首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The inward rectifier K+ current (IK1) plays an important role in terminal repolarization and stabilization of the resting potential in cardiac cells. Although IK1 was shown to be sensitive to changes in intracellular Ca2+ concentration ([Ca2+]i), the nature of this Ca2+ sensitivity—in spite of its deep influence on action potential morphology—is controversial. Therefore, we aimed to investigate the effects of a nonadrenergic rise in [Ca2+]i on the amplitude of IK1 in canine and human ventricular myocardium and its consequences on cardiac repolarization. IK1, defined as the current inhibited by 10 μM Ba2+, was significantly increased in isolated canine myocytes following a steady rise in [Ca2+]i. Enhanced IK1 was also observed when [Ca2+]i was not buffered by ethylene glycol tetraacetic acid, and [Ca2+]I transients were generated. This [Ca2+]i-dependent augmentation of IK1 was largely attenuated after inhibition of CaMKII by 1 μM KN-93. Elevation of [Ca2+]o in multicellular canine and human ventricular preparations resulted in shortening of action potentials and acceleration of terminal repolarization. High [Ca2+]o enhanced the action potential lengthening effect of the Ba2+-induced IK1 blockade and attenuated the prolongation of action potentials following a 0.3-μM dofetilide-induced IKr blockade. Blockade of IKs by 0.5 μM HMR-1556 had no significant effect on APD90 in either 2 mM or 4 mM [Ca2+]o. It is concluded that high [Ca2+]i leads to augmentation of the Ba2+-sensitive current in dogs and humans, regardless of the mechanism of the increase. This effect seems to be at least partially mediated by a CaMKII-dependent pathway and may provide an effective endogenous defense against cardiac arrhythmias induced by Ca2+ overload.  相似文献   

2.
We examined the effects of redox modulation on single membrane-permeabilized fibre segments from the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of adult rats to determine whether the contractile apparatus was the redox target responsible for the increased contractility of muscles exposed to low concentrations of H2O2. The effects of H2O2 on maximum Ca2+-activated force were dose-dependent with 30 min exposure to 5 mM H2O2 causing a progressive decrease by 22 ± 3 and 13 ± 2% in soleus and EDL permeabilized muscle fibres, respectively. Lower concentrations of exogenous H2O2 (100 M and 1 mM) had no effect on maximum Ca2+-activated force. Subsequent exposure to the reductant dithiothreitol (DTT, 10 mM, 10 min) fully reversed the H2O2-induced depression of force in EDL, but not in soleus muscle fibres. Incubation with DTT alone for 10 min did not alter Ca2+-activated force in either soleus or EDL muscle fibres. The sensitivity of the contractile filaments to Ca2+ (pCa50) was not altered by exposure to any concentration of exogenous H2O2. However, all concentrations of H2O2 diminished the Hill coefficient in permeabilized fibres from the EDL muscle, indicating that the cooperativity of Ca2+ binding to troponin is altered. H2O2 (5 mM) did not affect rigor force, which indicates that the number of crossbridges participating in contraction was not reduced. In conclusion, H2O2 may reduce the maximum Ca2+ activated force production in skinned muscle fibres by decreasing the force per crossbridge.  相似文献   

3.
 We studied the effects of oxygen free radicals on the ATP-sensitive potassium channel (KATP channel) of guinea-pig ventricular myocytes. Single KATP channel currents were recorded from inside-out patches in the presence of symmetrical K+ concentrations (140 mM in both bath and pipette solutions). Reaction of xanthine oxidase (0.1 U/ml) on hypoxanthine (0.5 mM) produced superoxide anions (·O2 -) and hydrogen peroxide (H2O2). Exposure of the patch membrane to ·O2 - and H2O2 increased the opening of KATP channels, but this activation was prevented by adding 1 μM glibenclamide to the bath solution. In the presence of ferric iron (Fe3+: 0.1 mM), the same procedure produced hydroxyl radicals (·OH) via the iron-catalysed Haber-Weiss reaction. ·OH also activated KATP channels; however, this activation could not be prevented by, even very high concentrations of glibenclamide (10 μM). These different effects of glibenclamide suggest that the mode of action of these oxygen free radicals on KATP channels is different and that ·OH is more potent than ·O2 -/H2O2 in activating KATP channels in the heart. Received: 14 July 1998 / Received after revision: 5 September 1998 / Accepted: 14 September 1998  相似文献   

