首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
目的构建较高仿真度的6岁儿童乘员下肢有限元模型,验证6岁儿童乘员膝关节的有效性;分析在前碰撞载荷下生长板对儿童膝关节的生物力学响应及损伤机制。方法基于儿童生理结构及CT影像构建包含生长板的6岁儿童乘员下肢有限元模型,赋予相应的材料属性;参照Kerrigan等及Haut等的生物力学实验,验证模型的有效性,分析不同生长板材料属性对膝关节损伤的影响。结果通过模型仿真实验与生物力学实验曲线对比验证了模型的有效性;在膝关节区域,生长板的存在可以改变儿童乘员下肢骨折的损伤模式;不同生长板的材料属性,可以影响股骨轴向损伤力的阈值及达到损伤阈值而发生骨折的相对位置。结论所建模型得到有效验证,可用于6儿童乘员膝关节损伤生物力学响应及损伤机制的相关研究及应用。  相似文献   

2.
目的应用符合欧洲新车安全评鉴协会(the European New Car Assessment Programme,Euro NCAP)要求的6岁儿童行人有限元模型,探究不同碰撞角度对儿童头部损伤的影响。方法应用符合Euro NCAP技术公告(TB024)并且具有详细解剖学结构的6岁儿童行人有限元模型,设置4组行人-汽车碰撞仿真试验,探究不同碰撞角度下儿童头部损伤情况。人体头部质心初始位置在车的纵向中心线上,轿车初速度为40 km/h,轿车分别与人体右侧、前侧、左侧、后侧碰撞(即0°、90°、180°、270°)。比较不同碰撞角度下运动学差异和头部碰撞响应,同时分析面骨和颅骨的损伤情况。结果通过分析儿童行人头部接触力、头部质心合加速度、头部质心相对于车的合速度、头部损伤标准(head injury criterion,HIC_(15))、面骨骨折情况以及颅骨应力分布发现,背面、正面碰撞下儿童头部骨折及发生脑组织损伤的风险大于侧面碰撞,其中背面碰撞下儿童行人头部损伤风险最高,侧面碰撞下儿童行人头部损伤风险最低。结论背面碰撞下儿童行人头部损伤风险最大,研究结果对行人-汽车碰撞评估和防护装置研发具有重要的应用价值。  相似文献   

3.
目的探讨在交通事故中安全气囊点爆展开时儿童颈部约束对颅脑损伤的影响。方法基于已构建并经过有效性验证的3岁儿童头部有限元(finite element, FE)模型,采用FE方法模拟气囊点爆展开对离位(out-of-position, OOP)状态儿童乘员头部的冲击过程,研究颈部约束对交通事故中儿童颅脑响应及其损伤机制的影响。结果颈部约束的头部在受到安全气囊点爆展开的冲击之后,其运动状态与无颈部约束有很大差异,会导致儿童脑组织最大Von Mises应力明显减小,儿童颅脑损伤程度减弱。儿童头部与安全气囊距离为20、25 cm时,有颈部约束的头部脑组织最大颅内压小于没有颈部约束的头部。结论颈部约束对儿童颅脑损伤响应有较大的影响,用FE方法预测儿童颅脑损伤时应考虑颈部约束的影响。  相似文献   

4.
目的 研究自动紧急制动(autonomous emergency braking,AEB)对公交车内儿童乘员的颅脑损伤影响。 方法 使用 Prescan 软件搭建公交车 AEB 测试场景,通过仿真得到 60 km/ h 初速度下公交车 AEB 制动工况下的减速度曲线。 基于已经验证的公交车模型和具有详细解剖学头部结构的 6 岁儿童混合有限元模型,选取车内儿童乘员典型的 4 个乘坐位置,使用 LS-DYNA 软件对公交车有、无 AEB 制动工况下儿童乘员头部损伤进行仿真。 以儿童乘员头部损伤指标 HIC15 、大脑灰质处压力、脑组织 von Mises 应力及剪切应力等生物力学响应为损伤评价指标,对儿童乘员的颅脑损伤进行分析。 结果 各组仿真试验中,位置 1 和 2 前方设置挡板时,儿童乘员大脑灰质处压力超过其损伤阈值,其余各位置儿童乘员的各项损伤指标均远小于对应的损伤阈值。 结论 AEB 能有效降低公交车内儿童乘员头部碰撞损伤,公交车内位置 3 处的儿童容易发生碰撞损伤风险,位置 1、2 处设置广告牌挡板会增加儿童乘员的颅脑损伤风险。  相似文献   

