首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uniparental disomy (UPD) is a rare genetic abnormality. During a whole genome linkage study we identified a case of paternal uniparental isodisomy 3 serendipitously. This is the first ascertained human paternal UPD for chromosome 3 (UPD3pat). The finding of this paternal UPD case of the entire chromosome 3 with no apparent phenotypic disorders suggests that there are no paternal imprinted genes causing rare genetic disorders on chromosome 3.  相似文献   

2.
Uniparental disomy (UPD) describes the inheritance of a pair of chromosomes from only one parent. The concept was introduced in Medical Genetics by Engel (1980); Am J Med Genet 6:137-143. Aside UPD 15, which is the most frequent one, up to now (February 2005) 197 cases with whole chromosome maternal UPD other than 15 (124 X heterodisomy, 59 X isodisomy, and 14 cases without information of the mode of UPD) and 68 cases with whole chromosome paternal UPD other than 15 (13 X heterdisomy, 53 X isodisomy, and 2 cases without information of the mode of UPD) have been reported. In this review we discuss briefly the problems associated with UPD and provide a comprehensive clinical summary with a bibliography for each UPD other than 15 as a guide for genetic counseling.  相似文献   

3.
Uniparental isodisomy is defined as the inheritance of two copies of the same parental chromosome and can result in defects when it produces homozygosity for a recessive mutation or in the presence of imprinting. We describe the detection of a chromosome 6 uniparental isodisomy in a 9 year old girl, discovered during a search for an HLA identical sib. HLA typing, erythrocyte phenotyping, and genotypes of microsatellite polymorphisms were compatible with a paternal isodisomy of chromosome 6, with normal biparental origin of the other chromosomes. Paternal cells were not responsive to the patient's cells in mixed lymphocyte cultures. This fortuitous detection of a chromosome 6 isodisomy suggests that cases of chromosome 6 UPD may not be deleterious and may therefore go undetected.  相似文献   

4.
Chromosome 14 demonstrates imprinting with differing phenotypes for both maternal and paternal uniparental disomy (UPD). Although only 11 cases of paternal uniparental disomy 14 (patUPD14) have been reported, a distinct clinically recognizable syndrome has emerged. The major features are polyhydramnios, small thorax, mildly short limbs, abdominal wall defects, and characteristic face with short palpebral fissures, broad flat nasal bridge, prominent philtrum, and small ears. Radiographically, the chest is bell-shaped and the ribs are distinctive with caudal bowing anteriorly and cranial bowing posteriorly. Several affected infants have died from respiratory failure. The survivors have short stature and mental retardation. The initial cases were all recognized because of translocations involving chromosome 14. Subsequently, several patients with a similar phenotype and normal chromosomes have been reported, including two with mixed iso- and hetero-disomy as well as one with segmental UPD14. Our patient is the first with pure paternal isodisomy 14 in the absence of a translocation. We present additional clinical information, review the literature, and discuss mechanisms that may explain paternal isodisomy 14 in our chromosomally normal patient. Paternal UPD14 with normal karyotype may be more common than previously suspected and may be overlooked unless recognition of the clinical phenotype prompts investigation for UPD.  相似文献   

5.
Beckwith-Wiedemann syndrome (BWS) is a congenital overgrowth syndrome associated with a characteristic pattern of visceromegaly and predisposition to childhood tumours. BWS is a genetically heterogeneous disorder; most cases are sporadic but approximately 15% are familial and a small number of BWS patients have cytogenetic abnormalities involving chromosome 11p15. Genomic imprinting effects have been implicated in familial and non-familial BWS. We have investigated the molecular pathology of 106 sporadic BWS cases; 17% (14/83) of informative cases had uniparental disomy (UPD) for chromosome 11p15.5. In each case UPD appeared to result from a postzygotic event resulting in mosaicism for segmental paternal isodisomy. The critical region for isodisomy was refined to a 25 cM interval between D11S861 and D11S2071 which contained the IGF2, H19, and p57(KIP2) genes. In three cases isodisomy for 11q markers was detected but this did not extend further than 11q13-q21 suggesting that complete chromosome 11 disomy may not produce a BWS phenotype. The allele specific methylation status of the H19 gene was investigated in 80 sporadic BWS cases. All 13 cases with UPD tested displayed hypermethylation consistent with an excess of paternal H19 alleles. In addition, five of 63 (8%) cases with normal biparental inheritance had H19 hypermethylation consistent with an "imprinting centre" mutation (ICM) or "imprinting error" (IE) lesion. The phenotype of patients with putative ICM/IE mutations was variable and overlapped with that of non-UPD sporadic BWS cases with normal H19 methylation. However, exomphalos was significantly (p < 0.05) more common in the latter group. These findings may indicate differential effects on the expression of imprinted genes in chromosome 11p15 according to the precise molecular pathology. Analysis of H19 methylation is useful for the diagnosis of both UPD or altered imprinting in BWS and shows that a variety of molecular mechanisms may cause relaxation of IGF2 imprinting in BWS.  相似文献   