4.
Recent studies have demonstrated the importance of large-conductance Ca2+-activated K+ (BK) channels in detrusor smooth muscle (DSM) function in vitro and in vivo. However, in-depth characterization of human native DSM single BK channels has not yet been provided. Here, we conducted single-channel recordings from excised patches from native human DSM cells. Inside-out and outside-out recordings in high K+ symmetrical solution (containing 140 mM KCl and ~300 nM free Ca2+) showed single-channel conductance of 215–220 pS, half-maximum constant for activation of ~+75 to +80 mV, and low probability of opening (P o) at +20 mV that increased ~10-fold at +40 mV and ~60-fold at +60 mV. Using the inside-out configuration at +30 mV, reduction of intracellular [Ca2+] from ~300 nM to Ca2+-free decreased the P o by ~85 %, whereas elevation to ~800 nM increased P o by ~50-fold. The BK channel activator NS1619 (10 μM) enhanced the P o by ~10-fold at +30 mV; subsequent application of the selective BK channel inhibitor paxilline (500 nM) blocked the activity. Changes in intracellular [Ca2+] or the addition of NS1619 did not significantly alter the current amplitude or single-channel conductance. This is the first report to provide biophysical and pharmacological profiles of native human DSM single BK channels highlighting their importance in regulating human DSM excitability.  相似文献   

5.
We recently showed dihydropyridine- and voltage-sensitive Ca2+ entry in cultured parathyroid cells from patients with secondary hyperparathyroidism. To determine whether normal parathyroid cells have a similar extracellular Ca2+ entry system, cells were isolated from normal (non-hyperplastic) human parathyroid glands. Fluorescence signals related to the cytoplasmic Ca2+ concentration ([Ca2+]I) were examined in these cells. Cells loaded with fluo-3/AM showed a transient increase in fluorescence (Ca2+ transient) following a 10-s exposure to a 150 mM K+ solution in the presence of millimolar concentrations of external Ca2+. The Ca2+ transient was reduced by dihydropyridine antagonists or 0.5 mM Cd2+, but enhanced by FPL-64176, an L-type Ca2+-channel agonist. Ca2+ transients induced by the 10-s exposure to 3.0 mM extracellular Ca2+ ([Ca2+]o) were also inhibited by dihydropyridine antagonists or 0.5 mM Cd2+. These results provide the first evidence that normal human parathyroid cells express a dihydropyridine-sensitive Ca2+ entry system that may be involved in the [Ca2+]o-induced change in [Ca2+]I. This system might provide a compensatory pathway for negative feedback regulation of parathyroid hormone secretion under physiological conditions.  相似文献   

6.
The effect of Ca2+ and calcimimetics on NaCl transport was investigated in the in vitro isolated microperfused mouse thin ascending limb of Henle’s loop. In the presence of a transmural NaCl gradient, the transepithelial diffusional potential was 13.7?±?0.4 mV (n?=?17). When the Ca2+ in the bath was increased from 1.5 to 4.5 mM at 37°C, the relative permeability of Na+ to Cl? (P Na /P Cl) estimated from the diffusional voltage deflection due to the transepithelial NaCl gradient (V d) changed from 0.371?±?0.017 to 0.341?±?0.015 (n?=?10, P?<?0.0001). When the Ca2+ in the lumen was increased from 1.5 to 4.5 mM, the P Na /P Cl decreased from 0.349?±?0.013 to 0.330?±?0.013 (n?=?5, P?<?0.002). The addition of 0.1 mM neomycin and 0.2 mM gentamicin to the bath or lumen also decreased the P Na /P Cl. The same effect on P Na /P Cl of Ca2+ and calcimimetics occurred in ClC-K1 (kidney-specific chloride channel) knockout mice. The addition of 300 μg/ml protamine to the bath strongly inhibited changes to P Na /P Cl induced by basolateral Ca2+. These data indicate that ambient Ca2+ and calcimimetics inhibit Na+ transport in the thin ascending limb, which is known to occur via the paracellular shunt pathway. Our observations strongly suggest that Ca2+ is involved in the regulation of paracellular Na+ permeability in the thin ascending limbs.  相似文献   

