首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gap formation of five core plus peripheral suture techniques for flexor tendon repair was evaluated by cyclic load testing. Fifty pairs of dental roll tendon models were sutured using six-strand Pennington modified Kessler core suture with 4-0 Polypropylene. One-half or three-fourths circumferential interlocking cross-stitch, or three complete circumferential peripheral suture techniques were performed using 6-0 Polypropylene. An initial cyclic load of 10 N for 500 cycles was applied and increased by 5 N for an additional 500 cycles at each new load until rupture. The complete circumferential interlocking cross-stitch had the greatest fatigue strength. The partial circumferential cross-stitches resulted in significantly larger gap formations at both the repaired and unrepaired sides than the complete circumferential sutures, and were also associated with early rupture. The full circumference of the cut tendon must be sutured using an interlocking cross-stitch peripheral suture to improve strength and avoid gap formation.  相似文献   

2.
Biomechanical evaluation of flexor tendon repair techniques   总被引:4,自引:0,他引:4  
Immediate active mobilization of repaired tendons is thought to be the most effective way to restore function of injured flexor tendons. Sixty human flexor digitorum profundus tendons were used to evaluate techniques for active tendon motion. The tendons were divided equally into six groups, and each group was assigned to one of the following techniques: Kessler core suture plus running peripheral suture, Kessler plus cross-stitch suture, Kessler plus Halsted suture, Tang core suture plus running peripheral suture, Tang plus cross-stitch suture, or Tang plus Halsted suture. Immediately after tendon repair, an Instron tensile testing machine was used to measure the 2-mm gap formation force, ultimate strength, elastic modulus, and energy to failure of the tendons repaired by these techniques. Ultimate strength, elastic modulus, and energy to failure were measured in load displacement curve. Results showed that the ultimate strength of the Tang plus Halsted or cross-stitch was, respectively, 116.8 +/- 9.6 N and 94.6 +/- 7.8 N; and 2-mm gap formation force was, respectively, 86.6 +/- 4.9 N and 71.9 +/- 5.1 N. The Tang plus Halsted or cross-stitch methods had a statistically significant increase in ultimate strength and 2-mm gap formation force as compared with the Kessler core suture or Tang plus running peripheral suture method. Elastic modulus and energy to failure of the Tang plus Halsted or cross-stitch suture were statistically higher than those of other techniques. The Tang plus cross-stitch or Tang plus Halsted sutures had the highest strength among the tested methods and are appropriate techniques for tendon repair in which the goal is immediate active tendon motion.  相似文献   

3.
We have compared a simple four-strand flexor tendon repair, the single cross-stitch locked repair using a double-stranded suture (dsSCL) against two other four-strand repairs: the Pennington modified Kessler with double-stranded suture (dsPMK); and the cruciate cross-stitch locked repair with single-stranded suture (Modified Sandow). Thirty fresh frozen cadaveric flexor digitorum profundus tendons were transected and repaired with one of the core repair techniques using identical suture material and reinforced with identical peripheral sutures. Bulking at the repair site and tendon-suture junctions was measured. The tendons were subjected to linear load-to-failure testing. Results showed no significant difference in ultimate tensile strength between the Modified Sandow (36.8 N) and dsSCL (32.6 N) whereas the dsPMK was significantly weaker (26.8 N). There were no significant differences in 2 mm gap force, stiffness or bulk between the three repairs. We concluded that the simpler dsSCL repair is comparable to the modified Sandow repair in tensile strength, stiffness and bulking.  相似文献   

4.
M. Aoki  K. Ito  T. Wada  N. Ooyama 《Injury》1996,27(10):703-707
The purpose of this study was to investigate the ultimate tensile strength and stiffness of the cross-stitch epitenon suture technique in association with three different two-strand core suture techniques (the modified Kessler, Tsuge, and two-strand Savage). Twenty-four canine cadaver flexor profundus tendons were lacerated and repaired by one of the following techniques: the cross-stitch (Group 1), the modified Kessler with cross-stitch (Group 2), the Tsuge with cross-stitch (Group 3), and the two-strand Savage with cross-stitch (Group 4). Ultimate strength was determined with a tensile testing machine and stiffness was recorded by a video dimension analyser system. The ultimate strength of Group 2 (5.704 kgf) was significantly greater than that of the other techniques, followed by Group 4 (4.608 kgf), Group 3 (3.568 kgf), and Group 1 (2.935 kgf). The stiffness of Group 2 (495.8 kgf/m) was significantly greater than that of the other techniques, followed by Group 4 (369.7 kgf/m), Group 3 (225.7 kgf/m), and Group 1 (200.1 kgf/m). These results may be helpful to surgeons in deciding which core suture technique to use in association with the cross-stitch epitenon suture.  相似文献   