6.
Uniparental disomy (UPD) of a number of different chromosomes has been found in association with abnormal phenotypes. A growing body of evidence for an imprinting effect involving chromosome 14 has been accumulating. We report on a case of paternal UPD of chromosome 14 studied in late gestation due to polyhydramnios and a ventral wall hernia. A prenatal karyotype documented a balanced Robertsonian 14:14 translocation. The baby was born prematurely with hairy forehead, retrognathia, mild puckering of the lips and finger contractures. Hypotonia has persisted since birth and at age one year, a tracheostomy for laryngomalacia and gastrostomy for feeding remain necessary. Absence of maternal VNTR polymorphisms and homozygosity of paternal polymorphisms using chromosome 14 specific probes at D14S22 and D14S13 loci indicated paternal uniparental isodisomy (pUPID). Parental chromosomes were normal. We also report on a case of maternal UPD in a normal patient with a balanced Robertsonian 14:14 translocation and a history of multiple miscarriages. Five previous reports of chromosome 14 UPD suggest that an adverse developmental effect may be more severe whenever the UPD is paternal in origin. This is the second reported patient with paternal UPD and the fifth reported with maternal UPD, and only few phenotypic similarities are apparent. Examination of these chromosome 14 UPD cases of maternal and paternal origin suggests that there are syndromic imprinting effects. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Many patients with maternal uniparental disomy of chromosome 7 (UPD7) have been described, mainly with intrauterine and postnatal growth retardation or with Silver-Russell syndrome. In contrast, only three cases of paternal UPD7 have been reported, all associated with recessive disorders. Here, we report on the clinical and molecular data of the third patient with paternal UPD7 and cystic fibrosis. Pre- and postnatal growth were normal. These findings support the hypothesis that paternal isodisomy for human chromosome 7 may have no phenotypic effect on growth.  相似文献   

8.
We encountered a 22‐year‐old man (case 1) and a 23‐year‐old woman (case 2), both unrelated and healthy. They were mosaic for the Rh blood group phenotype: one erythrocyte population was D‐positive and the other was D‐negative. Flow cytometric analysis of density profile of RhD antigen in their erythrocytes, and cytogenetic analysis including in situ hybridization using an RHD/RHCE‐containing PAC clone, excluded a deletion of the RHD/RHCE gene complex, but suggested the presence of cells with uniparental disomy for chromosome 1 (UPD1). Microsatellite marker analysis was performed in both probands and their family members. In case 1, the analysis with markers spanning the chromosome 1 revealed both maternal and paternal alleles in his peripheral blood leukocytes (PBL), Epstein‐Barr virus‐transformed lymphoblastoid cells (EBL), and buccal mucosal cells. However, only paternal alleles were detected in all of 50 individual pieces of his hair or hair‐roots and all of five monoclonal cell lines cloned from his established EBL. There was no direct evidence of heterozygous, biparental alleles in these two tissues. The presence of maternal isodisomy 1 was not absolutely ruled out in other tissues examined in case 1. Similar results were obtained in case 2, showing biparental, disomic patterns in her PBL and in 15 of 20 pieces of her hair roots, and showing monoallelic patterns in the remaining five pieces of hair roots. Analysis with markers for other autosomes confirmed their biparental inheritance. These findings indicated that both cases had at least two cell populations, one population having paternal UPD1 (isodisomy 1), and another heterozygous, biparental disomy 1. We emphasize that isodisomy for chromosome 1 is not infrequent and may cause unusual RhD phenotype, as seen in cases we described. © 2001 Wiley‐Liss, Inc.  相似文献   

