首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Meeks JP  Mennerick S 《Hippocampus》2007,17(11):1100-1108
Older studies suggest that astrocytes act as potassium electrodes and depolarize with the potassium efflux accompanying neuronal activity. Newer studies suggest that astrocytes depolarize in response to neuronal glutamate release and the activity of electrogenic glial glutamate transporters, thus casting doubt on the fidelity with which astrocytes might sense extracellular potassium rises. Any K(+)-induced astrocyte depolarization might reflect a spatial buffering effect of astrocytes during neuronal activity. For these reasons, we studied stimulus-evoked currents in hippocampal CA1 astrocytes. Hippocampal astrocytes exhibited stimulus-evoked transient glutamate transporter currents and slower Ba(2+)-sensitive inward rectifier potassium (K(ir)) currents. In whole-cell astrocyte recordings, Ba(2+) blocked a very weakly rectifying component of the astrocyte membrane conductance. The slow stimulus-elicited current, like measurements from K(+)-sensitive electrodes under the same conditions, predicted small bulk [K(+)](o) increases (<0.5 mM) following the termination of short-stimulus trains. These currents indicate the potential for astrocyte spatial K(+) buffering. However, Ba(2+) did not significantly affect resting [K(+)](o) or the [K(+)](o) rises detected by the K(+)-sensitive electrode. To test whether local K(+) rises may be significantly higher than those detected by glial recordings or by K(+) electrodes, we assayed EPSCs and fiber volleys, two measures very sensitive to K(+) increases. We found that Ba(2+) had little effect on neuronal axonal or synaptic function during short-stimulus trains, indicating that K(ir)s do not influence local [K(+)](o) rises enough, under these conditions to affect synaptic transmission. In conclusion, our results indicate that hippocampal astrocytes are faithful sensors of [K(+)](o) rises, but we find little evidence for physiologically relevant spatial K(+) buffering during brief bursts of presynaptic activity.  相似文献   

2.
Bay V  Butt AM 《Glia》2012,60(4):651-660
Uptake of K(+) released by axons during action potential propagation is a major function of astrocytes. Here, we demonstrate the importance of glial inward rectifying potassium channels (Kir) in regulating extracellular K(+) ([K(+)](o)) and axonal electrical activity in CNS white matter of the mouse optic nerve. Increasing optic nerve stimulation frequency from 1 Hz to 10-35 Hz for 120 s resulted in a rise in [K(+)](o) and consequent decay in the compound action potential (CAP), a measure of reduced axonal activity. On cessation of high frequency stimulation, rapid K(+) clearance resulted in a poststimulus [K(+)](o) undershoot, followed by a slow recovery of [K(+)](o) and the CAP, which were more protracted with increasing stimulation frequency. Blockade of Kir (100 μM BaCl(2)) slowed poststimulus recovery of [K(+)](o) and the CAP at all stimulation frequencies, indicating a primary function of glial Kir was redistributing K(+) to the extracellular space to offset active removal by Na(+)-K(+) pumps. At higher levels of axonal activity, Kir blockade also increased [K(+)](o) accumulation, exacerbating the decline in the CAP and impeding its subsequent recovery. In the Kir4.1-/- mouse, astrocytes displayed a marked reduction of inward currents and were severely depolarized, resulting in retarded [K(+)](o) regulation and reduced CAP. The results demonstrate the importance of glial Kir in K(+) spatial buffering and sustaining axonal activity in the optic nerve. Glial Kir have increasing importance in K(+) clearance at higher levels of axonal activity, helping to maintain the physiological [K(+)](o) ceiling and ensure the fidelity of signaling between the retina and brain.  相似文献   

