首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co‐occurrence of primordial dwarfism and microcephaly together with particular skeletal findings are seen in a wide range of Mendelian syndromes including microcephaly micromelia syndrome (MMS, OMIM 251230), microcephaly, short stature, and limb abnormalities (MISSLA, OMIM 617604), and microcephalic primordial dwarfisms (MPDs). Genes associated with these syndromes encode proteins that have crucial roles in DNA replication or in other critical steps of the cell cycle that link DNA replication to cell division. We identified four unrelated families with five affected individuals having biallelic or de novo variants in DONSON presenting with a core phenotype of severe short stature (z score < ?3 SD), additional skeletal abnormalities, and microcephaly. Two apparently unrelated families with identical homozygous c.631C > T p.(Arg211Cys) variant had clinical features typical of Meier‐Gorlin syndrome (MGS), while two siblings with compound heterozygous c.346delG p.(Asp116Ile*62) and c.1349A > G p.(Lys450Arg) variants presented with Seckel‐like phenotype. We also identified a de novo c.683G > T p.(Trp228Leu) variant in DONSON in a patient with prominent micrognathia, short stature and hypoplastic femur and tibia, clinically diagnosed with Femoral‐Facial syndrome (FFS, OMIM 134780). Biallelic variants in DONSON have been recently described in individuals with microcephalic dwarfism. These studies also demonstrated that DONSON has an essential conserved role in the cell cycle. Here we describe novel biallelic and de novo variants that are associated with MGS, Seckel‐like phenotype and FFS, the last of which has not been associated with any disease gene to date.  相似文献   

2.
3.
4.
Neuroectodermal melanolysosomal disease, also known as Elejalde syndrome, is a rare syndrome characterized by silvery hair, pigment abnormalities, and profound central nervous system dysfunction. It is similar to the Chediak‐Higashi and Griscelli syndromes, although these syndromes are associated with severe immunologic dysfunction. We report on a 12‐year‐old male with Elejalde syndrome and compare the Elejalde, Chediak‐Higashi, and Griscelli syndromes. © 2001 Wiley‐Liss, Inc.  相似文献   

5.
6.
We report the clinical and molecular data of 16 patients with RSH/Smith‐Lemli‐Opitz syndrome (RSH/SLOS) with varying phenotypic severity, for which we have identified mutations in both alleles. RSH/SLOS is an autosomal recessive malformation syndrome caused by mutations in the gene encoding the sterol Δ7‐reductase. This protein catalyzes the reduction of 7‐dehydrocholesterol to cholesterol in the last step of cholesterol biosynthesis via the Kandutsch‐Russell pathway. In addition to previously reported mutations (T93M, L109P, G147D, W151X, T154M, R242C, A247V, T289I, IVS8‐1G→C, Y408H, and E448K), we have identified six previously undescribed mutations (321G→C, W177R, R242H, Y318N, L341P, and C444Y). We also report rapid polymerase chain reaction (PCR)–based assays developed to detect four of the recurring mutations (T93M, W151X, V326L, and R404C) and six other RSH/SLOS mutations (321G→C, L109P, T154M, T289I, Y318N, and L341P). The purpose of this article is to correlate detailed clinical information with molecular data in order to improve our understanding of the genotype–phenotype correlation of RSH/SLOS and to report the development of PCR‐based assays that will allow more rapid mutation analysis. Am. J. Med. Genet. 94:214–227, 2000. Published 2000 Wiley‐Liss, Inc.  相似文献   

7.
Angelman syndrome (AS) is a disorder of psychomotor development caused by loss of function of the imprinted UBE3A gene. Since the paternal UBE3A copy is regularly silent, only mutations inactivating the maternal copy cause AS. Among 1,272 patients suspected of AS, we found one with an isolated deletion of the UBE3A gene on the maternally inherited chromosome. Initial DNA methylation testing at the SNURF‐SNRPN locus in the patient revealed a normal pattern. The deletion was only detected through allelic loss at microsatellite loci D15S1506, D15S122, and D15S210, and confirmed with fluorescence in situ hybridization (FISH) using bacterial artificial chromosome (BAC) probes derived from the loci. It extends approximately 570 kilobase pairs (kbp), encompassing the UBE3A locus, and is flanked by loci PAR/SN and D15S986. The deletion is familial, and haplotype studies suggest that a great grandfather of the index patient already carried this deletion, and that it causes AS when inherited through the female germline but not Prader‐Willi syndrome (PWS) when paternally inherited. Our findings support the hypothesis that the functional loss of maternal UBE3A gene activity is sufficient to cause AS and that the deleted region does not contain genes or other structures that are involved in PWS. Finally, this case highlights that methylation tests can fail to detect some familial AS cases with a recurrence risk of 50%. © 2002 Wiley‐Liss, Inc.  相似文献   

