首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Nijmegen breakage syndrome gene product (Nbs1) was shown recently to associate in vivo with the Mre11 and Rad50 proteins, which play pivotal roles in eukaryotic DNA double-strand break repair, meiotic recombination, and telomere maintenance. We show in this work that the triple complex of recombinant Nbs1, Mre11, and Rad50 proteins binds cooperatively to DNA and forms a distinct protein-DNA species. The Mre11/Rad50/Nbs1 complex displays several enzymatic activities that are not seen without Nbs1, including partial unwinding of a DNA duplex and efficient cleavage of fully paired hairpins. Unwinding and hairpin cleavage are both increased by the presence of ATP. On nonhairpin DNA ends, ATP controls a switch in endonuclease specificity that allows Mre11/Rad50/Nbs1 to cleave a 3'-protruding strand at a double-/single-strand transition. Mutational analysis demonstrates that Rad50 is responsible for ATP binding by the complex, but the ATP-dependent activities are expressed only with Nbs1 present.  相似文献   

2.
The process of antigen receptor gene rearrangement, V(D)J recombination, involves DNA cleavage by the RAG-1 and RAG-2 proteins. Cleavage generates covalently sealed (hairpin) DNA ends, termed coding ends, which must be opened by an endonuclease prior to joining. Resolution of these hairpin ends requires the activity of the DNA-dependent protein kinase (DNA-PK), a protein kinase whose specific role is yet undetermined. It has been suggested that phosphorylation of one or both RAG proteins by DNA-PK is required to activate or recruit the hairpin-opening nuclease. Furthermore, very recent work has shown that RAG proteins themselves can open hairpins. These data raise the possibility that DNA-PK-mediated phosphorylation of the RAG proteins could regulate the hairpin opening reaction. To test this hypothesis, we constructed mutant versions of RAG-1 and RAG-2 in which all four DNA-PK consensus phosphorylation sites were removed by site-directed mutagenesis. Our data provide conclusive evidence that phosphorylation of these conserved serine/threonine residues is not required for hairpin opening or joining of V(D)J recombination intermediates.  相似文献   

3.
In addition to creating the DNA double strand breaks that initiate V(D)J recombination, the RAG proteins are thought to play a critical role in the joining phase of the reaction. One such role, suggested by in vitro studies, might be to ensure the structural integrity of postcleavage complexes, but the significance of such a function in vivo is unknown. We have identified RAG1 mutants that are proficient in DNA cleavage but defective in their ability to interact with coding ends after cleavage and in the capture of target DNA for transposition. As a result, these mutants exhibit severe defects in hybrid joint formation, hairpin coding end opening, and transposition in vitro, and in V(D)J recombination in vivo. Our results suggest that the RAG proteins have an architectural function in facilitating proper and efficient V(D)J joining, and a protective function in preventing degradation of broken ends prior to joining.  相似文献   

4.
Mathew SS  Bridge E 《Virology》2008,374(1):11-22
Adenovirus (Ad) infections stimulate the activation of cellular DNA damage response and repair pathways. Ad early regulatory proteins prevent activation of DNA damage responses by targeting the MRN complex, composed of the Mre11, Rad50 and Nbs1 proteins, for relocalization and degradation. In the absence of these viral proteins, Mre11 colocalizes with viral DNA replication foci. Mre11 foci formation at DNA damage induced by ionizing radiation depends on the Nbs1 component of the MRN complex and is stabilized by the mediator of DNA damage checkpoint protein 1 (Mdc1). We find that Nbs1 is required for Mre11 localization at DNA replication foci in Ad E4 mutant infections. Mre11 is important for Mdc1 foci formation in infected cells, consistent with its role as a sensor of DNA damage. Chromatin immunoprecipitation assays indicate that both Mre11 and Mdc1 are physically bound to viral DNA, which could account for their localization in viral DNA containing foci. Efficient binding of Mre11 to E4 mutant DNA depends on the presence of Nbs1, and is correlated with a significant E4 mutant DNA replication defect. Our results are consistent with a model in which physical interaction of Mre11 with viral DNA is mediated by Nbs1, and interferes with viral DNA replication.  相似文献   