3.
Jansen LA  Uhlmann EJ  Crino PB  Gutmann DH  Wong M 《Epilepsia》2005,46(12):1871-1880
PURPOSE: Individuals with tuberous sclerosis complex (TSC) frequently have intractable epilepsy. To gain insights into mechanisms of epileptogenesis in TSC, we previously developed a mouse model of TSC with conditional inactivation of the Tsc1 gene in glia (Tsc1(GFAP)CKO mice). These mice develop progressive seizures, suggesting that glial dysfunction may be involved in epileptogenesis in TSC. Here, we investigated the hypothesis that impairment of potassium uptake through astrocyte inward rectifier potassium (Kir) channels may contribute to epileptogenesis in Tsc1(GFAP)CKO mice. METHODS: Kir channel function and expression were examined in cultured Tsc1-deficient astrocytes. Kir mRNA expression was analyzed in astrocytes microdissected from neocortical sections of Tsc1(GFAP)CKO mice. Physiological assays of astrocyte Kir currents and susceptibility to epileptiform activity induced by increased extracellular potassium were further studied in situ in hippocampal slices. RESULTS: Cultured Tsc1-deficient astrocytes exhibited reduced Kir currents and decreased expression of specific Kir channel protein subunits, Kir2.1 and Kir6.1. mRNA expression of the same Kir subunits also was reduced in astrocytes from neocortex of Tsc1(GFAP)CKO mice. By using pharmacologic modulators of signalling pathways implicated in TSC, we showed that the impairment in Kir channel function was not affected by rapamycin inhibition of the mTOR/S6K pathway, but was reversed by decreasing CDK2 activity with roscovitine or retinoic acid. Last, hippocampal slices from Tsc1(GFAP)CKO mice exhibited decreased astrocytic Kir currents, as well as increased susceptibility to potassium-induced epileptiform activity. CONCLUSIONS: Impaired extracellular potassium uptake by astrocytes through Kir channels may contribute to neuronal hyperexcitability and epileptogenesis in a mouse model of TSC.  相似文献   

4.
Accumulating evidence indicates a significant astrocytic involvement in cerebral ischemia neuropathology, but little is known about the immediate astrocytic responses to ischemia insults in terms of electrophysiology and their pathologic implications. We show that astrocytes in acute rat hippocampal slices responded reversibly to more than 30 mins oxygen and glucose deprivation (OGD) treatment with depolarized membrane potentials (V(m)) in whole-cell current clamp recording. This depolarization was multiphasic, showing an initial approximately 11 mins small-amplitude depolarization plateau, followed by a 6-mins accelerated depolarization, and then a second plateau. Oxygen and glucose deprivation-induced astrocyte V(m) depolarization was only marginally inhibited, approximately 10%, by inhibition of ionotropic glutamate, gamma-aminobutyric acid, purinergic receptors, and glutamate transporters presumed to be present on astrocytes in situ, suggesting increase in extracellular [K(+)] was primarily responsible for the astrocytic V(m) change. The V(m) depolarization was five-fold greater when glycolysis was inhibited by iodoacetate in a short 8 mins OGD treatment, suggesting glycolytic ATP is critical in maintaining extracellular K(+) homeostasis in the early phase of OGD. Addition of oxidative metabolism inhibitors had much less effect. Cessation of OGD was always followed by a rapid and transient 9 mV astrocyte V(m) hyperpolarization relative to the control V(m) that was inhibited by ouabain, indicating a reactively enhanced Na(+)/K(+)-ATPase activity in post-OGD reperfusion. Altogether, hippocampal astrocytes appear to be electrophysiologically more resistant to acute ischemia insults as compared with neurons, and this should allow astrocytes to rescue endangered neurons in the face of acute ischemia insults via their various homeostatic functions.  相似文献   

5.
Aquaporin-4 (AQP4) is the main water channel in the brain and primarily localized to astrocytes where the channels are thought to contribute to water and K(+) homeostasis. The close apposition of AQP4 and inward rectifier K(+) channels (Kir4.1) led to the hypothesis of direct functional interactions between both channels. We investigated the impact of AQP4 on stimulus-induced alterations of the extracellular K(+) concentration ([K(+)](o)) in murine hippocampal slices. Recordings with K(+)-selective microelectrodes combined with field potential analyses were compared in wild type (wt) and AQP4 knockout (AQP4(-/-)) mice. Astrocyte gap junction coupling was assessed with tracer filling during patch clamp recording. Antidromic fiber stimulation in the alveus evoked smaller increases and slower recovery of [K(+)](o) in the stratum pyramidale of AQP4(-/-) mice indicating reduced glial swelling and a larger extracellular space when compared with control tissue. Moreover, the data hint at an impairment of the glial Na(+)/K(+) ATPase in AQP4-deficient astrocytes. In a next step, we investigated the laminar profile of [K(+)](o) by moving the recording electrode from the stratum pyramidale toward the hippocampal fissure. At distances beyond 300 μm from the pyramidal layer, the stimulation-induced, normalized increases of [K(+)](o) in AQP4(-/-) mice exceeded the corresponding values of wt mice, indicating facilitated spatial buffering. Astrocytes in AQP4(-/-) mice also displayed enhanced tracer coupling, which might underlie the improved spatial re- distribution of [K(+)](o) in the hippocampus. These findings highlight the role of AQP4 channels in the regulation of K(+) homeostasis.  相似文献   

