首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
目的 初步探讨利用TG119报告对容积旋转调强放疗(VMAT)计划进行评估的可行性。方法 选取6 MV和10 MV能量的X射线,针对TG119报告中的测试病例,在Eclipse治疗系统中依照TG119报告中的要求设计7或9个野的IMRT计划和双弧VMAT计划,采用电离室、MatriXX和Delta 4进行剂量验证,并将结果与TG119报告中多机构测试的结果进行对比。结果 IMRT和VMAT计划在系统中的剂量指标均达到了TG119报告中的要求。在靶区测量点和危及器官测量点,不同能量光子束的VMAT计划的点剂量误差为±2.55%,IMRT计划的点剂量误差为±1.85%。使用6 MV和10 MV能量的X射线时,IMRT计划的平均γ通过率(±3%/3 mm)为99.38%和99.53%,VMAT计划的平均γ通过率(±3%/3 mm)为99.32%和99.46%,复合射野的γ通过率均在98%以上。结论 6 MV和10 MV能量光子束的VMAT计划均满足TG119报告验证标准。TG119报告对VMAT技术的剂量学验证基准的确定有一定指导意义。  相似文献   

2.
目的 采用EPID实现直线加速器VMAT技术的验收研究。方法 采用Shaper及Eclipse TPS编辑并利用EPID对TrueBeam加速器VMAT技术中MLC到位精度、临床剂量等核心内容进行测试。测试例:TA:机架在0°、90°、270°时分别曝光0.5 cm×20.0 cm狭缝野;TB:不同剂量率及机架角速度组合时射野平坦度稳定性;TC:静态及旋转状态下MLC到位精度;TD:静态及旋转状态下MLC变速控制准确性;TE:加速器同时变剂量率及机架旋转速度的准确性;TF:临床病例。利用Matlab对测试结果进行分析。结果 0°、90°、270°测得狭缝叠加后半高宽与零度时半高宽差别均为0.39 mm。TB结果显示射野平坦度差别<0.5%。TC测试显示EPID测得的狭缝中心与TPS设定的中心最大偏差为0.45 mm。TD测试显示MLC位置实测值与TPS设定值差别最大为0.69 mm。TE结果显示各狭缝相互间差别最大为0.42 mm。临床病例以3%/3 mm标准评价时γ通过率最低为96.4%。结论 利用EPID能准确、便捷的完成VMAT技术验收,此方法为减轻物理师工作负担提供了一个良好选择。  相似文献   

3.
目的 对螺旋断层放疗系统的动态钨门技术进行验收测试,评估其射野半影及治疗实施的准确性。方法 升级内容主要包括升级钨门的驱动系统和更新射野模型。升级钨门的驱动系统后行机械对准性测试。调试加速器输出,使其与新的射野模型吻合。分别用固定钨门和动态钨门技术设计螺旋断层调强计划,评估不同照射技术的射野半影。剂量验证分别用A1SL电离室和ArcCheck探测器矩阵测量点剂量和面剂量,并采用γ分析与计算结果进行比对。结果 系统的机械对准符合验收标准。不同射野宽度的百分深度剂量和离轴比与新的射野模型基本一致。IEC y轴向对称野和非对称野的射野宽度与参考值的偏差均<0.3%。采用动态钨门技术后,射野宽度为2.5 cm和5.0 cm时半影宽度比固定钨门技术分别减小了10.41 mm和26.76 mm,接近1.0 cm射野宽度的结果。对于临床病例计划,点剂量平均偏差为 0.33%±0.73%,剂量分布2%/2 mm、3%/3 mm和4%/4 mm的γ平均通过率分别为 97.9%±1.1%、99.8%±0.3%和 100.0%±0.06%。结论 动态钨门技术可大幅改善射野半影。验收测试结果均符合质控标准,表明其治疗实施是准确可靠的。  相似文献   

