首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Mucosal surfaces of the cervix and vagina are portals for heterosexual transmission of human immunodeficiency virus type 1 (HIV-1) and, therefore, play a fundamental role in the pathogenesis of primary infection. Cationic antimicrobial polypeptides including defensins are the principal effector molecules of mucosal innate immunity against microbes and viruses such as HIV. In cervicovaginal secretions, antimicrobial polypeptides constitute the majority of the intrinsic anti-HIV-1 activity, synergism between cationic polypeptides is complex, and full anti-HIV-1 activity involves the complete complement of cationic polypeptides. Periods in which cationic antimicrobial polypeptide expression is reduced are likely associated with increased susceptibility to HIV-1 infection. This review provides an overview of the role of cationic antimicrobial polypeptides in innate cervicovaginal anti-HIV-1 host defense, and discusses how hormones and bacterial infections can regulate their expression. Emphasis is placed on the theta-defensin (retrocyclin) class of anti-HIV-1 peptides and their potential for development as topical microbicides to prevent HIV-1 transmission.  相似文献   

2.
Mucosal surfaces are colonized by a diverse and dynamic microbiota. Much investigation has focused on bacterial colonization of the intestine, home to the vast majority of this microbiota. Experimental evidence has highlighted that these colonizing microbes are essential to host development and homeostasis, but less is known about host factors that may regulate the composition of this ecosystem. While evidence shows that IgA has a role in shaping this microbiota, it is likely that effector molecules of the innate immune system are also involved. One hypothesis is that gene-encoded antimicrobial peptides, key elements of innate immunity throughout nature, have an essential role in this regulation. These effector molecules characteristically have activity against a broad spectrum of bacteria and other microbes. At mucosal surfaces, antimicrobial peptides may affect the numbers and/or composition of the colonizing microbiota. In humans and other mammals, defensins are a predominant class of antimicrobial peptides. In the small intestine, Paneth cells (specialized secretory epithelial cells) produce high quantities of defensins and several other antibiotic peptides and proteins. Data from murine models indicate that Paneth cell defensins play a pivotal role in defense from food and water-borne pathogens in the intestinal lumen. Recent studies in humans provide evidence that reduced Paneth cell defensin expression may be a key pathogenic factor in ileal Crohn's disease, a subgroup of inflammatory bowel disease (IBD), and changes in the colonizing microbiota may mediate this pathogenic mechanism. It is also possible that low levels of Paneth cell defensins, characteristic of normal intestinal development, may predispose premature neonates to necrotizing enterocolitis (NEC) through similar close links with the composition of the intestinal microbiota. Future studies to further define mechanisms by which defensins and other host factors regulate the composition of the intestinal microbiota will likely provide new insights into intestinal homeostasis and new therapeutic strategies for inflammatory and infectious diseases of the bowel.  相似文献   

3.
Antimicrobial peptides are essential effector molecules of the innate immune system. Here we describe the structure, function and diversity of cryptdin-related sequence (CRS) peptides, a large family of antimicrobial molecules. We identified the peptides as covalent dimers in mouse intestinal tissue in amounts comparable to those of Paneth cell-derived enteric alpha-defensins. CRS peptides caused rapid and potent killing of commensal and pathogenic bacteria. The CRS peptides formed homo- and heterodimers in vivo, thereby expanding the repertoire of antimicrobial peptides and increasing the peptide diversity of Paneth cell secretions. CRS peptides might therefore be important in the maintenance of the microbial homeostasis within the intestinal tract.  相似文献   

4.
5.
6.
Avian host defense peptides   总被引:1,自引:0,他引:1  
Host defense peptides (HDPs) are important effector molecules of the innate immune system of vertebrates. These antimicrobial peptides are also present in invertebrates, plants and fungi. HDPs display broad-spectrum antimicrobial activities and fulfill an important role in the first line of defense of many organisms. It is becoming increasingly clear that in the animal kingdom the functions of HDPs are not confined to direct antimicrobial actions. Research in mammals has indicated that HDPs have many immunomodulatory functions and are also involved in other physiological processes ranging from development to wound healing. During the past five years our knowledge about avian HDPs has increased considerably. This review addresses our current knowledge on the evolution, regulation and biological functions of HDPs of birds.  相似文献   