7.
Activation of transient receptor potential melastatin 2 (TRPM2), a non-selective, Ca2+-permeable cation channel, is implicated in cell death. Channel opening is stimulated by oxidative stress, a feature of numerous disease states. The wide expression profile of TRPM2 renders it a potentially significant therapeutic target in a variety of pathological settings including cardiovascular and neurodegenerative diseases. HEK293 cells transfected with human TRPM2 (HEK293/hTRPM2) were more vulnerable to H2O2-mediated cell death than untransfected controls in which H2O2-stimulated Ca2+ influx was absent. Flufenamic acid partially reduced Ca2+ influx in response to H2O2 but had no effect on viability. N-(p-Amylcinnamoyl) anthranilic acid substantially attenuated Ca2+ influx but did not alter viability. Poly(adenosine diphosphate ribose) polymerase inhibitors (N-(6-oxo-5,6-dihydro-phenanthridin-2-yl)-N,N-dimethylacetamide, 3,4-dihydro-5-[4-(1-piperidinyl)butoxy]-1(2H)-isoquinolinone and nicotinamide) reduced Ca2+ influx and provided a degree of protection but also had some protective effects in untransfected controls. These data suggest H2O2 triggers cell death in HEK293/hTRPM2 cells by a mechanism that is in part Ca2+ independent, as blockade of channel opening (evidenced by suppression of Ca2+ influx) did not correlate well with protection from cell death. Determining the underlying mechanisms of TRPM2 activation is pertinent in elucidating the relevance of this channel as a therapeutic target in neurodegenerative diseases and other pathologies associated with Ca2+ dysregulation and oxidative stress.  相似文献   

8.
[Ca2+] transients inside the sarcoplasmic reticulum (SR) were recorded in frog skeletal muscle twitch fibers under voltage clamp using the low affinity indicator Mag Fluo 4 (loaded in its AM form) with the purpose of studying the effect on Ca2+ release of extrinsic Ca2+ buffers (i.e. BAPTA) added at high concentration to the myoplasm. When the extrinsic Ca2+ buffer is added to the myoplasm, part of the released Ca2+ binds to it, reducing the Ca2+ signal reported by a myoplasmic indicator. This, in turn, hinders the quantification of the amount of Ca2+ released. Monitoring release by measuring [Ca2+] inside the SR avoids this problem. The application of extrinsic buffers at high concentration reduced the resting [Ca2+] in the SR ([Ca2+]SR) continuously from a starting value close to 400 μM reaching the range of 100 μM in about half an hour. The effect of reducing resting [Ca2+]SR on the Ca2+ permeability of the SR activated by voltage clamp depolarization to 0 mV was studied in cells where the myoplasmic [Ca2+] ([Ca2+]myo) transients were simultaneously recorded with Rhod2. The Ca2+ release flux was calculated from [Ca2+]myo and divided by [Ca2+]SR to obtain the permeability. Peak permeability was significantly reduced, from 0.026?±?0.005 ms?1 at resting [Ca2+]SR?=?372?±?5 μM to 0.021?±?0.004 ms?1 at resting [Ca2+]SR?=?120?±?16 μM (n?=?4, p?=?0.03). The time averaged permeability was not significantly changed (0.009?±?0.003 and 0.010?±?0.003 ms?1, at the higher and lower [Ca2+]SR respectively). Once the cells were equilibrated with the high buffer intracellular solution, the change in [Ca2+]SR (Δ[Ca2+]SR) in response to voltage clamp depolarization (0 mV, 200 ms) in 20 mM BAPTA was significantly lower (Δ[Ca2+]SR?=?30.2?±?3.5 μM from resting [Ca2+]SR?=?88.8?±?13.6 μM, n?=?5) than in 40 mM EGTA (Δ[Ca2+]SR?=?72.2?±?10.4 μM from resting [Ca2+]SR?=?98.2?±?15.6 μM, n?=?4) suggesting that a Ca2+ activated component of release was suppressed by BAPTA.  相似文献   