9.
Uniparental disomy (UPD) describes the inheritance of a pair of chromosomes from only one parent. Meiotic nondisjunction followed by trisomy rescue is considered to be the major mechanism of formation. A literature search for cases with whole chromosome UPD other than UPD 15 was performed. Information on parental age was available in 111 cases with maternal UPD and in 34 cases with paternal UPD. In 52 out of 74 cases with maternal heterodisomy, information on the time of nondisjunction was also available. Around two-thirds of these cases were due to a maternal meiosis I error. Compared with the mean maternal age of 30.0 years in Bavarian mothers, in the year 2000 an advanced mean maternal age of 34.8 years was found in cases with maternal heterodisomy (n=74; P<0.0001). Almost no difference in the mean maternal age was observed between meiosis I errors (35.56 years; n=30) and meiosis II errors (35.78 years; n=14). The mean maternal age was 31.46 years in cases with maternal isodisomy and a normal karyotype (n=24), and the mean paternal age was 31.48 years in cases with paternal isodisomy (n=28). The various mean parental ages in heterodisomic and isodisomic cases are considered to reflect strongly the different mechanisms of formation: trisomy rescue or gamete complementation, which implies a meiotic nondisjunction in maternal heterodisomic UPD, and postzygotic somatic reduplication in cases with paternal and maternal isodisomic UPD.  相似文献   

10.
The mitochondrial trifunctional protein (TFP) is an enzyme complex of the fatty acid beta-oxidation cycle composed of an alpha- and a beta-subunit. The two encoding genes are located in the same region on chromosome 2 (2p23). TFP deficiency due to either alpha- or beta-subunit mutations is characterized by mutational and phenotypic heterogeneity with severe, early-onset, cardiac forms and milder, later-onset, myopathic phenotypes. In two unrelated patients with lethal TFP deficiency, we delineated apparently homozygous alpha-subunit mutations that were present in heterozygous form in both mothers, but not in either biological father. We performed a microsatellite repeat analysis of both patients and their parents using seven chromosome 2-specific polymorphic DNA markers and four nonchromosome 2 markers. In both patients, two chromosome 2-specific markers demonstrated maternal isodisomy of chromosome 2. The other five chromosome 2-specific markers were noninformative in each patient. Inheritance of alleles from chromosomes 4, 5, and 7 was consistent with paternity. These results explain the apparently anomalous pattern of transmission. Six of our 12 known TFP-deficient patients with alpha-subunit mutations have disease due to homozygous changes and two of them via the mechanism of uniparental disomy (UPD) (16.7%). For very rare autosomal recessive diseases, UPD may represent a common mechanism. This study emphasizes the need to confirm mutations in parents whenever possible. TFP deficiency is another disorder that has become manifest due to isodisomy of chromosome 2. This information will impact genetic counseling for these families, reducing greatly the 25% risk normally used for recessive disorders.  相似文献   

11.
OBJECTIVE—To review all cases with segmental and/or complex uniparental disomy (UPD), to study aetiology and mechanisms of formation, and to draw conclusions.
DESIGN—Searching published reports in Medline.
RESULTS—The survey found at least nine cases with segmental UPD and a normal karyotype, 22 cases with UPD of a whole chromosome and a simple or a non-homologous Robertsonian translocation, eight cases with UPD and two isochromosomes, one of the short arm and one of the long arm of a non-acrocentric chromosome, 39 cases with UPD and an isochromosome of the long arm of two homologous acrocentric chromosomes, one case of UPD and an isochromosome 8 associated with a homozygous del(8)(p23.3pter), and 21 cases with UPD of a whole or parts of a chromosome associated with a complex karyotype. Segmental UPD is formed by somatic recombination (isodisomy) or by trisomy rescue. In the latter mechanism, a meiosis I error is associated with meiotic recombination and an additional somatic exchange between two non-uniparental chromatids. Subsequently, the chromatid that originated from the disomic gamete is lost (iso- and heterodisomy). In cases of UPD associated with one isochromosome of the short arm and one isochromosome of the long arm of a non-acrocentric chromosome and in cases of UPD associated with a true isochromosome of an acrocentric chromosome, mitotic complementation is assumed. This term describes the formation by misdivision at the centromere during an early mitosis of a monosomic zygote. In cases of UPD associated with an additional marker chromosome, either mitotic formation of the marker chromosome in a trisomic zygote or fertilisation of a gamete with a marker chromosome formed in meiosis by a disomic gamete or by a normal gamete and subsequent duplication are possible.
CONCLUSIONS—Research in the field of segmental and/or complex UPD may help to explain undiagnosed non-Mendelian disorders, to recognise hotspots for meiotic and mitotic recombinations, and to show that chromosomal segregation is more complex than previously thought. It may also be helpful to map autosomal recessively inherited genes, genes/regions of genomic imprinting, and dysmorphic phenotypes. Last but not least it would improve genetic counselling.