5.
During B and T lymphocyte development, immunoglobulin and T cell receptor genes are assembled from the germline V, (D) and J gene segments (Lewis, S.M., 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 56, 27-150). These DNA rearrangements, responsible for immune system diversity, are mediated by a site specific recombination machinery via recognition signal sequences (RSSs) composed of conserved heptamers and nonamers separated by spacers of 12 or 23 nucleotides (Lewis, S.M., 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 56, 27-150). Recombination occurs only between a RSS with a 12mer spacer and a RSS with a 23mer spacer (Lewis, S.M., 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Adv. Immunol. 56, 27-150). RAG1 and RAG2 proteins cleave precisely at the RSS-coding sequence border leading to flush signal ends and coding ends with a hairpin structure (Eastman, M., Leu, T., Schatz, D., 1996. Initiation of V(D)J recombination in vitro obeying the 12/23 rule. Nature 380, 85-88; Roth, D.B., Menetski, J.P., Nakajima, P.B., Bosma, M.J., Gellert, M., 1992. V(D)J recombination: broken DNA molecules with covalently sealed (hairpin) coding ends in scid mouse thymocytes. Cell 983-991: Roth, D.B., Zhu, C., Gellert. M., 1993. Characterization of broken DNA molecules associated with V(D)J recombination. Proc. Natl. Acad. Sci. USA 90, 10,788-10,792; van Gent, D., McBlane, J.. Sadofsky, M., Hesse, J., Gellert, M., 1995. Initiation of V(D)J recombination in a cell-free system. Cell 81, 925-934). Signal ends join, forming a signal joint. The hairpin coding ends are opened by a yet unknown endonuclease, and are further processed to form the coding joint (Lewis, S.M., 1994. The mechanism of V(D)J joining: lessons from molecular, immunological and comparative analyses. Ad. Immunol. 56, 27-150.) The murine scid mutation has been shown to affect coding joints, but much less signal joint formation. In this study we demonstrate that the murine scid mutation inhibits correct signal joint formation when both coding ends contain homopolymeric sequences. We suggest that this finding may be due to the function of the SCID protein as an assembly component in V(D)J recombination.  相似文献   

6.
Genetic and cytologic data from Saccharomyces cerevisiae and mammals implicate the Mre11 complex, consisting of Mre11, Rad50, and Nbs1, as a sensor of DNA damage, and indicate that the complex influences the activity of ataxia-telangiectasia mutated (ATM) in the DNA damage response. Rad50(S/S) mice exhibit precipitous apoptotic attrition of hematopoietic cells. We generated ATM- and Chk2-deficient Rad50(S/S) mice and found that Rad50(S/S) cellular attrition was strongly ATM and Chk2 dependent. The hypomorphic Mre11(ATLD1) and Nbs1(Delta)(B) alleles conferred similar rescue of Rad50(S/S)-dependent hematopoietic failure. These data indicate that the Mre11 complex activates an ATM-Chk2-dependent apoptotic pathway. We find that apoptosis and cell cycle checkpoint activation are parallel outcomes of the Mre11 complex-ATM pathway. Conversely, the Rad50(S) mutation mitigated several phenotypic features of ATM deficiency. We propose that the Rad50(S) allele is hypermorphic for DNA damage signaling, and that the resulting constitutive low-level activation of the DNA damage response accounts for the partial suppression of ATM deficiency in Rad50(S/S) Atm(-/-) mice.  相似文献   

7.
Repair of DNA double-strand breaks is essential for maintenance of genomic stability, and is specifically required for rearrangement of immunoglobulin (Ig) and T cell receptor (TCR) loci during development of the immune system. Abnormalities in these repair processes also contribute to oncogenic chromosomal rearrangements that underlie many lymphoid malignancies. Nijmegen breakage syndrome (NBS) is a rare autosomal recessive condition characterized by immunodeficiency, radiation sensitivity, and increased predisposition to lymphoid cancers bearing oncogenic Ig and TCR locus translocations. NBS patients fail to produce nibrin, a protein required for the nuclear localization and function of a DNA repair complex that includes Mre11 and Rad50. Mre11 has biochemical properties that suggest a potential role in V(D)J recombination. We studied V(D)J recombination in NBS cells in vitro and in vivo, using cell lines and peripheral blood leukocyte DNA from NBS patients. We found that NBS cells were competent to rejoin signal substrates with normal efficiency and high fidelity. Coding substrates were similarly rejoined efficiently, and coding end structures appeared normal. In B cells from NBS patients, the spectrums of IgH CDR3 regions were diverse and normally distributed. Moreover, the lengths and composition of Igκ VJ joins and IgH VDJ joins derived from NBS and normal subjects were indistinguishable. Our data indicate that nibrin plays no essential role in V(D)J recombination and is not required for the generation of an apparently diverse B cell repertoire.  相似文献   