9.
Reactive oxygen species (ROS) released from (dys-)functioning mitochondria contribute to normal and pathophysiological cellular signaling by modulating cytosolic redox state and redox-sensitive proteins. To identify putative redox targets involved in such signaling, we exposed hippocampal neurons to hydrogen peroxide (H2O2). Redox-sensitive dyes indicated that externally applied H2O2 may oxidize intracellular targets in cell cultures and acute tissue slices. In cultured neurons, H2O2 (EC50 118 μM) induced an intracellular Ca2+ rise which could still be evoked upon Ca2+ withdrawal and mitochondrial uncoupling. It was, however, antagonized by thapsigargin, dantrolene, 2-aminoethoxydiphenyl borate, and high levels of ryanodine, which identifies the endoplasmic reticulum (ER) as the intracellular Ca2+ store involved. Intracellular accumulation of endogenously generated H2O2—provoked by inhibiting glutathione peroxidase—also released Ca2+ from the ER, as did extracellular generation of superoxide. Phospholipase C (PLC)-mediated metabotropic signaling was depressed in the presence of H2O2, but cytosolic cyclic adenosine-5′-monophosphate (cAMP) levels were not affected. H2O2 (0.2–5 mM) moderately depolarized mitochondria, halted their intracellular trafficking in a Ca2+- and cAMP-independent manner, and directly oxidized cellular nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2). In part, the mitochondrial depolarization reflects uptake of Ca2+ previously released from the ER. We conclude that H2O2 releases Ca2+ from the ER via both ryanodine and inositol trisphosphate receptors. Mitochondrial function is not markedly impaired even by millimolar concentrations of H2O2. Such modulation of Ca2+ signaling and organelle interaction by ROS affects the efficacy of PLC-mediated metabotropic signaling and may contribute to the adjustment of neuronal function to redox conditions and metabolic supply. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Florian J. Gerich and Frank Funke contributed evenly to this study.  相似文献   

10.
In endothelial cells, agonist-induced Ca2+ entry takes place via the store-operated Ca2+ entry pathway and/or via channel(s) gated by second messengers. As cell stimulation leads to both a partial Ca2+ store depletion as well as the production of second messengers, these two pathways are problematic to distinguish. We showed that passive endoplasmic reticulum (ER) depletion by thapsigargin or cell stimulation by histamine activated a similar Ca2+-release-activated Ca2+ current (CRAC)-like current when 10 mM Ba2+/2 mM Ca2+ was present in the extracellular solution. Importantly, during voltage clamp recordings, histamine stimulation largely depleted the ER Ca2+ store, explaining the activation of a CRAC-like current (due to store depletion) upon histamine in Ba2+ medium. On the contrary, in the presence of 10 mM Ca2+, the ER Ca2+ content remained elevated, and histamine induced an outward rectifying current that was inhibited by Ni2+ and KB-R7943, two blockers of the Na+/Ca2+ exchanger (NCX). Both blockers also reduced histamine-induced cytosolic Ca2+ elevation. In addition, removing extracellular Na+ increased the current amplitude which is in line with a current supported by the NCX. These data are consistent with the involvement of the NCX working in reverse mode (Na+ out/Ca2+ in) during agonist-induced Ca2+ entry in endothelial cells.  相似文献   

