首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This review supplies a report on fresh advances in the field of silk fibroin (SF) biopolymer and its blends with biopolymers as new biomaterials. The review also includes a subsection about silk fibroin mixtures with synthetic polymers. Silk fibroin is commonly used to receive biomaterials. However, the materials based on pure polymer present low mechanical parameters, and high enzymatic degradation rate. These properties can be problematic for tissue engineering applications. An increased interest in two- and three-component mixtures and chemically cross-linked materials has been observed due to their improved physico-chemical properties. These materials can be attractive and desirable for both academic, and, industrial attention because they expose improvements in properties required in the biomedical field. The structure, forms, methods of preparation, and some physico-chemical properties of silk fibroin are discussed in this review. Detailed examples are also given from scientific reports and practical experiments. The most common biopolymers: collagen (Coll), chitosan (CTS), alginate (AL), and hyaluronic acid (HA) are discussed as components of silk fibroin-based mixtures. Examples of binary and ternary mixtures, composites with the addition of magnetic particles, hydroxyapatite or titanium dioxide are also included and given. Additionally, the advantages and disadvantages of chemical, physical, and enzymatic cross-linking were demonstrated.  相似文献   

2.
The chemically cross-linking 1-ethyl-3-(3-dimethylaminopropylcarbodiimide hydrochloride/N-hydroxy-succinimide (EDC/NHS) collagen membrane endows such natural polymers with promising mechanical properties. Nevertheless, it is inadequate to advance the modulation of foreign body response (FBR) after implantation or guidance of tissue regeneration. In previous research, macrophages have a strong regulatory effect on regeneration, and such enhanced membranes underwent the modification with Epigallocatechin-3-gallate (EGCG) could adjust the recruitment and phenotypes of macrophages. Accordingly, we develop EGCG-EDC/NHS membranes, prepared with physical immersion, while focusing on the surface morphology through SEM, the biological activity of collagen was determined by FTIR, the activity and adhesion of cell culture in vitro, angiogenesis and monocyte/macrophage recruitment after subcutaneous implantation in vivo, are characterized. It could be concluded that it is hopeful EGCG-EDC/NHS collagen membrane can be used in implant dentistry for it not only retains the advantages of the collagen membrane itself, but also improves cell viability, adhesion, vascularization, and immunoregulation tendency.  相似文献   

3.
To enhance the hemocompatibility of silk fibroin fabric as biomedical material, polyelectrolytes architectures have been assembled through the layer-by-layer (LbL) technique on silk fibroin fabric (SFF). In particular, 1.5 and 2.5 bilayer of oppositely charged polyelectrolytes were assembled onto SFF using poly(allylamine hydrochloride) (PAH) as polycationic polymer and poly(acrylic acid) (PAA) as polyanionic polymer with PAH topmost. Low molecular weight heparin (LMWH) activated with 1-ethyl-3-(dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) was then immobilized on its surface. Alcian Blue staining, toluidine blue assay and X-ray photoelectron spectroscopy (XPS) confirmed the presence of heparin on modified SFF surfaces. The surface morphology of the modified silk fibroin fabric surfaces was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM), and obtained increased roughness. Negligible hemolytic effect and a higher concentration of free hemoglobin by a kinetic clotting time test ensured the improved biological performance of the modified fibroin fabric. Overall, the deposition of 2.5 bilayer was found effective in terms of biological and surface properties of the modified fibroin fabric compared to 1.5 bilayer self-assembly technique. Therefore, this novel approach to surface modification may demonstrate long term patency in future in vivo animal trials of small diameter silk fibroin vascular grafts.  相似文献   

4.
目的 探讨成膜法自制壳聚糖管状支架的方法及支架的理化学生物特性.方法 利用乙酸溶液制备浓度为8%的壳聚糖乙酸水溶胶,采用成膜方法制管后用NaOH脱下壳聚糖导管,扫描电镜下观察壳聚糖管表面超微结构;并进行溶胀性实验、pH值测定、细胞毒性试验、体外及体内降解实验.结果 壳聚糖管光滑,韧性好,具有三维多孔立体结构,孔径大小不同.壳聚糖管具有膨胀性,中性,无毒,随时间被组织吸收降解,体外降解慢于体内.结论 成膜法自制壳聚糖管状支架可行,其理化生物学特性表明可用作生物可吸收支架.  相似文献   

