of B lymphocytes from progenitor cells is dependent on the expression of a pre–B cell–specific receptor made up by a μ heavy chain associated with the surrogate light chains, immunoglobulin (Ig)α, and Igβ. A variant pre–B cell receptor can be formed in which the μ heavy chain is exchanged for a truncated μ chain denoted Dμ. To investigate the role of this receptor in the development of B cells, we have generated transgenic mice that express the Dμ protein in cells of the B lineage. Analysis of these mice reveal that Dμ expression leads to a partial block in B cell development at the early pre–B cell stage, probably by inhibiting VH to DHJH rearrangement. Furthermore, we provide evidence that Dμ induces VL to JL rearrangements.  相似文献   

20.
CD3γ and CD3δ are two highly related components of the T cell receptor (TCR)–CD3 complex which is essential for the assembly and signal transduction of the T cell receptor on mature T cells. In gene knockout mice deficient in either CD3δ or CD3γ, early thymic development mediated by pre-TCR was either undisturbed or severely blocked, respectively, and small numbers of TCR-αβ+ T cells were detected in the periphery of both mice. γδ T cell development was either normal in CD3δ−/− mice or partially blocked in CD3γ−/− mice. To examine the collective role of CD3γ and CD3δ in the assembly and function of pre-TCR and in the development of γδ T cells, we generated a mouse strain with a disruption in both CD3γ and CD3δ genes (CD3γδ−/−). In contrast to mice deficient in either CD3γ or CD3δ chains, early thymic development mediated by pre-TCR is completely blocked, and TCR-αβ+ or TCR-γδ+ T cells were absent in the CD3γδ−/− mice. Taken together, these studies demonstrated that CD3γ and CD3δ play an essential, yet partially overlapping, role in the development of both αβ and γδ T cell lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号