11.
The cellular mechanisms mediating hypoxia-induced dilation of cerebral arteries have remained unknown, but may involve modulation of membrane ionic channels. The present study was designed to determine the effect of reduced partial pressure of O2, PO 2, on the predominant K+ channel type recorded in cat cerebral arterial muscle cells, and on the diameter of pressurized cat cerebral arteries. A K+-selective single-channel current with a unitary slope conductance of 215 pS was recorded from excised inside-out patches of cat cerebral arterial muscle cells using symmetrical KCl (145 mM) solution. The open state probability (NP o) of this channel displayed a strong voltage dependence, was not affected by varying intracellular ATP concentration [(ATP]i) between 0 and 100 M, but was significantly increased upon elevation of intracellular free Ca2+ concentration ([Ca2+]i). Low concentrations of external tetraethylammonium (0.1–3 mM) produced a concentration-dependent reduction of the unitary current amplitude of this channel. In cell-attached patches, where the resting membrane potential was set to zero with a high KCl solution, reduction of O2 from 21% to < 2% reversibly increased the NP o, mean open time, and event frequency of the Ca2+-sensitive, high-conductance single-channel K+ current recorded at a patch potential of + 20 mV. A similar reduction in PO2 also produced a transient increase in the activity of the 215-pS K+ channel measured in excised inside-out patches bathed in symmetrical 145 mM KCl, an effect which was diminished, or not seen, during a second application of hypoxic superfusion. Hypoxia had no effect on [Ca2+]i or intracellular pH (pHi) of cat cerebral arterial muscle cells, as measured using Ca2+- or pH-sensitive fluorescent probes. Reduced PO2 caused a significant dilation of pressurized cerebral arterial segments, which was attenuated by pre-treatment with 1 mM tetraethylammonium. These results suggest that reduced PO2 increases the activity of a high-conductance, Ca2+-sensitive K+ channel in cat cerebral arterial muscle cells, and that these effects are mediated by cytosolic events independent of changes in [Ca2+]i and pHi.  相似文献   

12.
The functional role of ligand-gated ion channels in the central nervous system depends on their relative anion–cation permeability. Using standard whole-cell patch clamp measurements and NaCl dilution potential measurements, we explored the effect of external divalent ions on anion–cation selectivity in α1-homomeric wild-type glycine receptor channels. We show that increasing external Ca2+ from 0 to 4 mM resulted in a sigmoidal increase in anion–cation permeability by 37%, reaching a maximum above about 2 mM. Our accurate quantification of this effect required rigorous correction for liquid junction potentials (LJPs) using ion activities, and allowing for an initial offset potential. Failure to do this results in a considerable overestimation of the Ca2+-induced increase in anion–cation permeability by almost three-fold at 4 mM external Ca2+. Calculations of LJPs (using activities)_ were validated by precise agreement with direct experimental measurements. External SO 4 2? was found to decrease anion–cation permeability. Single-channel conductance measurements indicated that external Ca2+ both decreased Na+ permeability and increased Cl? permeability. There was no evidence of Ca2+ changing channel pore diameter. Theoretical modeling indicates that the effect is not surface charge related. Rather, we propose that, under dilution conditions, the presence of an impermeant Ca2+ ion in the channel pore region just external to the selectivity filter tends to electrostatically retard outward movement of Na+ ions and to enhance movement of Cl? ions down their energy gradients.  相似文献   

