首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 203 毫秒
1.
目的 研究Bolus与皮肤间空腔厚度和面积对浅层组织剂量的影响。方法 运用Geant4构建出射6 MV X线的加速器模型,模拟10 cm×10 cm射野下出束情况并记录出射粒子相空间文件。在源轴距水平构建30 cm×30 cm×30 cm水模体,分别在其靠近加速器一侧构建紧贴模体表面及含有不同空腔的30 cm×30 cm×1 cm水膜,以相空间文件作入射粒子源,模拟粒子输运过程,获取水模体中心轴深度剂量分布和射野中心区域不同深度处侧向剂量profile。将含有不同空腔时的模拟数据与水膜和水模体紧密贴合时的数据进行对比。结果 空腔厚度≤5 mm时,影响较小,之后随厚度增加,最大剂量深度(Dmax)增加,对应处百分深度剂量减小,侧向剂量profile受影响深度增加,中心区域剂量减小;随空腔面积增加,Dmax先增大后减小,对应处百分深度剂量先减小后增加,侧向剂量profile受影响深度先增加后减小,中心区域剂量先减小后增加;在远离空腔及深度≥15 mm时侧向剂量profile基本不受影响。结论 使用Bolus时其下空腔厚度应在5 mm以内,面积尽量小。  相似文献   

2.
目的 由于磁场会改变次级电子运动轨迹,继而影响剂量场分布,磁共振加速器(MR-Linac) X线束剂量学特性与常规加速器有差别。本项目旨在测量和分析1.5T MR-Linac的X线束剂量学特性。方法 中国医学科学院肿瘤医院于2019年5月安装1台瑞典医科达公司Unity型1.5T MR-Linac,使用磁场兼容工具对其进行测量,测量项目包括表面剂量、最大剂量点深度、射线质、离轴比曲线(OAR)中心位置、对称性、半影宽度、不同机架角度的输出量变化。结果 不同射野面积的平均表面剂量为40.48%,平均最大剂量点深度为1.25cm。10cm×10cm射野面积下,x轴方向的OAR中心位置往x2侧偏移1.47mm,对称性为101.33%,两侧半影宽度分别为6.86mm和7.14mm;y轴方向的OAR中心位置偏移0.3mm,对称性为100.85%,两侧半影宽度分别为5.92mm和5.95mm。不同机架角度下输出量最大偏差达1.50%。结论 与常规加速器不同,MR-Linac不同射野面积表面剂量数值趋于一致,最大剂量点深度上升。x轴方向的OAR中心位置往x2侧偏移,造成对称性变差和半影不对称。不同机架角度下的输出量变化明显,需要修正。  相似文献   

3.
目的探讨改造常规医用加速器实现超高剂量率放疗(Flash‐RT)的可行性,了解改造后Flash‐RT射线束的物理性能。方法 改造Varian 23CX医用加速器,使设备在等中心处的电子线辐射平均剂量率不小于40 Gy/s。设计相关物理测量方案对不同源皮距条件下的实际辐射剂量率、改造后射线束的百分深度剂量(PDD)曲线和离轴剂量分布等参数进行测量。结果 使用HD‐V2型胶片测量改造后9 MeV电子线的平均剂量率,出束设定时间为3、6 s一组的平均剂量率分别为97.9、99.27 Gy/s;在源皮距(SSD)为100、80、60 cm时,平均剂量率分别为99.3、168、297.5 Gy/s;改造后9 MeV射束PDD曲线的R100、R50分别为水下2.2、3.87 cm,电子射程Rp为4.58 cm,模体表面最大可几能量Ep,0为9.28 MeV,这些参数值均略高于常规9 MeV射束,表现为表面剂量略增加,高剂量坪区相对变宽;射野离轴剂量分布总体呈现中心轴最高,随离轴距离增加剂量逐渐下降的特点,在20 cm×20 cm,SSD为100 cm射野条件下,横向和径向离轴剂量分布曲线的半峰宽分别为16.6 cm和16.4 cm。结论 改造后的常规医用加速器,射线束在等中心处的平均剂量率达到Flash‐RT要求,在SSD为60 cm条件下平均剂量率远高于开展Flash‐RT所需的至少40 Gy/s的要求。  相似文献   