Keywords: genomic imprinting; isochromosome; Robertsonian translocation; uniparental disomy (UPD)  相似文献   

12.
Mosaic uniparental disomy in Beckwith-Wiedemann syndrome.   总被引:2,自引:3,他引:2       下载免费PDF全文
Beckwith-Wiedemann syndrome (BWS) is a congenital overgrowth syndrome with variable expression. The major features are anterior abdominal wall defects, macroglossia, and gigantism and less commonly neonatal hypoglycaemia, organomegaly, congenital renal anomalies, hemihypertrophy and embryonal tumours occur. BWS is a genetically heterogeneous disorder; most cases are sporadic but approximately 15% are familial and a small number of BWS patients have cytogenetic abnormalities involving chromosome 11p15. Genomic imprinting effects have been implicated in familial and non-familial BWS, and uniparental disomy (UPD) for chromosome 11 has been reported in sporadic cases. We investigated the incidence, pathogenesis, and clinical associations of UPD in 49 patients with non-familial BWS and a normal karyotype. UPD for chromosome 11p15 was detected in nine of 32 (28%) informative patients. A further two patients appeared to be disomic at the WT1 locus in chromosome 11p13, but were uninformative at chromosome 11p15.5 loci tested. In all cases with UPD the affected person was mosaic for a paternal isodisomy and a normal cell line indicating that UPD had arisen as a postzygotic event. Compared to cases in which paternal isodisomy for chromosomes 11p15.5 had been excluded (n = 23), BWS patients with UPD was more likely to have hemihypertrophy (6/9 versus 1/23, p < 0.001) and less likely to have exomphalos (0/9 versus 13/23, p < 0.01), but there were no significant differences between disomic and non-disomic cases in the incidence of hypoglycaemia, nephromegaly, neoplasia, and developmental delay. The detection of UPD in BWS patients allows accurate genetic counselling to be provided and provides an insight into the molecular pathogenesis of BWS.  相似文献   

13.
Uniparental disomy (UPD) is the abnormal inheritance of two copies of a chromosome from the same parent. Possible mechanisms for UPD include trisomy rescue, monosomy rescue, gametic complementation, and somatic recombination. Most of these mechanisms can involve rearranged chromosomes, particularly isochromosomes and Robertsonian translocations. Both maternal and paternal UPD have been reported for most of the acrocentric chromosomes. However, only UPD for chromosomes 14 and 15 show an apparent imprinting effect. Herein, we present two cases of paternal UPD 13 involving isochromosomes. Both cases were referred for UPD studies due to the formation of a de novo rea(13q13q). Case 2 was complicated by the segregation of a familial rob(13q14q) of maternal origin. Both propositi were phenotypically normal at the time of examination. Polymorphic marker analysis in Case 1 showed the distribution of alleles of markers along chromosome 13 to be complete isodisomy, consistent with an isochromosome. This rearrangement could have occurred either meiotically, without recombination, or mitotically. A likely mechanism for UPD in this case is monosomy rescue, through postzygotic formation of the isochromosome. In Case 2 the distribution of proximal alleles indicated an isochromosome, but recombination was evident. Thus, this isochromosome must have formed prior to or during meiosis I. A likely mechanism for UPD in this case is gametic complementation, since the mother carries a rob(13q14q) and is at risk of producing aneuploid gametes. However, trisomy rescue of a trisomy 13 conceptus cannot be completely excluded. Given that both cases were phenotypically normal, these data further support that paternal UPD 13 does not have an adverse phenotypic outcome and, thus, does not show an apparent imprinting effect.  相似文献   