13.
Ionomycin (IM) at 5 μM mediates the Ca2+/H+ exchange, while IM at 1 μM activates the store-operated Ca2+ entry channels (SOCs). In this study, the effects of depolarization on both pathways were examined in rat submandibular acinar cells by increasing extracellular K+ concentration ([K+]o). IM (5 μM, the Ca2+/H+ exchange) increased the intracellular Ca2+ concentration ([Ca2+]i) to an extremely high value at 151 mM [K+]o. However, with increasing [K+]o, the rates of Ca2+ entry decreased in a linear relationship. The reversal potential (E rev) for the Ca2+/H+ exchange was +93 mV, suggesting that IM (5 μM) exchanges 1 Ca2+ for 1 H+. Thus, depolarization decreases the Ca2+ influx via the Ca2+/H+ exchange because of its electrogenicity (1 Ca2+ for 1 H+). On the other hand, IM (1 μM, the SOCs) abolished an increase in [Ca2+]i at 151 mM [K+]o. With increasing [K+]o, the rate of Ca2+ entry immediately decreased linearly. The E rev for the SOC was +3.7 mV, suggesting that the SOCs are nonselective cation channels and less selective for Ca2+ over Na+ (P Ca/P Na = 8.2). Moreover, an increase in extracellular Ca2+ concentration (20 mM) enhanced the Ca2+ entry via the SOCs at 151 mM [K+]o, suggesting depolarization does not inhibit the SOCs and decreases the driving force for the Ca2+ entry. This suggests that membrane potential changes induced by a secretory stimulation finely regulate the [Ca2+]i via the SOCs in rat submandibular acinar cells. In conclusion, IM increases [Ca2+]i via two pathways depending on its concentration, the exchange of 1 Ca2+ for 1 H+ at 5 μM and the SOCs at 1 μM.  相似文献   

14.
Secophalloidin (SPH) is known to cause in cardiac myofibrils force without Ca2+ (half-maximal effect ~2 mM) followed by irreversible loss of Ca2+-activated force. At maximal Ca2+ activation, SPH increases force (half-maximal effect < 0.1 mM). We found that SPH at low concentration (0.5 mM) did not cause either force activation or force loss at pCa 8.7, but both of these effects did occur when force was activated by Ca2+. The force loss was prevented when SPH was applied during rigor or in the presence of 2,3-butanedione monoxime (85 mM). Furthermore, studying muscle in which the force was previously reduced by SPH (up to 50%) did not reveal significant changes in Ca2+ sensitivity and cooperativity of Ca2+ activation or qualitative alterations in SPH-induced changes in Ca2+-activated contraction. Data suggest that the force loss is mediated by cycling cross-bridges, and might reflect a reduction in force generated by individual cross-bridges.  相似文献   

15.
During prolonged skeletal muscle contractions free radicals are produced that may lead to fatigue. Vicinal cysteines, known as a Vicinal-thiol groups react preferentially among them depending on redox potential. Therefore, we examined the role of VT groups on the activity and conformational changes of sarcoplasmic reticulum (SR) Ca2+-ATPase (SERCA1) from rabbit skeletal muscle isolated SR, by selective oxidation–reduction of VT-groups. After Ca2+ is released from the SR to start contraction, SERCA1 pumps this cytosolic Ca2+ back to the SR leading to muscle relaxation. Phenylarsine oxide (PAO) reacts selectively with VT-proteins forming dithioarsines, which are stable but exchanges rapidly with 2,3-dimercaptopropanol (BAL). When 0.1 mM PAO is added to isolated SR, 60 and 67% inhibition of SERCA1 hydrolytic and Ca2+ uptake activities, respectively is observed. ATPase activity was fully reversible with 1 mM BAL. The SERCA1 thermal inactivation determined from isolated SR from muscle at rest showed a single transition for inactivation (T i) at 49 ± 1.12°C. In the presence of 0.1 mM PAO, SERCA1 shows two transitions at T i 34 ±0.9°C and at 27 ±1.2°C. The thermal denaturation profile of SERCA1 from muscle at rest, showed two transitions at T m = 51.5 ±1.3°C and 63 ±1.02°C related to nucleotide and Ca2+ binding domains, respectively. Whereas isolated SR obtained after a protocol of tetanic stimulation to produce muscle fatigue, showed three transitions in the SERCA1 denaturation profile similar to the effect of PAO, addition of 1 mM BAL reverted the effect of fatigue on SERCA1 denaturation profile. These results indicate a mechanism relating VT group’s oxidation to muscle fatigue.  相似文献   