4.
目的 开发基于蒙特卡罗(MC)的验证平台实现容积调强弧形治疗(VMAT)计划的独立剂量验证。方法 利用EGSnrc/BEAMnrc构建Varian TrueBeam医用直线加速器的机头和准直器模型,并基于机头模型和自编程序搭建患者VMAT计划的独立剂量验证平台,通过平台模拟不同射野大小百分深度剂量(PDD)曲线和离轴比、两个不规则野以及头颈部、胸部和盆腔各1例患者剂量分布。比较不同射野大小PDD曲线和离轴比与蓝水箱测量结果差异,不规则射野与ArcCHECK实测的差异,再通过γ分析法、剂量体积直方图对比分析患者MC模拟剂量、计划系统计算剂量、ArcCHECK实测剂量之间差异,验证平台是否可用于独立剂量验证。结果 对4cm×4cm~40cm×40cm的PDD曲线和离轴比,MC模拟结果和测量结果一致性较好。不规则射野MC模拟结果与ArcCHECK实测相比,在3%/2mm、3%/3mm下γ通过率都在98.1%、99.1%以上;3例不同部位VMAT患者MC模拟剂量和ArcCheck实测剂量在3%/2mm、3%/3mm下γ通过率均好于93.8%、95.9%。通过三维γ分析计划系统计算剂量和MC模拟剂量在3%/3mm下鼻咽癌、肺癌、直肠癌的γ通过率分别为95.2%、98.6%、98.9%;在3%/2mm下依次为90.3%、95.1%、96.7%。结论 基于MC开发的验证平台模拟结果与实际测量结果一致性较好,其模拟结果更接近于患者体内真实剂量分布,初步结果显示可用于VMAT计划的精准独立剂量验证。  相似文献   

5.
目的 使用仿真人体模型,研究空腔及非均匀组织结构对不同照射技术的剂量学影响。方法 利用成都剂量体模,制作具有4 cm×4 cm×3 cm空腔结构的头颈部模体和胸部切片肺组织模体,按照实际治疗流程进行定位CT扫描和模拟定位机复位,在空腔和非均匀组织结构边界处及其内部粘贴3.2 mm×3.2 mm×0.8 mm超薄型热释光剂量片,采用不同照射技术设计治疗计划并在直线加速器上进行实际照射,对热释光剂量片数值进行分析。结果 头颈部仿真模体,单野、两野对穿和7个野IMRT计划照射测量结果均存在显著的空腔效应,并且随射野增加和放疗技术的复杂性,空腔效应有减小趋势;对胸部肺组织仿真模体,也存在类似空腔效应。结论 对人体组织内部空腔结构或非均匀组织结构,设计计划时应考虑空腔效应影响,给予更多射野或使用更加复杂的照射技术来减小空腔效应影响。  相似文献   

6.
目的 针对响应随射野面积变化的探测器,应用基于菊花链(Daisy-Chaining)的射野输出因子测量方法,提高测量结果的准确性。方法 分别使用IBA CC13电离室、IBA CC01电离室、IBA Razor半导体探测器、IBA EFD半导体探测器和Gafchromic EBT3胶片测量Varian Edge加速器 6 MV X线的射野输出因子。结果 同Razor和CC13衔接的菊花链测量结果相比,常规测量方法使用CC13测量小野时结果偏小,在射野1 cm×1 cm时偏差达到16.71%。使用CC01测量大野时结果偏大,在射野40 cm×40 cm时偏差达到8.39%。使用Razor测量大野时结果偏大,在射野40 cm×40 cm时偏差达到9.40%。EFD的测量结果与Razor结果接近,在射野40 cm×40 cm时偏差为9.14%。使用胶片测量1 cm×1 cm以上的射野时,与菊花链测量结果接近,偏差在1.60%以内,在射野1 cm×1 cm时偏差则达到3.13%。选择射野3 cm×3 cm或4 cm×4 cm作为中间野的菊花链测量结果一致,最大偏差0.29%。结论 对于响应随射野面积变化的探测器可通过菊花链的方法来扩大测量范围,提高测量结果的准确性。  相似文献   

7.
目的 提出改进最差场景算法,能够提升计划鲁棒性并且能平衡计划在标称场景下剂量分布质量与计划鲁棒性。方法 对C形靶模型计划优化中,以标称场景优化为主,同时在每次迭代时计算每个体素在9种场景下的剂量值,取其与在标称场景下该体素剂量值的最大差值作为鲁棒性优化项添加入优化目标函数进行优化。结果 在自主开发的鲁棒性优化计算模块验证,当权重因子probust=0.8时,相比常规优化,临床靶体积的ΔD95%由9.8Gy减小至7.6Gy。当probust由1减小到0时,ΔD95%由7.0Gy增大至9.8Gy,计划鲁棒性降低,而标称场景下CTV的D95%、Dmax和危及器官 的D5%、Dmax减小,剂量分布质量得到提高。结论 改进最差场景算法能够有效地提高计划对于射程和摆位不确定性的鲁棒性,并且该方法中probust可提供给计划制定者用于权衡治疗计划在标称场景的剂量分布质量和计划的鲁棒性。  相似文献   