5.
In this work, two-component dialdehyde chitosan/hyaluronic acid scaffolds were developed and characterized. Dialdehyde chitosan was obtained by one-step synthesis with chitosan and sodium periodate. Three-dimensional scaffolds were prepared by the lyophilization method. Fourier transform infrared spectroscopy (FTIR) was used to observe the chemical structure of scaffolds and scanning electron microscopy (SEM) imaging was done to assess the microstructure of resultant materials. Thermal analysis, mechanical properties measurements, density, porosity and water content measurements were used to characterize physicochemical properties of dialdehyde chitosan/hyaluronic acid 3D materials. Additionally, human epidermal keratinocytes (NHEK), dermal fibroblasts (NHDF) and human melanoma cells (A375 and G-361) were used to evaluate cell viability in the presence of subjected scaffolds. It was found that scaffolds were characterized by a porous structure with interconnected pores. The scaffold composition has an influence on physicochemical properties, such as mechanical strength, thermal resistance, porosity and water content. There were no significant differences between cell viability proliferation of all scaffolds, and this observation was visible for all subjected cell lines.  相似文献   

6.
Jui-Yang Lai 《Materials》2012,5(10):1986-2002
Hyaluronic acid (HA) is one of the most important ophthalmic biomaterials, while also being used for tissue engineering and drug delivery. Although chemical cross-linking is an effective way to improve the material performance, it may as a consequence be detrimental to the living cells/tissues. Given that the cross-linking efficiency is mediated by the solvent composition during the chemical modification, this study aims to explore the stability and biocompatibility of carbodiimide cross-linked HA in relation to material processing conditions by varying the acetone/water volume ratio (from 70:30 to 95:5) at a constant 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) concentration of 100 mM. Our results indicated that after the EDC treatment in the presence of an acetone/water mixture (85:15, v/v), the HA hydrogel membranes have the lowest equilibrium water content, the highest stress at break and the greatest resistance to hyaluronidase digestion. Live/Dead assays and pro-inflammatory cytokine expression analyses showed that the cross-linked HA hydrogel membranes, irrespective of the solvent composition, are compatible with human RPE cell lines without causing toxicity and inflammation. However, it should be noted that the test samples prepared by the cross-linking in the presence of acetone/water mixtures containing 70, 75, and 95 vol % of acetone slightly inhibit the metabolic activity of viable ARPE-19 cultures, probably due to the alteration in the ionic interaction between the medium nutrients and polysaccharide biomaterials. In summary, the water content, mechanical strength and RPE cell proliferative capacity strongly depends on the solvent composition for carbodiimide cross-linking of HA materials.  相似文献   

7.
Improving the longevity of composite restorations has proven to be difficult when they are bonded to dentin. Dentin demineralization leaves collagen fibrils susceptible to enzymatic digestion, which causes breakdown of the resin–dentin interface. Therefore, measures for counteracting the enzymatic environment by enhancing dentin collagen’s resistance to degradation have the potential to improve the durability of dental composite restorations. This study aimed to evaluate the effects of polyphenol-rich extracts and a chemical cross-linker on the cross-linking interaction, resistance to digestion, and endogenous matrix metalloproteinase (MMP) activities of dentin collagen under clinically relevant conditions. Ten-µm-thick films were cut from dentin slabs of non-carious extracted human third molars. Following demineralization, polyphenol-rich extracts—including grape seed (GSE), green tea (GTE), and cranberry juice (CJE)—or chemical cross-linker carbodiimide with n-hydroxysuccinimide (EDC/NHS) were applied to the demineralized dentin surfaces for 30 s. The collagen cross-linking, bio-stabilization, and gelatinolytic activities of MMPs 2 and 9 were studied by using Fourier-transform infrared spectroscopy, weight loss, hydroxyproline release, scanning/transmission electron microscopy, and in situ zymography. All treatments significantly increased resistance to collagenase degradation and reduced the gelatinolytic MMP activity of dentin collagen compared to the untreated control. The CJE- and GSE-treated groups were more resistant to digestion than the GTE- or EDC/NHS-treated ones (p < 0.05), which was consistent with the cross-linking interaction found with FTIR and the in situ performance on the acid-etched dentin surface found with SEM/TEM. The collagen films treated with CJE showed the lowest MMP activity, followed by GSE, GTE, and, finally, EDC/NHS. The CJE-treated dentin collagen rapidly increased its resistance to digestion and MMP inhibition. An application of CJE as short as 30 s may be a clinically feasible approach to improving the longevity of dentin bonding in composite restorations.  相似文献   