7.
Antimicrobial peptides, such as defensins or cathelicidins, are effector substances of the innate immune system and are thought to have antimicrobial properties that contribute to host defense. The evidence that vertebrate antimicrobial peptides contribute to innate immunity in vivo is based on their expression pattern and in vitro activity against microorganisms. The goal of this study was to investigate whether the overexpression of an antimicrobial peptide results in augmented protection against bacterial infection. C57BL/6 mice were given an adenovirus vector containing the cDNA for LL-37/hCAP-18, a human cathelicidin antimicrobial peptide. Mice treated with intratracheal LL-37/hCAP-18 vector had a lower bacterial load and a smaller inflammatory response than did untreated mice following pulmonary challenge with Pseudomonas aeruginosa PAO1. Systemic expression of LL-37/hCAP-18 after intravenous injection of recombinant adenovirus resulted in improved survival rates following intravenous injection of lipopolysaccharide with galactosamine or Escherichia coli CP9. In conclusion, the data demonstrate that expression of an antimicrobial peptide by gene transfer results in augmentation of the innate immune response, providing support for the hypothesis that vertebrate antimicrobial peptides protect against microorganisms in vivo.  相似文献   

8.
Chang TL  Klotman ME 《AIDS reviews》2004,6(3):161-168
Mammalian defensins are small cationic antimicrobial peptides predominantly found in leukocytes and epithelial cells engaged in host defense. These peptides act as effector molecules in innate immunity as well as regulators in adaptive immunity. Increasing evidence indicates that defensins are effective inhibitors of HIV-1. While the level of defensins in HIV-1 infected individuals has not been determined, neutropenia and neutrophil dysfunction associated with HIV disease progression may result in altered alpha-defensin production. This review provides an overview of the structure and function of defensins, and focuses on the anti-HIV-1 activity of defensins and the mechanism of this activity. Although many questions remain, studying the complex function of defensins in innate immunity against HIV has implications for our further understanding of disease progression and for the development of novel approaches to prevention and therapy.  相似文献   

9.
Within the last decade, several peptides have been discovered on the basis of their ability to inhibit the growth of potential microbial pathogens. These so-called antimicrobial peptides participate in the innate immune response by providing a rapid first-line defense against infection. Recent advances in this field have shown that peptides belonging to the cathelicidin and defensin gene families are of particular importance to the mammalian immune defense system. This review discusses the biology of these molecules, with emphasis on their structure, processing, expression and function. Current evidence has shown that both cathelicidins and defensins are multifunctional and that they act both as natural antibiotics and as signaling molecules that activate host cell processes involved in immune defense and repair. The abnormal expression of these peptides has also been associated with human disease. Current and future studies are likely to implicate the presence of antimicrobial peptides in several unexplained human inflammatory disorders and to provide novel therapeutic approaches to the treatment of disease.  相似文献   

10.
The bactericidal machinery of mammalian neutrophils is built up of many components with different chemical properties, involving proteins, peptides and oxygen-dependent radicals. All these components work in synergy, leading to destruction and elimination of ingested microbes. During the eighties, it gradually became clear, that cationic peptides are a part of the oxygen-independent bactericidal effectors in phagocytic cells. In mammals, these antimicrobial peptides are represented by two families, the defensins and the cathelicidins. These potent broad spectra peptides are included as immediate effector molecules in innate immunity. The detailed killing mechanism for these effectors is partly known, but nearly all of them have membrane affinity, and permeate bacterial membranes, resulting in lysis of the bacteria. This peptide-membrane interaction includes also eukaryotic membranes, that implicates cytotoxic effects on host cells. Studies in vitro have established that the microenvironment is critical for their activities. In connection to cystic fibrosis, the effects of microenvironment changes are apparent, causing inactivation of peptide defences and leading to repeated serious bacterial infections. Thus, the importance of the microenvironment is also supported in vivo. Additional functions of these peptides such as chemotactic, mitogenic and stimulatory in the wound healing process suggest further important roles for these peptides.  相似文献   

11.
The human pathogenic fungus Cryptococcus neoformans can form biofilms on polystyrene plates and medical devices in a process that requires capsular polysaccharide release. Although biofilms are known to be less susceptible to antimicrobial drugs, little is known about their susceptibility to antimicrobial molecules produced by the innate immune system. In this study, we investigated the susceptibility of C. neoformans cells in biofilm and planktonic states to oxidative and nonoxidative antimicrobial molecules produced by phagocytic cells. The effects of various immune effector molecules on the fungal mass, metabolic activity, and architecture of C. neoformans biofilms were measured by colony counts, 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino) carbonyl]-2H-tetrazolium hydroxide reduction, and confocal microscopy, respectively. Biofilms were more resistant than planktonic cells to oxidative stress but remained vulnerable to cationic antimicrobial peptides. However, melanized biofilms were significantly less susceptible to antimicrobial peptides than nonmelanized biofilms. These results suggest that the biofilm phenotype increases resistance against host immune mechanisms, a phenomenon that could contribute to the ability of biofilm-forming microbes to establish persistent infections.  相似文献   