8.
目的 比较射波刀、螺旋断层治疗(Tomo)、Edge加速器、Trilogy加速器和伽马刀5种设备在胰腺癌立体定向放疗中剂量学上的优劣。方法 回顾分析10例射波刀治疗的胰腺癌患者临床资料,分别由5家单位5种设备按照统一计划设计要求进行计划设计。完成后的计划统一导入MIM软件平台提取评估参数。主要参数包括计划靶区的Dmin、Dmean、Dmax、适形指数(CI和nCI)、均匀指数(HI)、梯度指数(GI)、覆盖率和胃肠Dmax及体积剂量等。结果 Trilogy获得最优CI和nCI (P<0.001);伽马刀HI最差(P<0.001);GI射波刀最优,伽马刀次之,Tomo和Edge相对最弱(P<0.001);Edge加速器和Trilogy加速器获得最大PTV Dmin值,射波刀和Tomo组获得较小PTV Dmin值(P<0.001);伽马刀组获得了最大的PTV Dmax、Dmean(P<0.001)。危及器官方面,射波刀组获得最低的空回肠Dmax及D5cm3(P<0.001)、胃Dmax(P=0.003)、十二指肠Dmax(P=0.001)、D5cm3(P<0.001)及D10cm3(P=0.005)、脊髓Dmax及D0.35cm3(P<0.001);伽马刀组空回肠Dmax最大;Edge加速器组十二指肠D5cm3最高(P<0.001);Tomo组脊髓Dmax及D0.35cm3最高(P<0.001)。结论 5种放疗设备均能很好地完成满足临床要求的胰腺癌立体定向放疗计划。射波刀和伽马刀拥有更优的剂量跌落梯度,Trilogy加速器和Edge加速器拥有更优的靶区适形性,射波刀胃肠道剂量保护相对更优。  相似文献   

9.
目的 对比实际测量结果探究利用蒙特卡罗方法模拟患者在实际X (γ)射线全身照射过程中全身剂量分布的可行性。方法 利用MCNPX构建准确的医科达Synergy加速器6 MV治疗头蒙卡模型,根据CT值与物质密度的关系将ATOM物理体模的CT转换为用于MCNPX计算的体素模型,模拟患者在X (γ)射线全身照射过程中常用的水平照射方式中全身的剂量分布,并将模拟结果与热释光剂量计在ATOM物理体模内不同位置处的测量值进行对比分析其差异。结果 标准源皮距下6 MV加速器治疗头模型在水模体中计算的百分深度剂量曲线和离轴剂量曲线与医院的实际测量值差异性均<2%,其中10 cm×10 cm射野下的最大剂量点深度约为1.5 cm,与实际测量值相符。全身照射中体模内不同位置处剂量的模拟结果与热释光剂量计测量值的最大差异性约为4%,MCNPX的模拟结果与热释光的测量结果基本符合。结论 MCNPX较精确地模拟计算患者全身照射的剂量分布,蒙特卡罗模拟为全身照射过程中患者全身剂量的均匀性优化提供了可能。  相似文献   

10.
目的 采用临床上常见的探测器对小野的相对剂量曲线进行测量并和蒙特卡洛方法模拟计算结果进行比较,得出比较准确的测量方法,并对误差较大的探测器进行修正。方法 采用探测器CC13、PFD、SFD联合蓝水箱的使用,对美国瓦立安公司的Trilogy直线加速器的6 MV X射线下的2 cm×2 cm,3 cm×3 cm,4 cm×4 cm的百分深度剂量曲线和平坦度对称性曲线进行数据采集,测量结果与当前的金标准即蒙特卡洛方法模拟计算的结果进行比较,得出适合小野相对剂量数据测量的方法,并给出误差较大的探测器的修正因子,为临床上提供参考数据。结果 SFD探测器与蒙卡模拟计算的结果最接近。CC13、PFD测量误差较大。CC13、PFD的测量结果中半影区内的修正因子最大可达到1.499,小的可以达到0.664。结论 SFD较CC13、PFD更适合小野相对数据的测量,CC13、PFD可以通过相应的修正为临床提供参考数据。  相似文献   