5.
借助6岁儿童医用头部CT扫描图片,通过图像分析处理,提取几何参数,重构生成三维几何模型。对几何模型进行有限元前处理,构建了一个6岁儿童头部有限元模型。模型中包含颅骨、骨缝、脑脊液、大脑、小脑、脑干、脑室等各个器官,共有44 886个节点,11 675个壳单元,37 482个六面体单元。.各器官材料属性采用来自参考文献的数据。仿真分析计算中,力加载时窗为11 ms时,模型的CPU计算时长低于1 h。采用Nahum尸体实验数据与仿真结果进行对比。仿真分析结果显示:成人头部撞击时撞击压与对撞压的形成规律同样适用于儿童头部碰撞。在7 900 N力作用下,尸体头部撞击侧最大压应力为140 kPa,对撞侧最大压应力为-60 kPa,而儿童头部的值分别为220.2 kPa和-135.2 kPa;在HIC值均为775的作用下,成人头部撞击侧和对撞侧最大压应力分别为140 kPa和-60 kPa,而儿童头部的值分别为160 kPa和-89 kPa。这表明,在相同作用力或HIC值下与成人相比,儿童头部更容易受到损伤。  相似文献   

6.
目的建立基于人体解剖学结构的精细化头颈部有限元模型,研究不同后碰撞速度下颈部损伤。方法该模型以人体头颈部CT扫描图像为基础,利用Mimics进行三维骨重建,通过Hyper Mesh完善颈部三维实体韧带、小关节等组织,并进行网格划分。生成的模型包括头部、8节椎骨(C1~T1)、6个椎间盘(包括纤维环、髓核和上下软骨终板)、小关节(包括软骨和关节囊韧带)、韧带、肌肉等结构,最后在有限元后处理软件中完成模型验证与后碰撞计算。结果分别对模型进行轴向冲击、前后屈伸和侧屈模拟并与实验数据对比,验证模型的有效性,并进行速度为20、40、60、80 km/h后碰撞计算。在20 km/h速度下,颈部无损伤出现,在40、60、80 km/h速度下,最早出现损伤的都是韧带。随着速度增加,颈部各组织受力不断增大。速度为80 km/h时,颈椎的密质骨、松质骨和纤维环最大应力分别为226. 4、11. 5、162. 8 MPa,当韧带应变达到极限时,开始出现撕裂。结论所建头颈部有限元模型具有较高的生物仿真度和有效性,可用于交通事故中颈部损伤分析的研究,在一定程度上有助于颈椎损伤的诊断、治疗和预防。  相似文献   

7.
为预测和评判行人面部碰撞对创伤性脑损伤机理及生物力学响应,结合计算机断层扫描(CT)和磁共振(MRI)医学成像技术,建立符合中国人体特征的50百分位头颈部几何模型和有限元模型。有限元模型中颅骨与脑之间的相对运动采用切向滑动边界条件,摩擦系数定义为0.2,模拟鼻骨斜碰撞、鼻外侧软骨正面碰撞、牙齿正面碰撞、下颌骨碰撞和颧骨外侧斜碰撞等5种典型面部碰撞交通事故场景,探讨应力波在颅骨和脑内传播路径,得到颅内压力、von Mises等效应力和剪切应力等生物力学响应参数分布规律。结果显示,鼻骨斜碰撞颅内压力峰值为236.7 kPa,von Mises应力为25.97 kPa,超过了大脑耐受阈值;颧骨外侧斜碰撞最大横向剪切应力分别为14.56 kPa和-18.07 kPa,促使脑组织产生了较大的剪切变形,存在严重脑损伤风险。结论表明:面部碰撞的位置和方向是导致面部骨折严重程度的关键因素,面骨骨折的位置决定创伤性脑损伤的部位,面骨骨折都带有一定程度的创伤性脑损伤;头部受到冲击时,面部结构能够吸收大量的冲击能量来保护大脑,降低颅脑损伤的风险。  相似文献   