5.
The cross-stitch peripheral suture has good strength, but the large amount of exposed suture on the tendon surface has restricted its clinical usage. We report a method of embedded cross-stitch that incorporates cross-stitches into peripheral sutures and reduces the amount of exposed suture on the tendon surface. Thirty-three fresh pig flexor tendons were divided equally into three groups and repaired with cross-stitch, embedded cross-stitch, or modified Halsted sutures. The tendons were tested in an Instron tensile machine to assess the mechanical performance of these repairs. With an identical number of strands across the repair site, the gap formation and ultimate forces of the embedded cross-stitch method were statistically greater than those of the cross-stitch and modified Halsted methods. The embedded cross-stitch method also had significantly greater stiffness and energy to failure than the cross-stitch method. The embedded cross-stitch method, with little suture exposure on the tendon and sufficient strength, presents an alternative to the current cross-stitch peripheral repair.  相似文献   

6.
The purpose of this study was to evaluate the tensile strength of six peripheral circumferential suture techniques, using a variable number of suture strands. Transverse lacerations were made in 184 fresh frozen canine flexor profundus tendons and repaired using only a 6-0 Prolene circumferential suture. The six running suture techniques were: Simple, Simple-locking, Lembert, Halsted, Cross-stitch and Lin-locking, and 6, 10, 14, and 20 suture strands were used. For each technique, the tensile strength gradually increased with the increased number of suture strands. The tensile strength of the Lin-locking technique (19–34 N) was greater than that of the other techniques, followed by Cross-stitch (16–33 N), Halsted (10–25 N), Lembert (8–23 N), Simple (6–12 N), and Simple-locking (5–8 N). The Lin-locking had the best holding power, but it was technically the most complicated to place. The Cross-stitch had good tensile strength values. The Simple and the Simple-locking had the lowest tensile strengths. From the viewpoints of tensile strength and technical skill, the Cross-stitch may be preferable to other suture techniques.  相似文献   

7.
We evaluated the effects of two types of supplementary core sutures on the tensile properties and resistance to gap formation of flexor digitorum profundus (FDP) tendon-bone repairs. Forty-five human cadaver FDP tendons were sharply released from their insertion sites and repaired to bone utilizing one of three repair techniques: four-strand modified Becker core suture (Becker only), modified Becker plus a figure-of-eight supplementary core suture (Becker plus figure-of-eight), and modified Becker plus a supplementary core suture using a bone anchor (Becker plus anchor). Ultimate (maximum) force did not differ between repair groups. However, addition of a supplementary suture significantly increased repair-site stiffness and the 1, 2 and 3 mm gap forces, while decreasing the gap at 20 N compared to the Becker only suture (P<0.05). The only difference between the two supplementary suture groups was that the Becker plus anchor group had increased stiffness compared to the Becker plus figure-of-eight group. In conclusion, a supplementary figure-of-eight suture and a supplementary suture using a bone anchor provide enhanced resistance to gap formation for FDP tendon-bone repairs.  相似文献   

8.
BACKGROUND: Augmenting the strength of Achilles tendon repairs may allow for earlier active rehabilitation with less risk of adhesion formation and re-ruptures, leading to quicker and stronger healing. Building upon previous research that has (1) demonstrated strength gains in Achilles repairs upon addition of simple running epitenon sutures, and (2) shown the cross-stitch epitenon suture to be stronger than the simple running stitch in flexor tendons of the hand, this study compares use of these epitenon sutures in the Achilles tendon. MATERIALS AND METHODS: Ruptures were simulated in 7 matched pairs of fresh frozen human Achilles tendons and repaired with the two-tailed Krakow locking loop core technique using No. 2 nonabsorbable, braided, polyester suture. From each pair, one specimen was randomly selected to also receive the epitenon cross-stitch, the other receiving the simple running stitch. All epitenon repairs employed 4-0 nylon suture. Repaired tendons were loaded in tension to the point of failure on a Materials Testing Machine (MTS). RESULTS: Tendon repair augmented with the cross-stitch displayed a significant, 53% greater failure strength than those repaired with the simple running stitch. Increases in initial stiffness and resistance to 2-mm gap formation in the cross-stitch specimens were 3.1% and 3.6%, respectively. CONCLUSION: Gapping resistance and initial stiffness in Achilles tendon repairs were comparable between the cross-stitch and simple running stitch, but the cross-stitch significantly improved failure strength. CLINICAL RELEVANCE: Greater failure strength may translate clinically to lower rates of re-rupture and earlier mobilization following Achilles tendon repair.  相似文献   