6.
Previous studies in retinal glial (Müller) cells have suggested that (1) the dominant membrane currents are mediated by K(+) inward-rectifier (Kir) channels (Newman and Reichenbach, Trends Neurosci 19:307-312, 1996), and (2) rectification of these Kir channels is due largely to a block of outward currents by endogenous polyamines such as spermine/spermidine (SPM/SPD) (Lopatin et al., Nature 372:366-369, 1994). In frog Müller cells, the degree of rectification of Kir-mediated currents is significantly higher in the endfoot than in the somatic membrane (Skatchkov et al., Glia 27:171-181, 1999). This article shows that in these cells there is a topographical correlation between the local cytoplasmic SPM/SPD immunoreactivity and the ratio of inward to outward K(+) currents through the surrounding membrane area. Throughout the retina, Müller cell endfeet display a high SPM/SPD immunolabel (assessed by densitometry) and a large inward rectification of K(+) currents, as measured by the ratio of inward to outward current produced by step changes in [K(+)](o). In the retinal periphery, Müller cell somata are characterized by roughly one-half of the SPM/SPD immunoreactivity and K(+)-current rectification as the corresponding endfeet. In the retinal center, Müller cell somata are virtually devoid of both SPM/SPD immunolabel and K(+)-current inward rectification. Comparing one region of the retina with another, we find an exponential correlation between the local K(+) rectification and the local SPM/SPD content. This finding suggests that the degree of inward rectification in a given membrane area is determined by the local cytoplasmic polyamine concentration.  相似文献   

7.
We used ouabain (100 microM) to block Na+,K(+)ATPase of in vitro rat hippocampal slices. This treatment was sufficient to cause the sudden depolarization that is the hallmark of both spreading depression (SD) and of the SD-like anoxic depolarization (AD). This depolarization was accompanied by a large and sudden increase in [K](o), also reminiscent of that observed during both SD and AD. Ouabain-induced SD did not require a complete inactivation of Na+,K(+)ATPase, as it occurred when the enzyme was still capable of providing recovery of both V(o) and [K](o). The data indicate that functional inactivation of Na+,K(+)ATPase per se initiates events that lead to an SD-like AD. This ouabain-induced depolarization was not affected by block of synaptic transmission, instead it was abolished by hyperosmolarity of the extracellular space. The possible relevance of these findings to the pathophysiology of AD is discussed.  相似文献   

8.
Somjen GG  Müller M 《Brain research》2000,885(1):102-110
Previous work suggested a role for the voltage-dependent persistent sodium current, I(Na,P), in the generation of seizures and spreading depression (SD). Ordinarily, I(Na,P) is small in hippocampal neurons. We investigated the effect of raising external K(+) concentration, [K(+)](o), on whole-cell persistent inward current in freshly isolated hippocampal CA1 pyramidal neurons. I(Na,P) was identified by TTX-sensitivity and dependence on external Na(+) concentration. When none of the ion channels were blocked, I(Na,P) was not usually detectable, probably because competing K(+) current masked it, but after raising [K(+)](o) I(Na,P) appeared, while K(+) currents diminished. With K(+) channels blocked, I(Na,P) could usually be evoked in control solution and raising [K(+)](o) caused its reversible increase in most cells. The increase did not depend on external calcium [Ca(2+)](o). In CA1 pyramidal neurons in hippocampal slices a TTX-sensitive persistent inward current was always recorded and when [K(+)](o) was raised, it was reversibly enhanced. Strong depolarization evoked irregular current fluctuations, which were also augmented in high [K(+)](o). The findings support a role of potassium-mediated positive feedback in the generation of seizures and spreading depression.  相似文献   