12.
Antimicrobial peptides are present in most living species and constitute important effector molecules of innate immunity. Recently, we and others have detected antimicrobial peptides in the brain. This is an organ that is rarely infected, which has mainly been ascribed to the protective functions of the blood-brain barrier (BBB) and meninges. Since the bactericidal properties of the BBB and meninges are not known, we hypothesized that antimicrobial peptides could play a role in these barriers. We addressed this hypothesis by infecting mice with the neuropathogenic bacterium Neisseria meningitidis. Brains were analyzed for expression of the antimicrobial peptide CRAMP by immunohistochemistry in combination with confocal microscopy. After infection, we observed induction of CRAMP in endothelial cells of the BBB and in cells of the meninges. To explore the functional role of CRAMP in meningococcal disease, we infected mice deficient of the CRAMP gene. Even though CRAMP did not appear to protect the brain from invasion of meningococci, CRAMP knockout mice were more susceptible to meningococcal infection than wild-type mice and exhibited increased meningococcal growth in blood, liver, and spleen. Moreover, we could demonstrate that carbonate, a compound that accumulates in the circulation during metabolic acidosis, makes meningococci more susceptible to CRAMP.  相似文献   

13.
Summary:  Salmonella enterica is a facultative intracellular pathogen that replicates within macrophages. The interaction of this pathogen with mammalian cells is a complex process involving hundreds of bacterial products that are sensed by and alter mammalian hosts. Numerous bacterial genes and their protein products have been identified that are required for Salmonella to resist killing by host innate immunity and to modify host processes. Many of these genes are regulated by a specific bacterial sensor, the PhoQ protein, which responds to the acidified phagosome environment. PhoQ is a sensor histidine kinase, which when activated in vivo within acidified macrophage phagosomes, regulates cell surface modifications that promote resistance to antimicrobial peptides and oxidative stress, alter the phagosome to promote intracellular survival, and reduce innate immune recognition. In this review, we discuss mechanisms by which Salmonella interacts with macrophages and focus in detail on recent reports describing the role of antimicrobial peptides and pH in PhoQ activation.  相似文献   

14.
The innate immune system produces a number of effector molecules that are important for protection against bacterial infections. Neutrophils and antimicrobial peptides are major components of innate defense with the capacity of rapid bacterial killing. Patients with severe congenital neutropenia (SCN) experience recurrent and chronic infections despite recombinant G-CSF-mobilized neutrophils. We have shown previously that these neutrophils are deficient in that they lack the antimicrobial peptide LL-37. Here, we show that pro-LL-37 mRNA is not expressed in neutrophil precursors from patients with SCN, although the gene and promoter region for pro-LL-37, CAMP, does not display any mutations. The hormonal form of vitamin D3 [1,25(OH)2D3] induced the expression of pro-LL-37 in isolated neutrophil progenitors and in EBV-transformed B cells from patients with SCN, whereas all-trans retinoic acid only induced expression in transformed B cells. These results demonstrate that myeloid cells of patients with SCN can produce pro-LL-37, suggesting that other pathways are impaired.  相似文献   