9.
PURPOSE: We introduce 2 interlocking circumferential flexor tendon suture techniques: the interlocking cross-stitch and the interlocking horizontal mattress repair and biomechanically tested them against 2 commonly used methods. METHODS: Thirty-two deep digital flexor tendons harvested from sheep hindlimbs were transected sharply. These were repaired without a core suture using 4 different circumferential repair techniques: group 1, simple running; group 2, cross-stitch; group 3, interlocking cross-stitch; group 4, interlocking horizontal mattress. All tendons were tested to failure at a distraction rate of 20 mm/min. Load to 2-mm gap formation, stiffness, load to failure, and method of failure all were assessed. RESULTS: The mean load to 2-mm gap formation was 22.8, 20.7, 20.0, and 26.1 N for groups 1, 2, 3, and 4, respectively. The mean stiffness was 7.6, 8.1, 8.7, and 10.1 N/mm, and the mean load to failure was 30.9, 42.1, 49, and 52.9 N for groups 1, 2, 3, and 4, respectively. There was no statistically significant difference between groups 2 and 3. Group 4, however, was statistically better than the others in all measured parameters (except group 3 in load to failure). CONCLUSIONS: The interlocking horizontal mattress was the best performer overall, with statistically greater loads to failure, 2-mm gap formation, and stiffness. This technique could be considered for use in any patient likely to begin an early postoperative finger mobilization program.  相似文献   

10.
We performed an experimental study to evaluate the mechanical properties of polyvinylidene fluoride sutures and to compare their use with that of standard polypropylene sutures for the circumferential, epitendinous suture of a flexor tendon repair. Polyvinylidene fluoride sutures had a smaller suture diameter, a greater knot pull strength and less delayed extension when under creep testing, than polypropylene sutures. Tendons repaired using polyvinylidene fluoride sutures had significantly greater gap and breaking strengths than those repaired using polypropylene sutures.  相似文献   

11.
Early tenorrhaphy mobilization increases repair site strength and decreases adhesions. Preliminary unpublished data suggest that early active mobilization improves clinical outcome compared with traditional passive motion protocols. We loaded cadaver flexor profundus tendon repairs to 8.0 kg (78.4 N) for up to 5,000 cycles to simulate the loads and cycle number of our active flexor tendon rehabilitation protocol. 3-0 Ethibond (Ethicon, Somerville, NJ) and 6-0 Prolene (Surgi-pro; US Surgical, Norwalk, CT) were used for core and peripheral sutures, respectively. Four different groups were tested: 2-strand Tajima core suture with either a running interlocking (2R) or a Silfverski?ld cross-stitch (2S) peripheral suture and 4-strand Tajima plus horizontal mattress core suture with either a running interlocking (4R) or a Silfverski?ld peripheral suture (4S). Repairs failed in the suture midsubstance or at the knot. There was considerable variability within groups and no significant difference in the number of cycles to failure between the 2R, 4R, and 2S repairs, which failed after 2 +/- 2, 304 +/- 249, and 560 +/- 987 cycles, respectively. All 4S repairs were intact after 5,000 cycles. Our data suggest that flexor tenorrhaphy with the 4S repair can withstand the cyclic loads we estimate would be present during an active rehabilitation protocol.  相似文献   

12.
The objectives of this cadaveric study were 2-fold: to determine the effect of different locking configurations on the cyclical fatigue strength of flexor tendon repairs and to assess the differences between each repair when a 3-0 or 4-0 suture is used. One hundred twenty flexor digitorum profundus tendons were cut and repaired using nonlocked, simple locked, and cross-stitch locked variations of 2- and 4-strand flexor tendon repairs. Using an incremental cyclical loading protocol we performed 10 trials of each repair with both 3-0 and 4-0 sutures and analyzed the number of Newton-cycles to failure using a 3-way ANOVA. The use of a 3-0 suture led to a 2- to 3-fold increase in fatigue strength in all repairs tested and the fatigue strength of the 4-strand repairs was significantly greater than the 2-strand repairs. All repairs performed with 4-0 suture failed by suture rupture. Of the 3-0 suture repairs, the three 2-strand repairs and the 4-strand cross-stitch locked repair failed by suture rupture. In contrast, 6 of 10 of the 4-strand simple locked and nonlocked repairs failed by suture pullout. There was no significant difference in fatigue strength between the 2 locked and the nonlocked 2-strand repairs using either 3-0 or 4-0 suture. There also was no significant difference in holding capacity or fatigue strength between the simple locked or nonlocked 4-strand repairs. However, the 4-strand cross-stitch locked repair with a 3-0 suture had significantly improved fatigue strength and holding capacity compared with the other repairs tested. Based on the consistently inferior biomechanical performance of 4-0 suture, we recommend that 3-0 suture be considered for 2- or 4-strand tendon repairs when early active motion is planned. The orientation of the transverse and longitudinal components of simple locked repairs did not significantly influence their holding capacity or fatigue strength. The cross-stitch type of locked repair provides better holding capacity and fatigue strength compared with simple locked or nonlocked 4-stranded flexor tendon repairs.  相似文献   