8.
The application of hydrogels coupled with 3-dimensional (3D) printing technologies represents a modern concept in scaffold development in cartilage tissue engineering (CTE). Hydrogels based on natural biomaterials are extensively used for this purpose. This is mainly due to their excellent biocompatibility, inherent bioactivity, and special microstructure that supports tissue regeneration. The use of natural biomaterials, especially polysaccharides and proteins, represents an attractive strategy towards scaffold formation as they mimic the structure of extracellular matrix (ECM) and guide cell growth, proliferation, and phenotype preservation. Polysaccharide-based hydrogels, such as alginate, agarose, chitosan, cellulose, hyaluronan, and dextran, are distinctive scaffold materials with advantageous properties, low cytotoxicity, and tunable functionality. These superior properties can be further complemented with various proteins (e.g., collagen, gelatin, fibroin), forming novel base formulations termed “proteo-saccharides” to improve the scaffold’s physiological signaling and mechanical strength. This review highlights the significance of 3D bioprinted scaffolds of natural-based hydrogels used in CTE. Further, the printability and bioink formation of the proteo-saccharides-based hydrogels have also been discussed, including the possible clinical translation of such materials.  相似文献   

9.
In this work, conventional sulfur and two types of organic peroxides (dicumyl peroxide (DCP) and di-(2-tert-butyl-peroxyisopropyl)-benzene (BIB)) curing systems were used to investigate the possibility for tailoring of the performance properties of GTR/NBR blends reinforced with a variable content of highly dispersive silica (0–30 phr). The curing characteristics, static mechanical and acoustical properties, swelling behavior, thermal stability, and microstructure of the prepared composites were investigated. The results show that regardless of the curing system used, increasing the content of highly dispersive silica resulted in the improvement of the mechanical properties of the studied materials. It was observed that sulfur-based systems are the best choice in terms of cross-linking efficiency determined based on torque increment and cross-link density parameters. However, further analysis of the physico-mechanical properties indicated that the cross-linking efficiency does not match the performance of specimens, and the materials obtained using organic peroxides show higher tensile properties. This is due to the improved physical interactions between the GTR/NBR matrix and highly dispersive silica when using peroxide systems. It was confirmed using the analysis of the Wolff activity coefficient, indicating the enhanced synergy.  相似文献   

10.
目的:制备聚乙二醇(PEG)载药缓释微球复合去细胞瓣组织工程心脏瓣膜(TEHV)支架。方法:制备PEG微球,电镜观察粒径。去细胞瓣与PEG微球偶联,吸附转化生长因子(TGF-β1)。行ELISA检测,分子生物学、形态学和生物力学检测。结果:PEG微球粒径(42.72+3.48)nm。酶联免疫吸附检测示缓释效果明显,7dTGF-β1释放率67.22%,PEG微球的TGF-β1包封率为82.01%。与单纯去细胞瓣膜比较,复合支架羟脯氨酸含量和DNA含量无显著变化,形态学检测显示复合支架细胞外基质联合紧密,胶原纤维结构紧凑,且瓣叶生物力学性能提高。结论:制备PEGTGF-β1缓释微球去细胞瓣复合支架可行。  相似文献   