14.
Uniparental disomy (UPD) describes the inheritance of two homologous chromosomes from a single parent. Disease phenotypes associated with UPD and chromosomal imprinting, rather than with mutations, include Beckwith-Wiedemann syndrome (paternal UPD11p), Angelman syndrome (paternal UPD15), Prader-Willi syndrome (maternal UPD15), and transient neonatal diabetes (paternal UPD6). Here we report on the first case of paternal uniparental isodisomy of chromosome 14 with a mosaicism for a supernumerary marker chromosome 14. The patient demonstrated a small thorax with a 'coat hanger' shape of the ribs, kyphoscoliosis, hypoplasia of the maxilla and mandible, a broad nasal bridge with anteverted nares, contractures of the wrists with ulnar deviation bilaterally, diastasis recti, and marked muscle hypotonia. Vertical skin creases under the chin and stippled epiphyses of the humeri were features not previously described in patients with paternal UPD14. This case illustrates that as with the finding of an isochromosome, a supernumerary marker chromosome can be an important clue to the presence of UPD14.  相似文献   

15.
Donnai-Barrow syndrome [Faciooculoacousticorenal (FOAR) syndrome; DBS/FOAR] is a rare autosomal recessive disorder resulting from mutations in the LRP2 gene located on chromosome 2q31.1. We report a unique DBS/FOAR patient homozygous for a 4-bp LRP2 deletion secondary to paternal uniparental isodisomy for chromosome 2. The propositus inherited the mutation from his heterozygous carrier father, whereas the mother carried only wild-type LRP2 alleles. This is the first case of DBS/FOAR resulting from uniparental disomy (UPD) and the fourth published case of any paternal UPD 2 ascertained through unmasking of an autosomal recessive disorder. The absence of clinical symptoms above and beyond the classical phenotype in this and the other disorders suggests that paternal chromosome 2 is unlikely to contain imprinted genes notably affecting either growth or development. This report highlights the importance of parental genotyping in order to give accurate genetic counseling for autosomal recessive disorders.  相似文献   

16.
We report on a girl with a dicentric chromosome 14 [45,XX,inv(9)(p11q13),dic(14;14)(p11.1;p11.1)] with paternal uniparental disomy (UPD) for chromosome 14. Clinical findings include severe hypotonia, thoracic dystrophy, diastasis recti, swallowing difficulties with aspiration, developmental delay, and multiple minor anomalies. UPD for chromosome 14 has been documented with paternal UPD much less commonly than with maternal UPD. There have been ten cases of paternal UPD for chromosome 14 and one case of segmental paternal isodisomy of chromosome 14. Many of the findings are nonspecific, but the radiographic rib findings (referred to as the "coat-hanger" sign) are characteristic for this condition. UPD 14 studies should be performed in children thought to have Jeune asphyxiating thoracic dystrophy or other related osteochondrodysplasias when the diagnosis is in question. Our patient and the previously reported cases support a discrete recognizable phenotype for paternal UPD for chromosome 14.  相似文献   

17.
Uniparental isodisomy (iUPD) is a rare genetic condition caused by non-disjunction during meiosis that ultimately leads to a duplication of either the maternal or paternal chromosome in the affected individual. Two types of disorders can result, those due to imprinted genes and those due to homozygosity of recessive disease-causing mutations. Here, we describe the third known case of complete chromosome 4 iUPD of maternal origin. This condition became apparent during whole genome linkage studies of psychiatric disorders in the Portuguese population. The proband is an adult female with normal fertility and no major medical complaints, but a history of major depressive disorder and multiple suicide attempts. The proband's siblings and parents had normal chromosome 4 genotypes and no history of mood disturbance. A brief review of other studies lends support for the possibility that genes on chromosome 4 might confer risk for mood disorders. We conclude that chromosome 4 maternal uniparental disomy (UPD) is a rare disorder that may present with a major depressive phenotype. The lack of a common disease phenotype between this and two other cases of chromosome 4 iUPD [Lindenbaum et al. [1991] Am J Med Genet 49(Suppl 285):1582; Spena et al. [2004] Eur J Hum Genet 12:891-898) would suggest that there is no vital maternal gene imprinting on chromosome 4. However, since there is no reported case of paternal chromosome 4 UPD, paternal gene imprinting on chromosome 4 cannot be excluded.  相似文献   