13.
The decision to treat zone II partially lacerated flexor tendons is challenging, because there can be justification for either repair or no repair, depending on the surgeon's assessment of the strength of the residual intact portion of the tendon. In this study tensile properties of various repair techniques were compared. Cadaveric human flexor tendons (n = 118) were lacerated to 75% of their cross-section and repaired with either a core suture method (Kessler, modified Kessler, Savage, Lee, augmented Becker, or Tsuge all finished with a circumferential running suture), an epitendinous suture alone (circumferential or partial), or the tendons were left unrepaired. Among the core suture methods there was no significant difference (p >.05) in maximum failure force (overall mean, 211.2 N; SD, 53.2) or force to produce a 1.5-mm gap (74.1 N; SD, 49.7). Likewise there was no significant difference (p >.05) in tendon stiffness (41.0 N/mm; SD, 14.0) or resistance to gap formation (52.3 N/mm; SD, 23.1). In comparison, repairs without the core suture, including unrepaired tendons, were significantly weaker (144.7 N, p <.001) and had a marginally lower stiffness (p =.04) but had a similar resistance to gap formation (43.5 N/mm).  相似文献   

14.
四种与Kessler相关的屈肌腱缝合方法的生物力学研究   总被引:1,自引:1,他引:0  
目的 研究四种与Kessler相关的屈肌腱缝合方法 对肌腱修复抗张强度的影响.方法 采用新鲜猪后肢跖深屈肌腱,将40根肌腱分为4组,每组10根,横行切断,以Kessler法、DoubleKessler法、Running suture法、Kessler+Running suture法缝合.检测缝合后肌腱2mm间隙形成的负荷、最大抗张强度,采用ANOVA法进行统计分析.结果 对于肌腱的横断伤,最大抗张强度DoubleKessler法Kessler+Running suture法Kessler法Running suture法. 2mm间隙形成的负荷Kessler+Running suture法Double Kessler法Rumming suture法Kessler法.结论 肌腱横行损伤修复时,采用强生3-0编织缝合线,Kessler+Running suture法能够满足临床早期功能锻炼的强度要求.  相似文献   

15.
The purpose of this study was to compare two sutures; a knotted polydioxane with a knotless barbed in a 4-strand Kirchmayr-Kessler suture technique. Human flexor digitorum tendons were separated into four groups. Group 1 ?C polydioxane; Group 2 - barbed suture; Group 3 and 4 ?C same as group 1 and 2 with an additional peripheral running suture. In each group the repaired tendons were subjected to linear and cyclical loads. No difference in maximum tensile strength after linear and cyclical force could be detected between the knotted polydioxane suture and the knotless barbed suture. On linear force tests an additional circumferential repair increased the maximum tensile strength of both sutures. Cyclical force loading did not lead to a reduction of maximum strength. Following linear and cyclical loading the 4-strand barbed suture achieved maximum tensile strengths comparable to the 4-strand repair using the polydioxane suture. Barbed suture repair may offer the advantage of knotless suture techniques.  相似文献   

16.
Ederer  I. A.  Nusche  A.  Daigeler  A.  B&#;sch  C. 《Trauma und Berufskrankheit》2018,20(3):171-176
The aim of acute flexor tendon repair is to establish a strong and stable suture, which enables a smooth gliding of the tendon and early mobilization to prevent postoperative adhesion formation. This is especially important in fingers which have fibrous tendon sheaths. The evolution of different suture techniques in the past decades provides an abundance of surgical options for primary flexor tendon repair. In vitro studies have shown that multistrand core sutures have enhanced biomechanical properties compared to two-strand core sutures. This achievement, however, was not demonstrated in clinical studies as there was no statistically significant difference when looking at the outcomes of rupture rate and function between two-strand and multistrand core sutures. The published literature supports the use of a strong core suture and circumferential epitendinous suture to minimize complications; however, so far there has not been a consensus on the optimal suture technique or material for primary flexor tendon repair.  相似文献   