8.
基于6岁儿童胸部CT图像,采用阈值分割方法,提取肋骨、肋软骨、胸骨、肺和心脏等组织的几何模型,利用逆向工程软件划分曲面片,导入Truegrid和Hypermesh中进行网格划分,建立胸部有限元模型,并利用Kroell尸体试验的缩放结果验证模型有效性。结果表明,碰撞速度为4.3 m/s时,撞击力随着位移的增大而增大,在位移为12.02 mm时撞击力达到最大值579.90 N,然后随着位移的增大而减小;碰撞速度为6.7 m/s时,撞击力在位移为16.75 mm时达到最大值980.35 N。模型撞击力-位移曲线变化趋势与实验结果基本吻合,验证了该模型的有效性。该模型为儿童胸部模型损伤机理的研究提供可靠的基础数据,同时可应用于儿童乘员损伤防护装置的开发和应用。  相似文献   

9.
目的利用6岁儿童颈部有限元模型预测不同载荷下颈部损伤的力学响应。方法基于CT图像构建具有真实肌肉的6岁儿童颈部有限元模型,应用该模型通过分别重构儿童颈椎不同节段的动态拉伸实验、全颈椎拉伸实验和儿童志愿者低速碰撞实验验证其有效性。结果不同椎段拉伸仿真试验和全颈椎拉伸仿真试验中的力-位移曲线能够较好吻合实验曲线;儿童志愿者仿真试验的头部角速度-时间历程曲线位于实验数据通道内,吻合较好。结论该模型有效性得到验证,可用于研究儿童颈部不同载荷条件下的生物力学响应及损伤机制。  相似文献   

10.
目的 探究不同椅背倾角对飞行员颈部损伤的影响。方法 基于头颈部多刚体动力学模型,对两种典型飞行工况下(急转弯和稳定盘旋)椅背倾角17°和22°进行仿真计算,得到颈部肌肉力及椎间力,并采用颈部损伤的NIC准则、Nij准则和简明损伤分类方法对颈部损伤进行评估与预测。结果 同一飞行工况下,椅背倾角17°时,颈部前屈,斜方肌和头夹肌受到拉伸。椅背倾角22°时,颈部后伸,集总舌肌受到拉伸,且椅背倾角17°时斜方肌受到的拉力最大。同一颈椎节段,椅背倾角17°时的轴向力高于椅背倾角22°时,而22°时的后伸力矩大于17°时的前屈力矩。所有飞行工况下的力和力矩均未超过颈椎节段的损伤评估值,颈部脊髓也不会发生损伤。急转弯工况下,椅背倾角为22°时C7~T1节段Nij在所有工况中最大,达到航空领域建议的临界值,此时颈部发生中度、重度伤的概率分别为3.93%、2.63%。结论 本研究结果可为评估椅背倾角对飞行员颈部的损伤情况提供支撑。  相似文献   

11.
头部损伤是导致儿童死亡与伤残的重要原因,对儿童头部损伤生物力学的深入研究意义重大。近年来,通过构建真实的儿童头部有限元模型来研究儿童头部损伤的方法日益成熟,逐步代替了尸体实验、动物实验以及物理实验。对儿童头部有限元模型的年龄特点、构建方法、模型应用以及发展趋势等进行较为全面的综述,并对该领域还有待研究的内容以及未来的发展方向做出展望。  相似文献   

12.
基于有限元法的人类头部损伤生物力学的模拟分析   总被引:3,自引:1,他引:3  
根据正常头部螺旋CT扫描影像,通过对CT扫描影像的图像处理,利用计算机辅助工程技术,采用单元网格划分和三维重构技术,开发、建立了三维的人类头部有限元计算模型。应用本模型模拟颅脑在直接碰撞中的生物力学问题。计算模型比较真实地反映了头颅实际碰撞实验中的物理反应,比较忠实地再现了某些实验的结果,如头部撞击合力和脑压力/强等。同时,脑压力,强的分布再次证实了经典的撞击压-对撞压产生理论。本研究的计算模型可为进一步的头部损伤生物力学研究提供一种新的工具。  相似文献   