8.
9.
Rothmund‐Thomson syndrome (RTS), an autosomal recessive disorder, comprises poikiloderma, growth deficiency, some aspects of premature aging, and a predisposition to malignancy, especially osteogenic sarcomas. Two kindreds with RTS were recently shown to segregate for mutations in the human RECQL4 helicase gene. We report identification of a new RTS kindred in which both brothers developed osteosarcomas. Mutation analysis of the RECQL4 gene was performed on both brothers and both parents. The brothers were shown to be compound heterozygotes for mutations in the RECQL4 gene, including a single base‐pair deletion in exon 9 resulting in a frameshift and early termination codon and a base substitution in the 3‐prime splice site in the intron‐exon boundary of exon 8, which would be predicted to cause a deletion of at least part of a consensus helicase domain. Each parent was shown to be a heterozygote carrier for one mutation. This report strengthens the association between mutations in RECQL4 helicase gene and RTS. Two other recessive disorders, Bloom syndrome and Werner syndrome, are known to be due to other human RECQ helicase gene mutations. These three disorders all manifest abnormal growth, premature aging, and predisposition to site‐specific malignancies. The clinical and molecular aspects of RTS, Bloom syndrome, and Werner syndrome are compared and contrasted. Am. J. Med. Genet. 90:223–228, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

10.
KCNE1 encodes a regulatory subunit of the KCNQ1 potassium channel‐complex. Both KCNE1 and KCNQ1 are necessary for normal hearing and cardiac ventricular repolarization. Recessive variants in these genes are associated with Jervell and Lange‐Nielson syndrome (JLNS1 and JLNS2), a cardio‐auditory syndrome characterized by congenital profound sensorineural deafness and a prolonged QT interval that can cause ventricular arrhythmias and sudden cardiac death. Some normal‐hearing carriers of heterozygous missense variants of KCNE1 and KCNQ1 have prolonged QT intervals, a dominantly inherited phenotype designated Romano‐Ward syndrome (RWS), which is also associated with arrhythmias and elevated risk of sudden death. Coassembly of certain mutant KCNE1 monomers with wild‐type KCNQ1 subunits results in RWS by a dominant negative mechanism. This paper reviews variants of KCNE1 and their associated phenotypes, including biallelic truncating null variants of KCNE1 that have not been previously reported. We describe three homozygous nonsense mutations of KCNE1 segregating in families ascertained ostensibly for nonsyndromic deafness: c.50G>A (p.Trp17*), c.51G>A (p.Trp17*), and c.138C>A (p.Tyr46*). Some individuals carrying missense variants of KCNE1 have RWS. However, heterozygotes for loss‐of‐function variants of KCNE1 may have normal QT intervals while biallelic null alleles are associated with JLNS2, indicating a complex genotype‐phenotype spectrum for KCNE1 variants.  相似文献   

11.
12.
13.
We report on a 22‐year‐old woman carrying a del(17)(p11.2p12) and presenting with the clinical manifestations of both Smith‐Magenis syndrome (SMS) and Joubert syndrome (JS). Her facial anomalies, brachydactyly, severe mental retardation, and self‐injuring behavior could be attributed to SMS, whereas the cerebellar vermis hypoplasia, hypotonia, ataxic gait, developmental delay, and abnormal respiratory pattern were suggestive of JS. By fluorescent in situ hybridization analyses with Yeast Artificial Chromosomes (YAC) mapping to the 17p11.2 region, as well as locus‐specific probes generated through a novel procedure, we could establish that the deletion encompasses a 4‐Mb interval with centromeric and telomeric breakpoints at loci D17S793 and D17S953, the latter close to the locus Charcot Marie Tooth 1A (CMT1A)‐REP. The deletion differs from that commonly found in SMS in its telomeric boundary, which is more distal than usually observed. The presence of JS phenotype in our patient and the detection of an unusual SMS deletion might suggest the presence of a JS gene in close proximity to the SMS locus. Am. J. Med. Genet. 95:467–472, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