17.
OBJECTIVE: Flexor tendon repair by direct suture, providing tendon function and mechanical properties and allowing postoperative active extension and flexion. INDICATIONS: Flexor tendon laceration in all zones, when primary healing and a good functional outcome can be expected. CONTRAINDICATIONS: Florid and chronic infection. Lack of skill, instruments, or manpower. Tension-free suture is not feasible. Severe soft-tissue problems. Mantero suture in case of coexistent artery injury. SURGICAL TECHNIQUE: Hand surgical incisions and approach to the tendon. Opening of the tendon sheath in the region of oblique pulley. A four-strand core suture consisting of two locked two-strand sutures and a circumferential epitendon cross-stitch suture are performed. Lacerations in zone I with a tendon stump shorter than 1 cm require a Mantero suture and avulsions require a pull-out suture technique. POSTOPERATIVE MANAGEMENT: Active flexion and active extension in a dorsal wrist cast. RESULTS: The clinical outcome studies after repair of zone II flexor tendon injuries using a multiple-strand suture technique describe 69-96% excellent and good results.  相似文献   

18.
PURPOSE: The purpose of this study was to determine whether increasing the size of the locking loop increased the repair strength of the cruciate 4-strand suture technique and to quantify the biomechanical properties that various peripheral suture techniques provide in the cruciate 4-strand suture technique. METHODS: Fifty-six deep flexor tendons harvested from adult sheep hind limbs were divided randomly into 7 groups of 8. Four groups were repaired using the cruciate core technique without a peripheral suture. The locking loops were set using 10%, 25%, 33%, or 50% of the tendon width and loaded to failure using a distraction rate of 20 mm/min. The 3 groups of tendons then were repaired by using the established optimal locking loop size. These 3 groups were combined with a simple running, cross-stitch, or the interlocking horizontal mattress (IHM) peripheral suture. Repairs were tested to failure and the load at a 2-mm gap, load at failure, and stiffness were determined for all samples. RESULTS: Repairs with locking loops of 25% had the greatest biomechanical properties with load to 2-mm gap formation, load to failure, and stiffness of 10 N, 46.3 N, and 3.9 N/mm, respectively. Those with 33%, 50%, and 10% locking loops followed. Repairs with 10% locking loops failed owing to the suture cut out of the tendon. All other groups failed because of suture breakage. By using the cruciate core technique with a 25% locking loop the IHM/cruciate combination was markedly better than both the cross-stitch/cruciate and simple running/cruciate combinations. CONCLUSIONS: The ideal-sized bite of the locking loops for the cruciate repair is 25% of the tendon's width. Peripheral sutures are vital to the biomechanical properties of the repair. The IHM peripheral suture technique provided the greatest improvement in biomechanical properties.  相似文献   

19.
A method of evaluating flexor tendon repair techniques with the use of cyclic testing is presented. This type of evaluation complements the presently used load-to-failure tests by providing more detailed information about gap formation at the repair site. During load-to-failure testing in this study, core sutures alone demonstrated initial gap formation at 0.85 kg tensile force or more; yet on cyclic testing all techniques demonstrated gap formation of 1.9 mm or greater at 0.5 kg tensile force. Thus cyclic testing demonstrated gap formation not readily apparent on load-to-failure testing. An epitenon stitch placed circumferentially around the laceration site added strength in both load-to-failure and cyclic tests, and significantly reduced gap formation regardless of the core suture technique.  相似文献   

20.
BACKGROUND: Recent evidence that early, active mobilization protocols after Achilles tendon repairs increase recovery speed and strength make operative repair strength critical to positive outcomes after Achilles tendon ruptures. While previous research has focused on core (tendon proper) repair techniques, no previous literature has reported testing of core repairs augmented with epitenon sutures, which have been shown to increase the strength of repairs of flexor tendons of the hand. METHODS: Five matched pairs of fresh frozen human Achilles tendons were tested with and without the addition of an epitenon suture to the core repair suture. All specimens were repaired using a No. 2 Ethibond Krakow locking loop core suture. The epitenon suture was added to one tendon randomly chosen from each pair, using a 4-0 nylon suture. All specimens were mounted on an MTS testing machine (MTS Systems Corp., Eden Prairie, MN) and loaded to failure, which was defined as a 1-cm gap formation. RESULTS: The addition of epitenon sutures significantly increased the force necessary to produce a 2-mm gap as compared to core sutures alone by 74%, and it increased the average load to failure by 119%. Also, initial tendon stiffness was 173% greater in tendons reinforced with epitenon sutures. CONCLUSIONS: This study demonstrates that greater resistance to gap formation, approximation of tissue ends, and tensile strength were achieved by the addition of an epitenon suture. Clinical relevance may improve healing by decreased gap formation at the repair site and a lower risk of adhesion formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号