4.
基于EPID和EBT3胶片剂量计对动态MLC叶片到位精度检测研究   总被引:3,自引:0,他引:3  
目的 建立一种使用EPID和EBT3胶片剂量计进行动态MLC叶片到位精度的快速准确检测方法。方法 美国瓦里安6 MV加速器的固定机架角和准直器角度为0°,共设计11个MLC以滑窗方式运行的射野,每个射野由一组相同宽度的窄条野组成,窄条野的宽度为1~10 mm,窄条野之间的间距为2 cm。使用EPID、EBT3胶片剂量计作为测量工具,刻度设计窄条野宽度(带宽)与测量带宽的半高宽的关系。以同样方式设计一带宽为5 mm射野,并在不同位置设计几处MLC叶片偏差,通过EPID、EBT3分析MLC叶片到位精度。结果 当设计带宽>4 mm时,可很好地线性拟合设计带宽与实测带宽的半高宽。EPID检测带宽、峰值间距、MLC叶片位置的精度分别为±0.2、±0.1、±0.1 mm,EBT3检测的分别为±0.3、±0.2、±0.2 mm。结论 提供了一种使用EPID或EBT3胶片剂量计快速检测MLC实际到位精度的方法,为MLC的QA提供帮助。  相似文献   

5.
目的 对调强治疗计划进行点、平面和三维剂量验证,在γ通过率基础上具体分析三维解剖结构的剂量误差。方法 分别用指形电离室、Matrixx和ArcCheck测量鼻咽癌和肺癌调强治疗计划各 6例,分别比较IMRT和VMAT治疗计划中心点测量剂量偏差,并行成组t检验。比较IMRT和VMAT治疗计划在3%/3 mm、2%/2 mm标准下剂量验证的γ通过率,并行单因素方差分析。使用3DVH来分析患者靶区和OAR的测量剂量偏差。结果 IMRT和VMAT治疗计划中心点剂量平均偏差分别为(0.59±1.31)%和(-1.00±1.03)%,最大偏差均<3%。在3%/3 mm标准下,IMRT计划Matrixx、ArcCheck和3DVH的γ通过率分别为96.28%、97.55%和99.02%,VMAT计划的分别为97.24%、99.67%和98.48%。3DVH系统比较结果表明γ通过率较高情况下(3%/3 mm标准>95%),有 2例治疗计划(占总计划16.7%)测量结果中的靶区和OAR的DVH存在明显偏差,包括GTV、脊髓和脑干等在临床指标下的差异。结论 通过γ分析基于三维影像解剖结构来分析测量结果能更有效评估剂量误差对临床计划执行的影响和对临床治疗的损害。  相似文献   

6.
目的 开发基于蒙特卡罗(MC)的验证平台实现容积调强弧形治疗(VMAT)计划的独立剂量验证。方法 利用EGSnrc/BEAMnrc构建Varian TrueBeam医用直线加速器的机头和准直器模型,并基于机头模型和自编程序搭建患者VMAT计划的独立剂量验证平台,通过平台模拟不同射野大小百分深度剂量(PDD)曲线和离轴比、两个不规则野以及头颈部、胸部和盆腔各1例患者剂量分布。比较不同射野大小PDD曲线和离轴比与蓝水箱测量结果差异,不规则射野与ArcCHECK实测的差异,再通过γ分析法、剂量体积直方图对比分析患者MC模拟剂量、计划系统计算剂量、ArcCHECK实测剂量之间差异,验证平台是否可用于独立剂量验证。结果 对4cm×4cm~40cm×40cm的PDD曲线和离轴比,MC模拟结果和测量结果一致性较好。不规则射野MC模拟结果与ArcCHECK实测相比,在3%/2mm、3%/3mm下γ通过率都在98.1%、99.1%以上;3例不同部位VMAT患者MC模拟剂量和ArcCheck实测剂量在3%/2mm、3%/3mm下γ通过率均好于93.8%、95.9%。通过三维γ分析计划系统计算剂量和MC模拟剂量在3%/3mm下鼻咽癌、肺癌、直肠癌的γ通过率分别为95.2%、98.6%、98.9%;在3%/2mm下依次为90.3%、95.1%、96.7%。结论 基于MC开发的验证平台模拟结果与实际测量结果一致性较好,其模拟结果更接近于患者体内真实剂量分布,初步结果显示可用于VMAT计划的精准独立剂量验证。  相似文献   