14.
Hydrometrocolpos (HMC) and post‐axial polydactyly (PAP) are common to both McKusick‐Kaufman syndrome (MKS) and Bardet‐Biedl syndrome (BBS). We review reported cases of MKS and BBS presenting with HMC and PAP early in life to determine if there are clinical features that allow discrimination between the two syndromes as the primary features of retinitis pigmentosa, obesity, learning disability in BBS are age‐dependent. We did not find any phenotypic features that allowed reliable differentiation between the two syndromes in the neonatal period. However, uterine, ovarian, and fallopian tube anomalies are more common in BBS patients, and it may be that these clinical features prove to be useful discriminating features. We conclude that sporadic female infants with HMC and PAP cannot be diagnosed with MKS until at least age 5 years and that monitoring for the complications of BBS should be performed in these patients. Am. J. Med. Genet. 95:208–215, 2000. Published 2000 Wiley‐Liss, Inc.  相似文献   

15.
《Human mutation》2018,39(9):1226-1237
Malan syndrome is an overgrowth disorder described in a limited number of individuals. We aim to delineate the entity by studying a large group of affected individuals. We gathered data on 45 affected individuals with a molecularly confirmed diagnosis through an international collaboration and compared data to the 35 previously reported individuals. Results indicate that height is > 2 SDS in infancy and childhood but in only half of affected adults. Cardinal facial characteristics include long, triangular face, macrocephaly, prominent forehead, everted lower lip, and prominent chin. Intellectual disability is universally present, behaviorally anxiety is characteristic. Malan syndrome is caused by deletions or point mutations of NFIX clustered mostly in exon 2. There is no genotype‐phenotype correlation except for an increased risk for epilepsy with 19p13.2 microdeletions. Variants arose de novo, except in one family in which mother was mosaic. Variants causing Malan and Marshall‐Smith syndrome can be discerned by differences in the site of stop codon formation. We conclude that Malan syndrome has a well recognizable phenotype that usually can be discerned easily from Marshall–Smith syndrome but rarely there is some overlap. Differentiation from Sotos and Weaver syndrome can be made by clinical evaluation only.  相似文献   

16.
17.
Karen W. Gripp  Lisa Schill  Lisa Schoyer  Beth Stronach  Anton M. Bennett  Susan Blaser  Amanda Brown  Rebecca Burdine  Emma Burkitt‐Wright  Pau Castel  Sandra Darilek  Alwyn Dias  Tuesdi Dyer  Michelle Ellis  Gregg Erickson  Bruce D. Gelb  Tamar Green  Andrea Gross  Alan Ho  James Lloyd Holder Jr.  Shin‐Ichi Inoue  Angie C. Jelin  Annie Kennedy  Richard Klein  Maria I. Kontaridis  Pilar Magoulas  Darryl B. McConnell  Frank McCormick  Benjamin G. Neel  Carlos E. Prada  Katherine A. Rauen  Amy Roberts  Pablo Rodriguez‐Viciana  Neal Rosen  Gavin Rumbaugh  Anna Sablina  Maja Solman  Marco Tartaglia  Angelica Thomas  William C. Timmer  Kartik Venkatachalam  Karin S. Walsh  Pamela L. Wolters  Jae‐Sung Yi  Martin Zenker  Nancy Ratner 《American journal of medical genetics. Part A》2020,182(3):597-606
The RASopathies are a group of genetic disorders that result from germline pathogenic variants affecting RAS‐mitogen activated protein kinase (MAPK) pathway genes. RASopathies share RAS/MAPK pathway dysregulation and share phenotypic manifestations affecting numerous organ systems, causing lifelong and at times life‐limiting medical complications. RASopathies may benefit from precision medicine approaches. For this reason, the Sixth International RASopathies Symposium focused on exploring precision medicine. This meeting brought together basic science researchers, clinicians, clinician scientists, patient advocates, and representatives from pharmaceutical companies and the National Institutes of Health. Novel RASopathy genes, variants, and animal models were discussed in the context of medication trials and drug development. Attempts to define and measure meaningful endpoints for treatment trials were discussed, as was drug availability to patients after trial completion.  相似文献   