13.
运用ANSYS ICEM CFD以及HYPERMESH软件对10岁儿童头部几何模型进行合理的网格划分,获得具有高度解剖学细节的10岁儿童头部有限元模型。利用MADYMO软件自带的假人,模拟一起典型跌落事故中,受伤儿童从3个不同高度跌落时人体的动力学响应过程,并计算头部与地面碰撞接触瞬间的方位和速度等运动学参数。然后将这些参数输入到10岁儿童头部有限元模型中,模拟头部与地面的碰撞过程,并分析与损伤相关的生物力学参数。结果表明,颅骨的最大应力和最大应变分布在枕骨右侧,与碰撞点的位置较为吻合,但均未超过颅骨的耐受极限。利用颅内压力可较好地预测脑组织的损伤程度,而利用脑组织的von mises应力可较好地判断脑组织的损伤位置。事故重建的结果表明,该模型具有较好的生物逼真度,可以用于儿童头部损伤生物力学的研究。  相似文献   

14.
现有汽车安全设计和法规主要是基于标准体型的50百分位人群,在肥胖人群不断增长的趋势下,研究肥胖乘员的碰撞损伤和防护越来越重要。现有研究中多采用事故统计分析、尸体实验、多刚体模型和有限元模型等方法 探讨肥胖乘员的损伤机制,肥胖对乘员的碰撞损伤主要有泡沫效应假说、躯干几何形状变化假说和质量效应假说等多种提法,可见肥胖乘员的损伤机制尚不明确。在全面总结肥胖乘员的碰撞损伤机制基础上,阐述当前肥胖乘员碰撞损伤研究所面临的问题及未来研究的发展方向。  相似文献   

15.
汽车交通事故是当今世界造成儿童和年轻人死亡的主要原因,其中头颈部的损伤是交通事故中最为常见的致命性损伤.由于碰撞条件复杂和不可重复,再加上尸体和动物研究的伦理问题,致使头颈部损伤机理的实验研究存在较大困难,因此有限元分析在人体头-颈部耐撞性研究得到广泛应用.有限元方法的应用对于交通事故中不同撞击条件损伤程度的评估以及汽车工业损伤保护标准的开发起重要作用.本文从头颈部损伤机理、有限元几何模型获取、有限元网格划分,及所研究材料特性和实验验证方法等方面,对近年来国际上开发的应用有限元模型对交通事故中的头颈部损伤的研究现状进行综述,并对各个模型的优势和特点加以分析归纳,并对未来相关研究提出建议.  相似文献   

16.
枪弹冲击下新型防弹头盔质量对颈椎损伤影响   总被引:1,自引:0,他引:1  
目的建立有效的头颈部及防弹头盔有限元模型,研究枪弹冲击不同质量防弹头盔时颈部的生物力学响应。方法通过在头盔本体(1.24 kg)增加附件均布质量2 kg,并加载手枪弹以450 m/s速度从正面、侧面、顶部冲击防弹头盔,获得人体颈椎的力学响应。结果受到冲击时,颈椎应力远大于颅骨应力。枪弹冲击防弹头盔时,相比头部,颈椎为易受伤部位,其中椎骨C3所受应力最大。不考虑增加附件质量时,子弹从正面、侧面、顶部方向冲击头盔时,侧面冲击对颈椎伤害最大,相比其他方向冲击最大应力约增加2.58%;同时正面冲击对头部损伤最大,应力约增加59.4%。考虑附件质量时,头盔质量越大对颈椎的损伤越严重。头盔质量从1.24 kg增加到3.24 kg,顶部冲击对颈椎的损伤最大,其应力相比其他方向冲击增加12.98%。结论在设计防弹头盔时应考虑其轻量化,研究结果为防弹头盔设计提供科学参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号