8.
In most vertebrate species analyzed so far, the diversity of soluble or membrane-bound antigen-receptors expressed by B and T lymphocytes is generated by V(D)J recombination. During this process, the coding regions for the variable domains of antigen-receptors are created by the joining of subexons that are randomly selected from arrays of tandemly repeated V, D (sometimes) and J gene segments. This involves the site-specific cleavage of chromosomal DNA by the lymphocyte-specific recombination-activating gene (RAG)-1/2 proteins, which appear to have originated from an ancient transposable element. The DNA double-strand breaks created by RAG proteins are subsequently processed and rejoined by components of the nonhomologous DNA end-joining pathway, which is conserved in all eukaryotic organisms - from unicellular yeast up to highly complex mammalian species.  相似文献   

9.
V(D)J recombination is the process by which antibody and T‐cell receptor diversity is attained. During this process, antigen receptor gene segments are cleaved and rejoined by non‐homologous DNA end joining for the generation of combinatorial diversity. The major players of the initial process of cleavage are the proteins known as RAG1 (recombination activating gene 1) and RAG2. In this review, we discuss the physiological function of RAGs as a sequence‐specific nuclease and its pathological role as a structure‐specific nuclease. The first part of the review discusses the basic mechanism of V(D)J recombination, and the last part focuses on how the RAG complex functions as a sequence‐specific and structure‐specific nuclease. It also deals with the off‐target cleavage of RAGs and its implications in genomic instability.  相似文献   

10.
During the first meiotic prophase, numerous DNA double-strand breaks (DSB) are formed in the genome in order to initiate recombination between homologous chromosomes. The conserved Mre11 complex, formed of Mre11, Rad50 and Nbs1 (Xrs2 in Saccharomyces cerevisiae) proteins, plays a crucial role in mitotic cells for sensing and repairing DSB. In meiosis the Mre11 complex is also required for meiotic recombination. Depending on the organisms, the Mre11 complex is required for the formation of the DSB catalysed by the transesterase Spo11 protein. It then plays a unique function in removing covalently attached Spo11 from the 5′ extremity of the breaks through its nuclease activity, to allow further break resection. Finally, the Mre11 complex also plays a role during meiosis in bridging DNA molecules together and in sensing Spo11 DSB and activating the DNA damage checkpoint. In this article the different biochemical functions of the Mre11 complex required during meiosis are reviewed, as well as the consequences of Mre11 complex inactivation for meiosis in several organisms. Finally, I describe the meiotic phenotypes of several animal models that have been developed to model hypomorphic mutations of the Mre11 complex, involved in humans in some genetic instability disorders.  相似文献   

11.
V(D)J recombination occurs efficiently only between gene segments flanked by recombination signals (RSs) containing 12 and 23 base pair spacers (the 12/23 rule). A further limitation "beyond the 12/23 rule" (B12/23) exists at the TCRbeta locus and ensures Dbeta usage. Herein, we show that extrachromosomal V(D)J recombination substrates recapitulate B12/23 restriction in nonlymphoid cells. We further demonstrate that the Vbeta coding flank, the 12-RS heptamer/nonamer, and the 23-RS spacer each can significantly influence B12/23 restriction. Finally, purified core RAG1 and RAG2 proteins (together with HMG2) also reproduce B12/23 restriction in a cell-free system. Our findings indicate that B12/23 restriction of V(D)J recombination is cemented at the level of interactions between the RAG proteins and TCRbeta RS sequences.  相似文献   

12.
The RAG1 and RAG2 proteins collaborate to initiate V(D)J recombination by binding recombination signal sequences (RSSs) and making a double-strand break between the RSS and adjacent coding DNA. Like the reactions of their biochemical cousins, the bacterial transposases and retroviral integrases, cleavage by the RAG proteins requires a divalent metal ion but does not involve a covalent protein/DNA intermediate. In the transposase/integrase family, a triplet of acidic residues, commonly called a DDE motif, is often found to coordinate the metal ion used for catalysis. We show here that mutations in each of three acidic residues in RAG1 result in mutant derivatives that can bind the RSS but whose ability to catalyze either of the two chemical steps of V(D)J cleavage (nicking and hairpin formation) is severely impaired. Because both chemical steps are affected by the same mutations, a single active site appears responsible for both reactions. Two independent lines of evidence demonstrate that at least two of these acidic residues are directly involved in coordinating a divalent metal ion: The substitution of Cys for Asp allows rescue of some catalytic function, whereas an alanine substitution is no longer subject to iron-induced hydroxyl radical cleavage. Our results support a model in which the RAG1 protein contains the active site of the V(D)J recombinase and are interpreted in light of predictions about the structure of RAG1.  相似文献   