11.
目的:基于蒙卡方法研究补偿膜下空腔对放疗计划系统计算浅层组织剂量的影响,为放疗定位及计划制定和评估提供参考与依据.方法:在Eclipse和XIO中分别构建上覆不含或含有不同大小空腔的1 cm厚水膜的30 cm×30 cm×30 cm水模体,上表面位于源轴距并垂直于射野中心轴,分别采用各向异性分析算法和超级迭加算法计算不...  相似文献   

12.
BACKGROUND AND PURPOSE: In view of using portal images for exit dosimetry, an experimental study is performed of relative transit dose profiles at different distances behind patients (and phantoms) and of their relation to the exit dose profile. MATERIALS AND METHODS: Irregular, homogeneous polystyrene phantoms with a variable thickness to simulate head and neck (H&N) treatments (6-MV photon beam) are investigated by ionization chamber measurements performed close to the exit surface and at various distances behind the phantom (10, 20 and 30 cm). Similar measurements are performed for a rectangular phantom with large inhomogeneities (A1 and air). For one irregular homogeneous phantom and an irregular phantom containing an A1 inhomogeneity, ionization chamber measurements are performed at the exit surface, and a portal film image is taken at 30 cm behind the phantom. Portal films of a patient treated for a head and neck malignancy are evaluated for different air gaps behind the patient. RESULTS: For the irregular phantoms, deviations up to 15% and more are observed between the exit dose profile (along the shaped surface of the phantom) and the transit profile close to the phantom (perpendicular to the beam axis). There is, however, a good agreement--within 3%--between the exit profile and the transit profile at 30 cm. For the rectangular, inhomogeneous phantom, the deviation between the exit profile and the transit dose profile at 30 cm does not exceed 5%; transit dose profiles overestimate the exit dose for the air cavity and underestimate the dose for the A1 inhomogeneity. Measurements on portal films of a H&N patient for different air gaps confirm the order of magnitude of the difference observed between transit dose profiles close to the patient and transit dose profiles at some distance behind the patient. CONCLUSIONS: For 6-MV photon beam treatments with significant thickness variations (H&N), large variations (> 10%) are observed in transit dose profiles as a function of the air gap between the patient and the portal film. For this energy, a good agreement is found between the exit profile and the transit profile at about 30 cm behind the patient.  相似文献   

13.
Background: The purpose of this study was to evaluate the surface dose (SD) of 6 and 10 MV flattening filter beam (FF) and flattening filter free (FFF) beam for different square field sizes in three Beam-matched medical linear accelerators using a parallel-plate ionization chamber. Materials and Methods: The experiment was carried out in a phantom composed of 40×40 cm2 solid Water slabs of varying thickness. Further sheets of solid water phantom were added to take readings in the build-up region for both SSD and SAD technique. Surface doses are measured with a PPC-05 chamber and DOSE 1 electrometer, at measurement depth of 1 mm interval and all results are plotted relative to the dose measured at Dmax for various field sizes. Surface dose readings are therefore reported as relative surface dose. Results: Surface dose increased linearly with field size for both FF and FFF photon beams in all three beam-matched linear accelerators in both SSD and SAD setup. The surface dose of FFF was higher than FF beams in all field sizes. For the given energy the surface dose difference (relative to 10x10 cm2 field size of 6FF) between FF and FFF beam was larger for large field size. For 6FF and 6FFF beam the surface dose difference for 5x5 cm2 is -5.27%, and for 30x30 cm2 it is 12.91%. The measured surface dose differences between linear accelerators are not statically significant (P>0.989). Similarly, the surface dose difference between SSD and SAD setup was also analysed and had no statistical significance (P>0.849). Conclusion: Study showed that the surface dose difference between beam-matched linear accelerators are insignificant. The surface dose difference between SSD and SAD setup were also found negligible. Most importantly, changing patients between beam-matched linear accelerators will not have any significant changes in surface dose in clinical setup.  相似文献   