15.
张溪  弓磊 《中国组织工程研究》2020,24(10):1634-1640
文题释义: 抗菌肽:是一类具有广谱抗菌性的宿主防御多肽,由所有形式的生命体中的不同组织、细胞中产生,具有广谱抗菌、抗病毒、抗真菌、抗肿瘤、促进机体组织愈合及调节体内免疫系统等活性,其在宿主的天然免疫防御系统中发挥着重要的防御屏障作用。 抗菌肽的抗菌机制:由于抗菌肽在组成成分、结构和功能上存在差异性,因此其具有不同的抗菌机制;而抗菌肽的结构在很大程度上影响了抗菌肽的功能,由此决定了抗菌肽多种功能和作用模式,其中最为让人认可的是膜透化机制和非膜靶向机制。 背景:抗菌肽作为一种可从自然来源提取并用于对抗抗生素耐药细菌的潜在候选物,引起了科学家们的广泛关注,熟悉抗菌肽的抗菌机制有利于将抗菌肽的临床应用。 目的:综述近年来对抗菌肽抗菌机制的研究进展。 方法:由第一作者应用计算机检索PubMed、Springerlink、Web of Science、ScienceDirect等数据库2013年1 月至2019年3月发表的文献,选择与抗菌肽抗菌机制及其研究进展相关的文献。 结果与结论:抗菌肽是一类特殊的分子,为具有广谱抗菌性的宿主防御多肽,在一些生物体中其被认为是先天免疫系统的重要组成部分。抗菌肽的抗菌机制从作用模式上可以分为直接致死和免疫调节2类主要的模式,直接致死作用机制可进一步分为膜靶向和非膜靶向。与此同时基于抗菌肽的广泛应用,预计在葡萄球菌、口腔细菌(包括链球菌)和肠道细菌(包括沙门氏菌)等微生物环境中已发展出许多抵抗策略,主要分为被动抵抗和诱导或适应性抵抗机制。在未来的研究和应用中,阳离子肽是解决多重耐药性日益增多的一个有效选择,除了应设计新的方法来对抗细菌对抗菌肽的耐药性外,也应该预防由常规抗生素产生的耐药性。 ORCID: 0000-0002-7481-2832(张溪) 中国组织工程研究杂志出版内容重点:生物材料;骨生物材料; 口腔生物材料; 纳米材料; 缓释材料; 材料相容性;组织工程  相似文献   

16.
The role of Toll-like receptors in host defense against microbial infection   总被引:20,自引:0,他引:20  
The Toll family of proteins is central to Drosophila host defense against microbial infection. Maintained throughout evolution, mammalian Toll-like receptors (TLRs) are proteins that participate in innate immunity to bacteria in at least four ways. First, TLRs participate in the recognition of molecular patterns present on microorganisms. Second, TLRs are expressed at the interface with the environment, the site of microbial invasion. Third, activation of TLRs induces expression of co-stimulatory molecules and the release of cytokines that instruct the adaptive immune response. Fourth, activation of TLRs leads to direct antimicrobial effector pathways that can result in elimination of the foreign invader. The recent investigation of TLRs in these areas has provided new insights into mechanisms of innate immunity.  相似文献   

17.
Amoebae are primitive, actively phagocytosing eukaryotic cells, many of which use bacteria as a major nutrient source. One may suppose that amoebae possess an array of potent antimicrobial molecules acting in synergy to combat bacterial growth inside their phagosomes. Lysosome-like granular vesicles of Entamoeba histolytica contain a family of 77-residue peptides with a compact alpha-helical, disulfide-bonded fold. These polypeptides, named amoebapores, exhibit antibacterial and cytolytic activity by forming pores in membranes of various origin. It is of particular interest that amoebapores are structurally and functionally most similar to polypeptides of mammalian cytotoxic lymphocytes. In addition, amoebic granules contain bacteriolytic proteins with lysozyme-like properties. Some amoebic polypeptides may represent archaic analogs of effector molecules from invertebrates and vertebrates.  相似文献   

18.
Mammalian toll-like receptors.   总被引:12,自引:0,他引:12  
OBJECTIVE: To review the role of mammalian Toll-like receptors (TLRs) in host defense. DATE SOURCES: MEDLINE search and current literature. RESULTS: First, TLRs participate in the recognition of molecular patterns present on microorganisms. Second, TLRs are expressed at the interface with the environment, the site of microbial invasion. Third, activation of TLRs induces expression of costimulatory molecules and the release of cytokines that instruct the adaptive immune response. Fourth, activation of TLRs leads to direct antimicrobial effector pathways that can result in elimination of the foreign invader. CONCLUSIONS: Maintained throughout evolution, mammalian TLRs are proteins that participate in innate immunity to microbial pathogens. Insights into TLR activation pathways provide new therapeutic targets for intervention in infectious and immunologic disease.  相似文献   

19.
20.
Many neuropeptides and peptide hormones are very similar to antimicrobial peptides in their amino acid composition, amphipathic design, cationic charge and size. Their antimicrobial activities suggest they may also be directly involved in innate defense. Here we discuss recent advances in understanding how the mammalian nervous system, equipped with neuropeptides and peptide hormones with potent antimicrobial properties, might directly defend the host from microbial assault. As examples, we have chosen five well described, locally produced neuropeptides that may serve a previously unrecognized, direct antimicrobial, innate immune function in four anatomical sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号