13.
The protein complex including Mre11, Rad50, and Nbs1 (MRN) functions in DNA double-strand break repair to recognize and process DNA ends as well as signal for cell cycle arrest. Amino acid sequence similarity and overall architecture make Rad50 a member of the structural maintenance of chromosome (SMC) protein family. Like SMC proteins, Rad50 function depends on ATP binding and hydrolysis. All current evidence indicates that ATP binding and hydrolysis cause architectural rearrangements in SMC protein complexes that are important for their functions in organizing DNA. In the case of the MRN complex, the functional significance of ATP binding and hydrolysis are not yet defined. Here we review the data on the ATP-dependent activities of MRN and their possible mechanistic significance. We present some speculation on the role of ATP for function of the MRN complex based on the similarities and differences in the molecular architecture of the Rad50-containing complexes and the SMC complexes condensin and cohesin.  相似文献   

14.
RAG1 and RAG2 in V(D)J recombination and transposition   总被引:1,自引:0,他引:1  
RAG1 and RAG2 are the key components of the V(D)J recombinase machinery that catalyses the somatic gene rearrangements of antigen receptor genes during lymphocyte development. In the first step of V(D)J recombination--DNA cleavage--the RAG proteins act together as an endonuclease to excise the DNA between two individual gene segments. They are also thought to be involved in the subsequent DNA joining step. In vitro, the RAG proteins catalyze the integration of the excised DNA element into target DNA completing a process similar to bacterial transposition. In vivo, this reaction is suppressed by an unknown mechanism. The individual roles of RAG1 and RAG2 in V(D)J recombination and transposition reactions are discussed based on mutation analyses and structure predictions.  相似文献   

15.
The yeast Xrs2 complex functions in S phase checkpoint regulation   总被引:6,自引:0,他引:6  
The Nbs1 complex is an evolutionarily conserved multisubunit nuclease composed of the Mre11, Rad50, and Nbs1 proteins. Hypomorphic mutations in the NBS1 or MRE11 genes in humans result in conditions characterized by DNA damage sensitivity, cell cycle checkpoint deficiency, and high cancer incidence. The equivalent complex in the yeast Saccharomyces cerevisiae (Xrs2p complex) has been implicated in DNA double-strand break repair and in telomere length regulation. Here, we find that xrs2Delta, mre11Delta, and rad50Delta mutants are markedly defective in the initiation of the intra-S phase checkpoint in response to DNA damage. Furthermore, the absence of a functional Xrs2p complex leads to sensitivity to deoxynucleotide depletion and to an inability to efficiently slow down cell cycle progression in response to hydroxyurea. The checkpoint appears to require the nuclease activity of Mre11p and its defect is associated with the abrogation of the Tel1p/Mec1p signaling pathway. Notably, DNA damage induces phosphorylation of both Xrs2p and Mre11p in a Tel1p-dependent manner. These results indicate that the Tel1p/ATM signaling pathway is conserved from yeast to humans and suggest that the Xrs2p/Nbs1 complexes act as signal modifiers.  相似文献   

16.
The bounty of RAGs: recombination signal complexes and reaction outcomes   总被引:4,自引:0,他引:4  
Summary: V(D)J recombination is a form of site‐specific DNA rearrangement through which antigen receptor genes are assembled. This process involves the breakage and reunion of DNA mediated by two lymphoid cell‐specific proteins, recombination activating genes RAG‐1 and RAG‐2, and ubiquitously expressed architectural DNA‐binding proteins and DNA‐repair factors. Here I review the progress toward understanding the composition, assembly, organization, and activity of the protein‐DNA complexes that support the initiation of V(D)J recombination, as well as the molecular basis for the sequence‐specific recognition of recombination signal sequences (RSSs) that are the targets of the RAG proteins. Parallels are drawn between V(D)J recombination and Tn5/Tn10 transposition with respect to the reactions, the proteins, and the protein‐DNA complexes involved in these processes. I also consider the relative roles of the different sequence elements within the RSS in recognition, cleavage, and post‐cleavage events. Finally, I discuss alternative DNA transactions mediated by the V(D)J recombinase, the protein‐DNA complexes that support them, and factors and forces that control them.  相似文献   