18.
An imprinted locus associated with transient neonatal diabetes mellitus   总被引:10,自引:0,他引:10  
Recently, we reported the localization of a gene for transient neonatal diabetes mellitus (TNDM), a rare form of childhood diabetes, to an approximately 5.4 Mb region of chromosome 6q24. We have also shown that TNDM is associated with both paternal uniparental disomy (UPD) of chromosome 6 and paternal duplications of the critical region. The sequencing of P1-derived artificial chromosome clones from within the region of interest has allowed us to further localize the gene and to investigate the methylation status of the region. The gene is now known to reside in a 300-400 kb region of 6q24 which contains several CpG islands. At one island we have demonstrated differential DNA methylation between patients with paternal UPD of chromosome 6 and normal controls. In addition, two patients with TNDM, in whom neither paternal UPD of chromosome 6 nor duplication of 6q24 have been found, show a DNA methylation pattern identical to that of patients with paternal UPD of chromosome 6. Control individuals show a hemizygous methylation pattern. These results show that TNDM can be associated with a methylation change and identify a novel methylation imprint on chromosome 6 associated with TNDM.  相似文献   

19.
Paternal uniparental disomy (UPD) for chromosome 15 (UPD15), which is found in approximately 2% of Angelman syndrome (AS) patients, is much less frequent than maternal UPD15, which is found in 25% of Prader-Willi syndrome patients. Such a difference cannot be easily accounted for if 'gamete complementation' is the main mechanism leading to UPD. If we assume that non-disjunction of chromosome 15 in male meiosis is relatively rare, then the gain or loss of the paternal chromosome involved in paternal and maternal UPD15, respectively, may be more likely to result from a post-zygotic rather than a meiotic event. To test this hypothesis, the origin of the extra chromosome 15 was determined in 21 AS patients with paternal UPD15 with a paternal origin of the trisomy. Only 4 of 21 paternal UPD15 cases could be clearly attributed to a meiotic error. Furthermore, significant non-random X-chromosome inactivation (XCI) observed in maternal UPD15 patients (p < 0.001) provides indirect evidence that a post-zygotic error is also typically involved in loss of the paternal chromosome. The mean maternal and paternal ages of 33.4 and 39.4 years, respectively, for paternal UPD15 cases are increased as compared with normal controls. This may be simply the consequence of an age association with maternal non-disjunction leading to nullisomy for chromosome 15 in the oocyte, although the higher paternal age in paternal UPD15 as compared with maternal UPD15 cases is suggestive that paternal age may also play a role in the origin of paternal UPD15.  相似文献   

20.
The limb-girdle muscular dystrophies (LGMDs) are a heterogenous group of diseases characterized by shoulder-girdle and pelvic muscle weakness and wasting. LGMD 2E is an autosomal recessively inherited form of the disease caused by mutations in the β-sarcoglycan (SGCB) gene located at 4q12. In this report, we describe a patient who demonstrates non-Mendelian inheritance of a homozygous missense mutation in SGCB resulting in disease expression. A combination of single-nucleotide polymorphism (SNP) array technology and microsatellite analysis revealed the occurrence of maternal uniparental disomy (UPD) for chromosome 4 in the patient. As a consequence of segmental isodisomy at 4q12, the patient inherited two identical SGCB alleles carrying a missense mutation predicted to result in abnormal protein function. SNP array technology proved to be an elegant means to determine the most probable mechanism of UPD formation in this case, and enabled us to determine the location of recombination events along chromosome 4. In our patient, UPD likely arose from a trisomy rescue event due to maternal meiotic non-disjunction that we speculate may have been caused by abnormal recombination at the pericentromeric region. Maternal UPD 4 is a rare finding, and to our knowledge this is the first reported case of UPD in association with LGMD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号