14.
BACKGROUND AND PURPOSE: To evaluate the combined effect of increased photon transmission, reduced photon scatter, increased secondary electron range and loss of electronic equilibrium for narrow 6-MV beams in and around a simulated air channel. MATERIALS AND METHODS: A measuring method was developed in-house for relative dose measurements near simulated air-like/soft-tissue interfaces in an automated water phantom. A Styrofoam cylinder (density 0.03 g/cm3) of 2-cm diameter was submersed in the water phantom and irradiated with small rectangular radiation fields. The field length was fixed at 10 cm and the field widths ranged from 1 to 4 cm. The axis of the foam cylinder and the long side of the field were parallel. A water layer of 2 cm was realised upstream of the cylinder. Relative depth dose and profiles behind the foam cavity were assessed using a diamond detector with a sensitive crystal thickness of 0.21 mm located at 1 mm from the top of the encapsulation. RESULTS: The dose at central axis 1.1 mm behind the cavity was found to be 92 and 74% for a field size of 10 x 2 and 10 x 1 cm2, respectively. The highly convex dose profile of the 10 x 1-cm2 field, characterising the homogeneous case, is flattened. CONCLUSIONS: The diamond detector is an excellent choice as a detector in small photon fields with high-dose gradients as they occur near air channels, provided the orientation of the detector is appropriate. Doses near air channels are subject to significant local variations as a function of small changes of field width, and local underdosing may occur in particular cases.  相似文献   

15.
目的:研究临床放疗蒙特卡洛剂量计算方法中虚拟源模型的可行性。方法通过蒙特卡洛方法模拟得到记录医用直线加速器机头出射粒子物理特性的相空间文件,分析提取相空间文件中粒子的种类、能谱及位置分布,建立半经验虚拟双光子源抽样模型。结合并行剂量计算引擎GMC,得到3 cm×3 cm、5 cm×5 cm、10 cm×10 cm、20 cm×20 cm和30 cm×30 cm射野及2例临床调强计划的三维水模剂量分布的蒙特卡洛模拟结果,将其与水箱测量结果或医科达Monaco计划系统结果比较,以验证基于虚拟源的蒙特卡洛剂量计算的准确性。结果对5个射野下的水箱中心轴的百分深度剂量曲线以及不同深度的离轴剂量曲线,蒙特卡洛模拟结果与测量结果相差在1%以内。对2例临床调强计划, Monaco计算结果与蒙特卡洛模拟结果的三维通过率分别为98.9%和99.4%(3%/3 mm),95.1%和95.4%(2%/2 mm)。结论基于虚拟源模型的蒙特卡洛模拟能得到准确的放疗剂量计算结果。  相似文献   

16.
目的 提取胸部模体执行模拟计划产生的加速器日志文件,解析多叶准直器(MLC)、Gap运动误差数据反馈回治疗计划系统分别进行AAA和AXB算法的剂量重建,结合胶片实测值分析2种算法的计算精度。方法 在胸部模体上模拟勾画纵隔、肺癌2种靶区和危及器官,设计调强放疗计划,分别以AAA和AXB算法进行剂量计算。利用加速器模拟治疗,同时将胶片置于模体中进行测量。通过Varian Argus软件提取日志文件,将MLC、Gap运动偏差信息导入计划系统,再次以2种算法进行剂量重建,比较模拟靶区(分析指标包括D2、D98、Dmax、V处方)和危及器官(分析指标包括双肺V5、V10、V20、Dmean;心脏V30、Dmean;脊髓Dmax)的剂量学差异。将胶片实测剂量与2种算法等中心层面剂量进行比较,采用3 mm/3%标准,以不同大小的矩阵分析高剂量区域(靶区内)和低剂量区域(靶区外上、下、左、右四个方向)的γ通过率。结果 纵隔、肺癌2种模拟靶区在AAA算法与AXB算法中存在剂量学差异,2种靶区不同算法的剂量学最大差异分别为D98(2.47%)、V处方(4.21%)。左肺受量分析最大差异指标分别为Dmean(3.58%)、V10(-2.76%),右肺受量分析最大差异指标分别为V5(-1.96%)、Dmean(0.18%),心脏受量分析最大差异指标分别为Dmean(-1.15%)、Dmean(0.18%),脊髓受量分析指标差异分别为(-3.34%、1.79%)。与胶片实测剂量相比,纵隔、肺癌模拟靶区高剂量区域2种算法不同大小分析矩阵的平均γ通过率分别为94.07%±1.32%(AAA)、93.81%±1.43%(AXB);93.73%±1.31%(AAA)、94.39%±1.32%(AXB)。对于2种靶区的低剂量区域不同方向及不同大小分析矩阵的γ通过率,AXB算法均高于AAA算法。结论 AAA和AXB算法在胸部模拟纵隔和肺部2种靶区剂量计算时存在差异。AXB算法与胶片实测值的平均γ通过率优于AAA算法,在空腔更接近于胶片实测值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号