7.
目的 研究加速器机架旋转角度、机器跳数(MU)、准直器到位和多叶准直器(MLC)叶片到位等误差对容积旋转调强放疗(VMAT)计划剂量验证γ通过率的影响。方法 选取已行VMAT的直肠癌和宫颈癌各10例,分别引入加速器各参数运行误差。通过比较引入误差计划与临床计划的剂量验证γ通过率,分析各参数误差对γ通过率的影响及其敏感性。结果 评价指标取3%/3mm、3%/2mm和2%/2mm时,引入机架旋转误差、机器跳数误差和准直器到位误差后的直肠癌和宫颈癌计划相比临床计划的剂量验证γ通过率变化均<7.0%,引入两侧MLC叶片反向、相向、同向运动误差后,每毫米误差导致绝对剂量验证γ通过率变化分别<19.13%、18.53%、0.19%,19.87%、20.01%、0.42%和23.11%、23.45%、0.65%。结论 执行VMAT计划时,相比机架旋转角度误差、机器跳数误差、准直器到位误差和MLC叶片同向偏移误差,MLC叶片反向或相向运动误差对绝对剂量验证γ通过率的影响更加明显,评价指标取3%/3mm、3%/2mm和2%/2mm时绝对剂量验证γ通过率受加速器各参数误差影响依次递增。执行特定患者剂量验证时,应适当使用评价指标并以绝对剂量验证γ通过率为评估计算和测量剂量分布一致性的参考指标。  相似文献   

8.
目的 研究鼻咽癌容积旋转调强(VMAT)计划剂量验证中,Delta4和ArcCHECK两种三维探测器对多叶准直器(MLC)叶片位置误差检测的灵敏度。方法 选取10例鼻咽癌VMAT计划,对原始文件中每个MLC子野的叶片分别引入0.5~4.0 mm的位置误差,使子野整体扩大、缩小或偏向一侧平移,模拟VMAT治疗中MLC可能出现的位置误差。分别用Delta4和ArcCHECK进行验证测量,比较计划系统计算值与测量结果的γ通过率并行配对t检验。结果 当评价标准取3 mm/3%时,两种探测器所有患者的原计划验证绝对剂量γ通过率均>95%,Delta4和ArcCHECK可以检测出的MLC外扩、内收以及平移误差分别是1.5、1.0、2.0 mm和3.0、1.0、3.0 mm;而取2 mm/2%评价标准时,患者原计划验证绝对剂量γ通过率有较大幅度下降,此时Delta4和ArcCHECK能检出的MLC外扩、内收和平移误差分别是1.0、1.0、2.0 mm和1.5、0.5、2.0 mm。结论 Delta4和ArcCHECK鼻咽癌VMAT计划的剂量验证可以检测出不同类型和大小的MLC位置误差,但两者的检测灵敏性略有差异,而对<1.0 mm微小误差的检测都不够敏感,日常工作中仍需加强MLC的质量保证。  相似文献   

9.
目的 介绍香港大学深圳医院初次使用容积调强弧形治疗技术(VMAT)行全身照射(TBI)患者的计划设计及剂量学验证方法。方法 在头、脚位两套定位图像上共同确定全身计划靶体积,处方剂量12Gy分6次,设计含5个中心15个全弧的TBI计划。优化时先在脚位图像中进行,并以此为剂量基础进行头位计划优化,最后两段综合剂量累加并评估。多种剂量学验证方式:Delta 4模体验证单等中心VMAT计划剂量;EBT 3胶片验证两相邻中心射野衔接处剂量分布;PinPoint电离室测量两段图像衔接区点剂量;MOSFET剂量仪实时监测患者体表剂量。另对计划结果参数、治疗时间等进行分析。结果 患者两段靶区的平均剂量分别为12.45Gy和12.37Gy,肺平均剂量为10.8Gy。每次治疗总机器跳数2883 MU,出束时间平均约24.3min,床旁平均总时间约121min。与计划计算相比:单中心VMAT计划绝对剂量3%/3mmγ通过率平均为(99.74±0.42)%;射野衔接区域绝对剂量5%/5mmγ通过率平均为(90.11±2.72)%;头、脚位图像衔接区域点剂量平均偏差(3.6±0.4)%;实时监测患者体表8个点,各部位每次剂量在1.57~2.04Gy范围内。结论 基于多中心VMAT技术的TBI计划及剂量学验证结果显示能可靠实施于临床,但还需不断改进、改善剂量分布和测量结果,提高治疗效率。  相似文献   