9.
10.
Perillán PR  Li X  Potts EA  Chen M  Bredt DS  Simard JM 《Glia》2000,31(2):181-192
Astrocytic inward rectifying K(+) channels that participate in K(+) spatial buffering in the central nervous system have been extensively investigated, but specific gene products have not been fully identified. We studied primary cultured reactive astrocytes of stellate and polygonal morphology from adult rat brains, as well as stellate astrocytes from neonatal rat brains. Single-channel recordings of cell-attached patches revealed that polygonal reactive astrocytes expressed only one hyperpolarization-activated single-channel conductance of 11-15 pS whose open probability was independent of voltage, whereas stellate reactive and stellate neonatal astrocytes exhibited two conductances, 11-15 pS and 24-27 pS. All three subtypes of astrocytes exhibited a hyperpolarization-activated macroscopic inward K(+) current that was strongly rectifying and was abrogated by 1 mM intracellular Mg(2+) introduced during conventional but not perforated patch whole-cell recording. This Mg(2+)-sensitive current comprised the total inward rectifier current in polygonal reactive astrocytes, but only a fraction of the inward rectifier current in stellate reactive and stellate neonatal astrocytes. Because a strongly rectifying, inward rectifier K(+) channel with a single-channel conductance of 11-15 pS that is voltage independent is consistent with features of Kir2.3 (IRK3), we performed immunofluorescence experiments with anti-Kir2.3 and anti-glial fibrillary acidic protein antibodies. Both antibodies co-localized to all three subtypes of astrocytes in primary culture and to reactive astrocytes in situ within brain and gelatin sponge implants. Our data indicate that astrocytes of both polygonal and stellate morphology, from both adult and neonatal rat brain, express Kir2.3 both in vivo and in vitro. Constitutive expression of Kir2.3 regardless of cell morphology or age of origin of the source tissue suggests an important functional role for this channel in astrocytes.  相似文献   

11.
Glial fibrillary acidic protein (GFAP) is the main component of intermediate filaments in astrocytes. To assess its function in astrocyte swelling, we compared astrocyte membrane properties and swelling in spinal cord slices of 8- to 10-day-old wild-type control (GFAP(+/+)) and GFAP-knockout (GFAP(-/-)) mice. Membrane currents and K(+) accumulation around astrocytes after a depolarizing pulse were studied using the whole-cell patch-clamp technique. In vivo cell swelling was studied in the cortex during spreading depression (SD) in 3 to 6-month-old animals. Swelling-induced changes of the extracellular space (ECS) diffusion parameters, i.e., volume fraction alpha and tortuosity lambda, were studied by the real-time iontophoretic tetramethylammonium (TMA(+)) method using TMA(+)-selective microelectrodes. Morphological analysis using confocal microscopy and quantification of xy intensity profiles in a confocal plane revealed a lower density of processes in GFAP(-/-) astrocytes than in GFAP(+/+) astrocytes. K(+) accumulation evoked by membrane depolarization was lower in the vicinity of GFAP(-/-) astrocytes than GFAP(+/+) astrocytes, suggesting the presence of a larger ECS around GFAP(-/-) astrocytes. Astrocyte swelling evoked by application of 50 mM K(+) or by hypotonic solution (HS) produced a larger increase in [K(+)](e) around GFAP(+/+) astrocytes than around GFAP(-/-) astrocytes. No differences in alpha and lambda in the spinal cord or cortex of GFAP(+/+) and GFAP(-/-) mice were found; however, the application of either 50 mM K(+) or HS in spinal cord, or SD in cortex, evoked a large decrease in alpha and an increase in lambda in GFAP(+/+) mice only. Slower swelling in GFAP(-/-) astrocytes indicates that GFAP and intermediate filaments play an important role in cell swelling during pathological states.  相似文献   

12.
Functional properties of astrocytes were investigated with the patch-clamp technique in acute hippocampal brain slices obtained from surgical specimens of patients suffering from pharmaco-resistant temporal lobe epilepsy (TLE). In patients with significant neuronal cell loss, i.e. Ammon's horn sclerosis, the glial current patterns resembled properties characteristic of immature astrocytes in the murine or rat hippocampus. Depolarizing voltage steps activated delayed rectifier and transient K+ currents as well as tetrodotoxin-sensitive Na+ currents in all astrocytes analysed in the sclerotic human tissue. Hyperpolarizing voltages elicited inward rectifier currents that inactivated at membrane potentials negative to -130 mV. Comparative recordings were performed in astrocytes from patients with lesion-associated TLE that lacked significant histopathological hippocampal alterations. These cells displayed stronger inward rectification. To obtain a quantitative measure, current densities were calculated and the ratio of inward to outward K+ conductances was determined. Both values were significantly smaller in astrocytes from the sclerotic group compared with lesion-associated TLE. During normal development of rodent brain, astroglial inward rectification gradually increases. It thus appears reasonable to suggest that astrocytes in human sclerotic tissue return to an immature current pattern. Reduced astroglial inward rectification in conjunction with seizure-induced shrinkage of the extracellular space may lead to impaired spatial K+ buffering. This will result in stronger and prolonged depolarization of glial cells and neurons in response to activity-dependent K+ release, and may thus contribute to seizure generation in this particular condition of human TLE.  相似文献   