16.
Previous studies have demonstrated several molecularly distinct players involved in mitochondrial Ca2+ uptake. In the present study, electrophysiological recordings on mitoplasts that were isolated from HeLa cells were performed in order to biophysically and pharmacologically characterize Ca2+ currents across the inner mitochondrial membrane. In mitoplast-attached configuration with 105 mM Ca2+ as a charge carrier, three distinct channel conductances of 11, 23, and 80 pS were observed. All types of mitochondrial currents were voltage-dependent and essentially depended on the presence of Ca2+ in the pipette. The 23 pS channel exhibited burst kinetics. Though all channels were sensitive to ruthenium red, their sensitivity was different. The 11 and 23 pS channels exhibited a lower sensitivity to ruthenium red than the 80 pS channel. The activities of all channels persisted in the presence of cylosporin A, CGP 37187, various K+-channel inhibitors, and Cl? channel blockers disodium 4,4′-diisothiocyanatostilbene-2,2′-disulfonate and niflumic acid. Collectively, our data identified multiple conductances of Ca2+ currents in mitoplasts isolated from HeLa cells, thus challenging the dogma of only one unique mitochondrial Ca2+ uniporter.  相似文献   

17.
 This study uses a new strategy to investigate the hypothesis that, of the various Ca2+ channels expressed by a neurosecretory cell, a given channel subtype is coupled more tightly to the exocytotic apparatus than others. The approach is based on the prediction that the degree of inhibition of the secretory response by various Ca2+ channel blockers will differ at low (0.5 mM) and high (5 mM) extracellular Ca2+ concentrations ([Ca2+]o). So, at low [Ca2+]o the K+-evoked catecholamine release from superfused bovine chromaffin cells was depressed 60–70% by 2 μM ω-agatoxin IVA (P/Q-type Ca2+ channel blockade), by 3 μM ω-conotoxin MVIIC (N/P/Q-type Ca2+ channel blockade), or by 3 μM lubeluzole (N/P/Q-type Ca2+ channel blockade); in high [Ca2+]o these blockers inhibited the responses by only 20–35%. At 1–3 μM ω-conotoxin GVIA (N-type Ca2+ channel blockade) or 3 μM furnidipine (L-type Ca2+ channel blockade), secretion was inhibited by 30 and 50%, respectively; such inhibitory effects were similar in low or high [Ca2+]o. Combined furnidipine plus ω-conotoxin MVIIC, ω-agatoxin IVA or ω-conotoxin GVIA exhibited additive blocking effects at both Ca2+ concentrations. The results suggest that Q-type Ca2+ channels are coupled more tightly to exocytotic active sites, as compared to L-type channels. This hypothesis if founded in the fact that external Ca2+ that enters the cell through a Ca2+ channel located near to chromaffin vesicles will saturate the K+ secretory response at both [Ca2+]o, i.e. 0.5 mM and 5 mM. In contrast, Ca2+ ions entering through more distant channels will be sequestered by intracellular buffers and, thus, will not saturate the secretory machinery at lower [Ca2+]o. Received: 23 September 1997 / Received after revision: 29 October 1997 / Accepted: 30 October 1997  相似文献   