10.
目的 由于磁场会改变次级电子运动轨迹,继而影响剂量场分布,磁共振加速器(MR-Linac) X线束剂量学特性与常规加速器有差别。本项目旨在测量和分析1.5T MR-Linac的X线束剂量学特性。方法 中国医学科学院肿瘤医院于2019年5月安装1台瑞典医科达公司Unity型1.5T MR-Linac,使用磁场兼容工具对其进行测量,测量项目包括表面剂量、最大剂量点深度、射线质、离轴比曲线(OAR)中心位置、对称性、半影宽度、不同机架角度的输出量变化。结果 不同射野面积的平均表面剂量为40.48%,平均最大剂量点深度为1.25cm。10cm×10cm射野面积下,x轴方向的OAR中心位置往x2侧偏移1.47mm,对称性为101.33%,两侧半影宽度分别为6.86mm和7.14mm;y轴方向的OAR中心位置偏移0.3mm,对称性为100.85%,两侧半影宽度分别为5.92mm和5.95mm。不同机架角度下输出量最大偏差达1.50%。结论 与常规加速器不同,MR-Linac不同射野面积表面剂量数值趋于一致,最大剂量点深度上升。x轴方向的OAR中心位置往x2侧偏移,造成对称性变差和半影不对称。不同机架角度下的输出量变化明显,需要修正。  相似文献   

11.
Purpose: The present study aims to compare different dosimetric parameters from field sizes defined by secondary and tertiary collimators. A comparison has been drawn between two types of Multi Leaf Collimator (MLC) designs. Materials and Methods: The measurements were obtained using Millennium MLC (Mi-MLC) from Varian Unique™ linear accelerator (LINAC-1) and compared with measurements from Varian Truebeam™ linear accelerator (LINAC-2) using High Definition MLC (HD-MLC). Dosimetric analysis included percentage depth dose (PDD), cross profile, dosimetric leaf gap (DLG) and scatter factor (SF) that were taken for different field sizes defined by both the MLC design and jaw. For beam data measurement PTW Radiation field analyse (RFA) was utilized. Results: When the surface dose for MLC field for linac 1 and linac 2 were compared with jaws they were found to be on the higher side that is 2.8% to 4.9% and 2.2% to 3.6% respectively. The SF was found to vary from -3.2% to 0.73% for LINAC-1 with Mi-MLC when compared with jaws. Similarly, the SF variation from -2.4% to 1.1% was observed for LINAC-2 with HD-MLC as compared with jaw. Larger field sizes gave increased SF while smaller field sizes showed the opposite for HD-MLC. The penumbra was found to be less in HD-MLC as compared to Mi-MLC. Similarly, DLG was found to reduce by 0.056 mm in Mi-MLC when compared with HD-MLC. The results of symmetry and flatness were seen within the limits for both MLC designs. Conclusion: It can be concluded from the results that both the MLC designs have merits and demerits that are based on their effectiveness and clinical use. However, higher surface dose was found in HD-MLC in contrast to Mi-MLC.  相似文献   