13.
The retinae and brains of larval and adult amphibians survive long-lasting anoxia; this finding suggests the presence of functional K(ATP) channels. We have previously shown with immunocytochemistry studies that retinal glial (Müller) cells in adult frogs express the K(ATP) channel and receptor proteins, Kir6.1 and SUR1, while retinal neurons display Kir6.2 and SUR2A/B (Skatchkov et al., 2001a: NeuroReport 12:1437-1441; Eaton et al., in press: NeuroReport). Using both immunocytochemistry and electrophysiology, we demonstrate the expression of Kir6.1/SUR1 (K(ATP)) channels in adult frog and tadpole Müller cells. Using conditions favoring the activation of K(ATP) channels (i.e., ATP- and spermine-free cytoplasm-dialyzing solution containing gluconate) in Müller cells isolated from both adult frogs and tadpoles, we demonstrate the following. First, using the patch-clamp technique in whole-cell recordings, tolbutamide, a blocker of K(ATP) channels, blocks nearly 100% of the transient and about 30% of the steady-state inward currents and depolarizes the cell membrane by 5-12 mV. Second, inside-out membrane patches display a single-channel inward current induced by gluconate (40 mM) and blocked by ATP (200 microM) at the cytoplasmic side. The channels apparently show two sublevels (each of approximately 27-32 pS) with a total of 85-pS maximal conductance at -80 mV; the open probability follows a two-exponential mechanism. Thus, functional K(ATP) channels, composed of Kir6.1/SUR1, are present in frog Müller cells and contribute a significant part to the whole-cell K+ inward currents in the absence of ATP. Other inwardly rectifying channels, such as Kir4.1 or Kir2.1, may mediate the remaining currents. K(ATP) channels may help maintain glial cell functions during ATP deficiency.  相似文献   

14.
Mato S  Alberdi E  Ledent C  Watanabe M  Matute C 《Glia》2009,57(3):295-306
Regulation of Ca(2+) homeostasis plays a critical role in oligodendrocyte function and survival. Cannabinoid CB(1) and CB(2) receptors have been shown to regulate Ca(2+) levels and/or K(+) currents in a variety of cell types. In this study we investigated the effect of cannabinoid compounds on the Ca(2+) influx elicited in cultured oligodendrocytes by transient membrane depolarization with an elevated extracellular K(+) concentration (50 mM). The CB(1) receptor agonist arachidonoyl-chloro-ethanolamide (ACEA) elicited a concentration-dependent inhibition of depolarization-evoked Ca(2+) transients in oligodendroglial somata with a maximal effect (94+/-3)% and an EC(50) of 1.3+/-0.03 microM. This activity was mimicked by the CB(1)/CB(2) agonist CP55,940, as well as by the endocannabinoids N-arachidonoyl-ethanolamine (anandamide, AEA) and 2-arachidonoylglycerol (2-AG), whereas the CB(2) receptor selective agonist JWH133 was ineffective. The CB(1) receptor antagonist AM251 (1 microM) also reduced the Ca(2+) response evoked by high extracellular K(+) and did not prevent the inhibition elicited by ACEA (3 microM). Nevertheless, the ability of ACEA and AEA to reduce depolarization-evoked Ca(2+) transients was significantly reduced in oligodendrocytes from CB(1) receptor knockout mice, as well as by pretreatment with pertussis toxin. Bath application of the inwardly rectifying K(+) channels (Kir channels) blockers BaCl(2) (300 microM) and CsCl(2) (1 mM) reduced the size of voltage-induced Ca(2+) influx and partially prevented the inhibitory effect of ACEA. Our results indicate that cannabinoids inhibit depolarization-evoked Ca(2+) transients in oligodendrocytes via CB(1) receptor-independent and -dependent mechanisms that involve the activation of PTX-sensitive G(i/o) proteins and the blockade of Kir channels.  相似文献   