17.
V(D)J recombination is initiated by the specific binding of the recombination activating gene (RAG) complex to the heptamer and nonamer elements within recombination signal sequence (RSS). The break points associated with some chromosomal translocations contain cryptic RSSs, and mistargeting of RAG proteins to these less conserved elements could contribute to an aberrant V(D)J recombination. Recently, we found RAG-dependent recombination in the hotspots of TEL-AML1 t(12;21)(p13;q22) chromosomal translocation by an extrachromosomal recombination assay. Here, we describe using in vitro cleavage assays that RAG proteins directly bind to and introduce nicks into TEL and AML1 translocation regions, which contain several heptamer-like sequences. The cryptic nicking site within the TEL fragment was cleaved by RAG proteins essentially depending on a 12-RSS framework, and the nicking activity was enhanced synergistically by both HMGB1 and orphan nonamer-like (NL) sequences, which do not possess counterpart heptamers. In addition, we found that DNA bending stimulated by HMGB1 is indispensable for the HMGB1- and orphan NL element-dependent enhancement of RAG-mediated nicking at the cryptic 12-RSS. Collectively, we would propose the mechanism of HMGB1-dependent enhancement of RAG-mediated nicking at a cryptic RSS through enhanced DNA bending.  相似文献   

18.
A recombinase diversified: new functions of the RAG proteins   总被引:1,自引:0,他引:1  
The RAG proteins were long thought to serve merely as a nuclease, initiating recombination by cleaving DNA. Recent work has shown, however, that these proteins are essential for many steps in the recombination pathway, such as opening hairpins and joining broken DNA ends, and that they can also act as a transposase, targeting distorted DNA structures such as hairpins.  相似文献   

19.
The assembly of functional immune receptor genes via V(D)J recombination in developing lymphocytes generates DNA double-stranded breaks intermediates that are repaired by non-homologous end joining (NHEJ). This repair pathway requires the sequential recruitment and activation onto coding and signal DNA ends of several proteins, including the DNA-dependent protein kinase and the nuclease Artemis. Artemis activity, triggered by the DNA-dependent protein kinase, is necessary to process the genes hairpin-sealed coding ends but appears dispensable for the ligation of the reciprocal phosphorylated, blunt-ended signal ends into a signal joint. The DNA-dependent protein kinase is however present on signal ends and could potentially recruit and activate Artemis during signal joint formation. To determine whether Artemis plays a role during the resolution of signal ends during V(D)J recombination, we analyzed the structure of signal joints generated in developing thymocytes during the rearrangement of T cell receptor genes in wild type mice and mice mutated for NHEJ factors. These joints exhibit junctional diversity resulting from N nucleotide polymerization by the terminal nucleotidyl transferase and nucleotide loss from one or both of the signal ends before they are ligated. Our results show that Artemis participates in the repair of signal ends in vivo. Furthermore, our results also show that while the DNA-dependent protein kinase complex protects signal ends from processing, including deletions, Artemis seems on the opposite to promote their accessibility to modifying enzymes. In addition, these data suggest that Artemis might be the nuclease responsible for nucleotide loss from signal ends during the repair process.  相似文献   

20.
To investigate the molecular mechanisms of the variable (diversity) joining (V(D)J) recombination process at an endogenous gene locus, recombination-inducible cell lines were made from both bcl-2-bearing severe combined immune deficiency (scid) homozygous and scid heterozyous (s/ + ) mice by transforming pre-B cells with the temperature-sensitive Abelson murine leukemia virus (ts-Ab-MLV). These transformants can be induced to undergo immunoglobulin light-chain gene rearrangements by incubating them at the non-permissive temperature. In the case of transformed scid cells, a significant amount of hairpin coding ends are accumulated during recombination induction, but few coding joints are generated. After being shifted to the permissive temperature. however, these cells are capable of opening hairpin ends and forming coding joints. Thus, ts-Ab-MLV transformed scid cells can be readily manipulated for both recombination cleavage and end resolution. However, unlike the rapid coding joint formation in s/ + cells that have the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs), the process for resolving coding ends in scid cells is slow and error prone, and also appears to be correlated with a reduction in the RAG1/2 expression. Apparently, this process is mediated by a DNA-PK-independent pathway. The fact that the activity of this pathway can be manipulated in vitro makes it possible to delineate the mechanisms in end opening, processing and joining. Therefore, these ts-Ab-MLV transformed scid cell lines offer a model to study the molecular nature as well as the regulation of the DNA-PK-independent pathway in coding end resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号