12.
Objective The Lorentz force produced by magnetic field deflects the paths of secondary electrons. The X-ray beam dosimetry characteristics of the magnetic resonance accelerator (MR-Linac) are different from conventional accelerators. The purpose of this study was to measure and analyze the X-ray beam dosimetry characteristics of 1.5T MR-Linac. Methods In May 2019, our hospital installed a Unity 1.5T MR-Linac and measured it with magnetic field compatible tools. The measurement indexes include:surface dose, maximum dose point depth, beam quality, off-axis dose profile center, beam symmetry, penumbra width, output changes of different gantry angles. Results The average surface dose was 40.48%, and the average maximum dose depth was 1.25cm. The center of the 10cm×10cm beam field was offset by 1.47mm to the x2 side and 0.3mm to the y2 side. The x-axis symmetry was 101.33%, and the penumbra width on both sides was 6.86mm and 7.14mm, respectively. The y-axis symmetry was 100.85%, and the penumbra width on both sides was 5.92mm and 5.95mm, respectively. The maximum deviation of output dose with different gantry angles reached 1.50%. Conclusions The surface dose of MR-Linac tend to be consistent, and the depth of the maximum dose point became shallower. The off-axis in the x-axis direction was shifted to the x2 side, which resulting in worse symmetry and penumbra asymmetry. The output dose at different angles has obvious variation and needs correction.  相似文献   

13.
目的 基于4D剂量分布,探究呼吸运动对三维适形放疗(3DCRT)和滑窗调强放疗(SW-IMRT)的计划剂量分布的影响,评估在4D剂量模式下呼吸运动引起剂量误差的大小。方法 使用动态胸部模体(CIRS-008A),设定振幅分别为5、10 mm的cos4(x)和sin (x)波形的运动曲线。分别进行4DCT扫描,将最大密度投影(MIP)、平均密度投影(AIP)和10个相位图像发送到计划系统,用于设计3DCRT和滑窗IMRT计划及剂量计算。将AIP计划复制到10个时相,把所有相位的剂量配准并叠加到参考相位,创建得到4D累积剂量分布。利用免冲洗胶片(EBT2)、光释光检测器(OSLD)对计划的平面剂量、点绝对剂量进行分析。结果 3DCRT和滑窗IMRT的预期4D累积剂量与EBT2测量剂量在3%/3mm误差标准下,对于不同呼吸模式的平均γ通过率分别为(98.8±0.78)%和(96.4±1.89)%,两者4D累积剂量分布与OSLD点绝对剂量在靶区内外区域显示出良好的一致性。结论 基于4DCT定位、4D累积剂量分布评估呼吸运动对放疗计划的影响是有必要的。在不同的呼吸模式下,3DCRT 和滑窗IMRT计划实际测得的剂量和预期4D累积剂量显示结果相似。  相似文献   

14.
目的 根据IAEA-483号报告对临床使用的各类半导体或电离室探头进行高能光子束小野输出因子(Scp)测量并修正,探讨其修正数据在小野Scp测量的准确性。方法 使用EGSnrc蒙特卡罗(MC)模拟软件模拟Varian Novalis Tx直线加速器参考测量剂量曲线(Profile)和百分深度剂量曲线,调整模拟参数。使用电离室A16、A14sL、CC01、CC13和半导体探头PFD、EFD、Razor在不同射野下(0.5~10.0cm方野)的剂量曲线测量值、半峰全宽等效方野Scp测量值分别与MC模拟结果对比分析。使用IAEA-483报告修正因子对测量Scp修正,比对和分析修正前后测量数据和MC模拟数据。结果 MC模拟对比PFD测量曲线偏差<2.0%。在<3.0cm方野时MC模拟Profile曲线与半导体探头测量吻合。野外低剂量区Razor相对于MC和PFD偏高(2.3%),随射野增加而增加,10.0cm方野达3.0%。CC13在10.0cm方野Profile曲线的20.0%~80.0%半影宽度最大偏差3.0 mm。随射野减小,7种探头修正前Scp测量均值相对MC模拟偏差增大,标准差在接近1.0cm方野时迅速变大,由5.0~1.5cm方野的0.009~0.014变化到1.0~0.5cm方野的0.030~0.089,修正前全体均值0.030。修正后的6种探头测量的Scp标准差均值0.008,0.8cm方野为0.013,0.6cm方野为0.021。等效方野≥1.0cm时修正后Scp与MC模拟偏差-3.6%~-0.5%,<1.0cm偏差-6.9%~-1.3%。结论 经IAEA-483报告修正后各探头测量Scp标准差较小,与MC模拟结果吻合较好,可用于高能光子束小野的临床剂量学研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号