15.
Spinal cord astrocytes (SCA) have a high permeability to K+ and hence have hyperpolarized resting membrane potentials. The underlying K+ channels are believed to participate in the uptake of neuronally released K+. These K+ channels have been studied extensively with regard to their biophysics and pharmacology, but their molecular identity in spinal cord is currently unknown. Using a combination of approaches, we demonstrate that channels composed of the Kir4.1 subunit are responsible for mediating the resting K+ conductance in SCA. Biophysical analysis demonstrates astrocytic Kir currents as weakly rectifying, potentiated by increasing [K+]o, and inhibited by micromolar concentrations of Ba2+. These currents were insensitive to tolbutemide, a selective blocker of Kir6.x channels, and to tertiapin, a blocker for Kir1.1 and Kir3.1/3.4 channels. PCR and Western blot analysis show prominent expression of Kir4.1 in SCA, and immunocytochemistry shows localization Kir4.1 channels to the plasma membrane. Kir4.1 protein levels show a developmental upregulation in vivo that parallels an increase in currents recorded over the same time period. Kir4.1 is highly expressed throughout most areas of the gray matter in spinal cord in vivo and recordings from spinal cord slices show prominent Kir currents. Electrophysiological recordings comparing SCA of wild-type mice with those of homozygote Kir4.1 knockout mice confirm a complete and selective absence of Kir channels in the knockout mice, suggesting that Kir4.1 is the principle channel mediating the resting K+ conductance in SCA in vitro and in situ.  相似文献   

16.
The effects of intracellular Ca2+ (Ca2+i) on K+ currents in hippocampal cells were examined using acutely isolated cells obtained from adult guinea pigs. Whole-cell voltage-clamp recordings were carried out in a configuration that allowed a continuous perfusion of the intracellular medium. Recording media were made to block inward currents and allowed selective activation of K(+)-dependent outward currents. Voltage-dependent outward currents consisted of an initial rapidly decaying component followed by a sustained component. The time constant of decay of the transient current was about 25 msec, and previous studies (Numann et al., 1987) showed that the kinetic and pharmacological properties of this current closely resembled the A current recorded in invertebrate neurons (Connor and Stevens, 1971; Thompson, 1982). Intracellular perfusion of hippocampal cells with a solution containing elevated Ca2+ (about 4.5 x 10(-4) M) elicited outward currents at the holding potential (-45 to -55 mV) and produced changes in voltage-dependent K+ currents. The transient outward current (IA) activated by depolarization was suppressed with increases in Ca2+i. Delayed, sustained K+ currents were greatly potentiated. Data also showed that, among the 3 effects elicited by Ca2+i, suppression of IA was most sensitive to Ca2+i elevation. Previous results (Numann et al., 1987) showed that IA had a lower threshold (about -45 mV) than sustained currents (about -40 mV). By using low levels of depolarization (-40 mV), IA can be selectively activated, and the suppressive effect of Ca2+i on IA was confirmed on the kinetically isolated IA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The cell membrane of astrocytes and oligodendrocytes is almost exclusively permeable for K+. Depolarizing and hyperpolarizing voltage steps produce in oligodendrocytes, but not in astrocytes, decaying passive currents followed by large tail currents (Itail) after the offset of a voltage jump. The aim of the present study was to characterize the properties of Itail in astrocytes, oligodendrocytes, and their respective precursors in the gray matter of spinal cord slices. Studies were carried out on 5- to 11-day-old rats, using the whole-cell patch clamp technique. The reversal potential (Vrev) of Itail evoked by membrane depolarization was significantly more positive in oligodendrocytes (-31.7+/-2.58 mV, n = 53) than in astrocytes (-57.9+/-2.43 mV, n = 21), oligodendrocyte precursors (-41.2+/-3.44 mV, n = 36), or astrocyte precursors (-52.1+/-1.32 mV, n = 43). Analysis of the Itail (using a variable amplitude and duration of the de- and hyperpolarizing prepulses as well as an analysis of the time constant of the membrane currents during voltage steps) showed that the Itail in oligodendrocytes arise from a larger shift of K+ across their membrane than in other cell types. As calculated from the Nernst equation, changes in Vrev revealed significantly larger accumulation of the extracellular K+ concentration ([K+]e) around oligodendrocytes than around astrocytes. The application of 50 mM K+ or hypotonic solution, used to study the effect of cell swelling on the changes in [K+]e evoked by a depolarizing prepulse, produced in astrocytes an increase in [K+]e of 201% and 239%, respectively. In oligodendrocytes, such increases (22% and 29%) were not found. We conclude that K+ tail currents, evoked by a larger accumulation of K+ in the vicinity of the oligodendrocyte membrane, could result from a smaller extracellular space (ECS) volume around oligodendrocytes than around astrocytes. Thus, in addition to the clearance of K+ from the ECS performed by astrocytes, the presence of the K+ tail currents in oligodendrocytes indicates that they might also contribute to efficient K+ homeostasis.  相似文献   