18.
 Although acidosis induces vasodilation, the vascular responses mediated by large-conductance Ca2+-activated K+ (KCa) channels have not been investigated in coronary artery smooth muscle cells. We therefore investigated the response of porcine coronary arteries and smooth muscle cells to acidosis, as well as the role of KCa channels in the regulation of muscular tone. Acidosis (pH 7.3–6.8), produced by adding HCl to the extravascular solution, elicited concentration-dependent relaxation of precontracted, endothelium-denuded arterial rings. Glibenclamide (20 μM) significantly inhibited the vasodilatory response to acidosis (pH 7.3-6.8). Charybdotoxin (100 nM) was effective only at pH 6.9–6.8. When we exposed porcine coronary artery smooth muscle cells to a low-pH solution, KCa channel activity in cell-attached patches increased. However, pretreatment of these cells with 10 or 30 μM O, O′-bis(2-aminophenyl)ethyleneglycol-N,N,N′,N′-tetraacetic acid tetrakis(acetoxymethyl)ester (BAPTA-AM), a Ca2+ chelator for which the cell membrane is permeable, abolished the H+-mediated activation of KCa channels in cell-attached patches. Under these circumstances H+ actually inhibited KCa channel activity. When inside-out patches were exposed to a [Ca2+] of 10–6 M [adjusted with ethyleneglycolbis(β-aminoethylester)-N,N,N′,N′-tetraacetic acid (EGTA) at pH 7.3], KCa channels were activated by H+ concentration dependently. However, when these patches were exposed to a [Ca2+] of 10–6 M adjusted with BAPTA at pH 7.3, H+ inhibited KCa channel activity. Extracellular acidosis had no significant direct effect on KCa channels, suggesting that extracellular H+ exerts its effects after transport into the cell, and that KCa channels are regulated by intracellular H+ and by cytosolic free Ca2+ modulated by acute acidosis. These results indicate that the modulation of KCa channel kinetics by acidosis plays an important role in the determination of membrane potential and, hence, coronary arterial tone. Received: 20 January 1998 / Received after revision: 9 April 1998 / Accepted: 22 April 1998  相似文献   

19.
Excitatory, glutamate-activated single channel currents were measured in outside-out patches of crayfish muscle. The open time of single channel openings, and the durations and rates of bursts were evaluated. These kinetic parameters were not appreciably affected by replacement of extracellular Na+ by Li+ or choline. Changes in extracellular Ca2+ concentration Cao also did not influence the duration of single openings. However the mean burst duration decreased for Cao<13.5 mM and the rate of bursts declined with a power of almost 2 in low Cao. At Cao<1 mM practically no channel openings were observed in presence of glutamate. In order to exclude more rapid desensitization of the glutamate receptors in low Cao as the cause of disappearance of channel openings, glutamate was applied in short pulses with a liquid-filament switch. In 0 Cao also a glutamate pulse did not trigger channel openings. In presence of 13.5 mM Cao, the inorganic Ca-channel blockers La3+ and Cd2+ diminished the duration and rate of bursts of channel openings in a similar manner as low Cao. The effects of low Cao and of Cd2+ were tested also on quantal postsynaptic currents, EPSCs, which were recorded through a perfused macro-patch-clamp electrode. At 1.4 mM Cao in the perfused electrode tip, spontaneous EPSCs were reduced at least by a factor of 4, and elicited EPSCs by a factor of 16. Application of Cd2+ had similarly strong effects on the EPSCs. Also the decay of EPSCs was shortened substantially in 1.4 mM Cao or 5 mM Cd2+.The inhibitory Cl-channel of crayfish muscle, activated by glutamate or GABA, also was studied in outside-out patches. The openings of this channel persisted in 0 Cao solutions; the block of channel openings in low Cao thus is a specific property of the excitatory channel. The action of Cao on the excitatory channel may be described as that of a cofactor to glutamate. A possible reaction scheme is proposed.Supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 220  相似文献   

20.
We investigated the effect of interleukin-1β (IL-1β) on activity of an inwardly rectifying K+ channel in cultured human proximal tubule cells (RPTECs), using the patch-clamp technique and Fura-2 Ca2+ imaging. IL-1β (15 pg/ml) acutely reduced K+ channel activity in cell-attached patches. This effect was blocked by the IL-1 receptor antagonist (20 ng/ml), an inhibitor of phospholipase C, neomycin (300 μM), and an inhibitor of protein kinase C (PKC), GF109203X (500 nM). The Fura-2 Ca2+ imaging revealed that IL-1β increased intracellular Ca2+ concentration even after removal of extracellular Ca2+, which was blocked by an inhibitor of inositol 1,4,5-trisphosphate receptors, 2-aminoethoxydiphenyl borate (2-APB, 1 μM). Moreover, IL-1β suppressed channel activity in the presence of 2-APB without extracellular Ca2+. These results suggest that IL-1β suppresses K+ channel activity in RPTECs through binding to its specific receptor and activation of the PKC pathway even though intracellular Ca2+ does not increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号