18.
Townes-Brocks syndrome (TBS) is an autosomal dominant malformation syndrome characterized by renal, anal, ear, and thumb anomalies caused by SALL1 mutations. To date, 36 SALL1 mutations have been described in TBS patients. All but three of those, namely p.R276X, p.S372X, and c.1404dupG, have been found only in single families thereby preventing phenotype-genotype correlations. Here we present 20 novel mutations (12 short deletions, five short duplications, three nonsense mutations) in 20 unrelated families. We delineate the phenotypes and report previously unknown ocular manifestations, i.e. congenital cataracts with unilateral microphthalmia. We show that 46 out of the now 56 SALL1 mutations are located between the coding regions for the glutamine-rich domain mediating SALL protein interactions and 65 bp 3' of the coding region for the first double zinc finger domain, narrowing the SALL1 mutational hotspot region to a stretch of 802 bp within exon 2. Of note, only two SALL1 mutations would result in truncated proteins without the glutamine-rich domain, one of which is reported here. The latter is associated with anal, ear, hand, and renal manifestations, indicating that the glutamine-rich domain is not required for typical TBS.  相似文献   

19.
Crigler-Najjar syndrome types I and II (CN1 and CN2) are usually inherited as autosomal recessive conditions and are characterized by non-hemolytic unconjugated hyperbilirubinaemia. CN1 is the most severe form, associated with the absence of hepatic bilirubin-uridinediphosphoglucuronate glucuronosyltransferase (UGT1A1) activity. CN2 presents intermediate levels of hyperbilirubinaemia as a result of an incomplete deficiency of hepatic UGT1A1 activity. Here, we present the analysis of UGT1A1 gene in 31 unrelated Crigler-Najjar (CN) syndrome patients. This analysis allowed us to identify 22 mutations, 12 of which were not previously described, expanding the spectrum of known UGT1 mutations to 77. Novel mutations, considered pathogenic, including one nonsense mutation, two altered splice sites, one single base deletion and nine missense mutations were identified in coding exons of the UGT1A1gene and flanking introns. Several novel missense mutations localize in critical domain of UGT1A1 enzyme. In addition, the evaluation of Gilbert-type promoter of UGT1A1in Crigler-Najjar (CN) syndrome patients was performed. The polymorphisms of the promoter region can modify the UGT1A1 mutation phenotype. This study represents the molecular characterization of the largest cohort of Italian Crigler-Najjar Gilbert syndrome patients studied so far; increase the mutational spectrum of UGT1A1 allelic variants worldwide and provide a new insight useful for clinical diagnosis and genetic counseling.  相似文献   

20.
Eng C 《Human mutation》2003,22(3):183-198
PTEN, on 10q23.3, encodes a major lipid phosphatase which signals down the phosphoinositol-3-kinase/Akt pathway and effects G1 cell cycle arrest and apoptosis. Germline PTEN mutations have been found to occur in 80% of classic Cowden syndrome (CS), 60% of Bannayan-Riley-Ruvalcaba syndrome (BRRS), up to 20% of Proteus syndrome (PS), and approximately 50% of a Proteus-like syndrome (PSL). CS is a heritable multiple hamartoma syndrome with a high risk of breast, thyroid, and endometrial carcinomas. BRRS is a congenital autosomal dominant disorder characterized by megencephaly, developmental delay, lipomatosis, and speckled penis. PS and PSL had never been associated with risk of malignancy. Finding germline PTEN mutations in patients with BRRS, PS, and PSL suggests equivalent risks of developing malignancy as in CS with implications for medical management. The mutational spectra of CS and BRRS overlap, with many of the mutations occurring in exons 5, 7, and 8. Genotype-phenotype association analyses have revealed that the presence of germline PTEN mutations is associated with breast tumor development, and that mutations occurring within and 5' of the phosphatase motif were associated with multi-organ involvement. Pooled analysis of PTEN mutation series of CS and BRRS occurring in the last five years reveals that 65% of CS-associated mutations occur in the first five exons encoding the phosphatase domain and the promoter region, while 60% of BRRS-associated mutations occur in the 3' four exons encoding mainly the C2 domain. Somatic PTEN mutations occur with a wide distribution of frequencies in sporadic primary tumors, with the highest frequencies in endometrial carcinomas and glioblastoma multiform. Several mechanisms of PTEN inactivation occur in primary malignancies derived from different tissues, but a favored mechanism appears to occur in a tissue-specific manner. Inappropriate subcellular compartmentalization and increased/decreased proteosome degradation may be two novel mechanisms of PTEN inactivation. Further functional work could reveal more effective means of molecular-directed therapy and prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号