18.
Potassium channels of the Kir2 family are widely expressed in neurons and glia, where they form strong inwardly rectifying channels. Existing functional hypotheses for these channels in neurons are based on the weak outward conductance, whereas the leading hypothesis for glia, that they promote potassium spatial buffering, is based on inward conductance. Although the spatial buffering hypothesis has been confirmed for Müller glia in retina, many aspects of Kir2 channels that will be required for understanding their functional roles in neurons and other forms of glia have received little or no study. Particularly striking is the paucity of data regarding their cellular and subcellular localization. We address this gap for Kir2.1-containing channels by using light and electron microscopic immunocytochemistry. The analysis was of piriform cortex, a highly epileptogenic area of cerebral cortex, where pyramidal cells have K(+)-selective strong inward rectification like that observed in Müller cells, where Kir2.1 is the dominant Kir2 subunit. Pyramidal cells in adult piriform cortex also lack I(h), the mixed Na(+)-K(+) current that mediates a slower form of strong inward rectification in large pyramidal cells in neocortex and hippocampus. The experiments demonstrated surface expression of Kir2.1-containing channels in astrocytes and in multiple populations of pyramidal and nonpyramidal cells. Findings for astrocytes were not consistent with predictions for K(+) spatial buffering over substantial distance. However, findings for pyramidal cells suggest that they could be a conduit for spatially buffering K(+) when it is highly elevated during seizure.  相似文献   

19.
Bondarenko A  Chesler M 《Glia》2001,34(2):143-149
Exposure to hypoxic, acidic, ion-shifted Ringer (HAIR) for 15-40 min has been shown to cause rapid astrocyte death upon reperfusion with normal media. The ion shifts of the HAIR solution included a rise in extracellular K(+) (e.g., [K(+)](o)) and a fall in [Na(+)](o), [Cl(-)](o), and [Ca(2+)](o), characteristic of ischemic-traumatic brain insults. We investigated the ionic basis of the HAIR-induced injury. After HAIR exposure, reperfusion in 0 Ca(2+)/EGTA media completely protected astrocytes. Preincubation of cells in BAPTA-AM ester was also protective, indicating that the injury was triggered by Ca(2+) influx during reperfusion. Neither nimodipine, CNQX, APV, nor TTX reduced injury. Astrocyte death could be blocked by 100 microM Ni(2+) or 100 microM benzamil, suggesting involvement of Na(+)-Ca(2+) exchange. KB-R7943, which preferentially inhibits reverse Na(+)-Ca(2+) exchange, also protected astrocytes. Elevation of [K(+)](o) was not necessary for astrocyte death. However, when [Na(+)](o) was maintained at 151 mM throughout the HAIR protocol, cell death was markedly reduced. We postulate that [Na(+)](o) shifts aid reversal of Na(+)-Ca(2+) exchange by favoring cytosolic Na(+) loading. Possible means of astrocytic Na(+) accumulation are discussed.  相似文献   

20.
Ocular inflammation is a common cause of retinal edema that may involve swelling of Müller glial cells. In order to investigate whether endotoxin-induced ocular inflammation in rats alters the swelling and membrane characteristics of Müller cells, lipopolysaccharide (LPS; 0.5%) was intravitreally injected. At 3 and 7 days after treatment, hypotonic challenge induced swelling of Müller cell somata that was not observed in non-treated control eyes. Müller cells of LPS-treated eyes displayed a downregulation of inward K(+) currents and upregulation of A-type K(+) currents that was associated with a decreased expression of Kir4.1 protein in retinal slices. The data suggest that ocular inflammation induces alterations of both the swelling characteristics and the K(+) channel expression of Müller cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号