11.
Recent advancements in tissue engineering and material science have radically improved in vitro culturing platforms to more accurately replicate human tissue. However, the transition to clinical relevance has been slow in part due to the lack of biologically compatible/relevant materials. In the present study, we marry the commonly used two-dimensional (2D) technique of electrospinning and a self-assembly process to construct easily reproducible, highly porous, three-dimensional (3D) nanofiber scaffolds for various tissue engineering applications. Specimens from biologically relevant polymers polycaprolactone (PCL) and gelatin were chemically cross-linked using the naturally occurring cross-linker genipin. Potential cytotoxic effects of the scaffolds were analyzed by culturing human dermal fibroblasts (HDF) up to 23 days. The 3D PCL/gelatin/genipin scaffolds produced here resemble the complex nanofibrous architecture found in naturally occurring extracellular matrix (ECM) and exhibit physiologically relevant mechanical properties as well as excellent cell cytocompatibility. Samples cross-linked with 0.5% genipin demonstrated the highest metabolic activity and proliferation rates for HDF. Scanning electron microscopy (SEM) images indicated excellent cell adhesion and the characteristic morphological features of fibroblasts in all tested samples. The three-dimensional (3D) PCL/gelatin/genipin scaffolds produced here show great potential for various 3D tissue-engineering applications such as ex vivo cell culturing platforms, wound healing, or tissue replacement.  相似文献   

12.
This research study reports the development of chitosan/carboxylated graphene oxide (CS/GO-COOH) composite scaffolds with nanofibrous architecture using the electrospinning method. The concept of designed composite fibrous material is based on bringing together the biological properties of CS, mechanical, electrical, and biological characteristics of GO-COOH with the versatility and efficiency of ultra-modern electrospinning techniques. Three different concentrations of GO-COOH were added into a chitosan (CS)-poly(ethylene oxide) (PEO) solution (the ratio between CS/PEO was 3/7 (w/w)) and were used in the synthesis process of composite scaffolds. The effect of GO-COOH concentration on the spinnability, morphological and mechanical features, wettability, and biological properties of engineered fibrous scaffolds was thoroughly investigated. FTIR results revealed the non-covalent and covalent interactions that could take place between the system’s components. The SEM micrographs highlighted the nanofibrous architecture of scaffolds, and the presence of GO-COOH sheets along the composite CS/GO-COOH nanofibers. The size distribution graphs showed a decreasing trend in the mean diameter of composite nanofibers with the increase in GO-COOH content, from 141.40 nm for CS/PG 0.1% to 119.88 nm for CS/PG 0.5%. The dispersion of GO-COOH led to composite scaffolds with increased elasticity; the Young’s modulus of CS/PG 0.5% (84 ± 4.71 MPa) was 7.5-fold lower as compared to CS/PEO (662 ± 15.18 MPa, p < 0.0001). Contact angle measurements showed that both GO-COOH content and crosslinking step influenced the surface wettability of scaffolds, leading to materials with ~1.25-fold higher hydrophobicity. The in vitro cytocompatibility assessment showed that the designed nanofibrous scaffolds showed a reasonable cellular proliferation level after 72 h of contact with the fibroblast cells.  相似文献   

13.
Diabetes mellitus continues to be one of the most common diseases often associated with diabetic ulcers. Chitosan is an attractive biopolymer for wound healing due to its biodegradability, biocompatibility, mucoadhesiveness, low toxicity, and hemostatic effect. A panel of hydrogels based on chitosan, collagen, and silver nanoparticels were produced to treat diabetic wounds. The antibacterial activity, cytotoxicity, swelling, rheological properties, and longitudinal sections of hydrogels were studied. The ability of the gels for wound healing was studied in CD1 mice with alloxan-induced diabetes. Application of the gels resulted in an increase in VEGF, TGF-b1, IL-1b, and TIMP1 gene expression and earlier wound closure in a comparison with control untreated wounds. All gels increased collagen deposition, hair follicle repair, and sebaceous glands formation. The results of these tests show that the obtained hydrogels have good mechanical properties and biological activity and have potential applications in the field of wound healing. However, clinical studies are required to compare the efficacy of the gels as animal models do not reproduce full diabetes pathology.  相似文献   

14.
Advanced tissue engineering (TE) technology based on additive manufacturing (AM) can fabricate scaffolds with a three-dimensional (3D) environment suitable for cartilage regeneration. Specifically, AM technology may allow the incorporation of complex architectural features. The present study involves the fabrication of 3D TE scaffolds by an indirect AM approach using silk fibroin (SF). From scanning electron microscopic observations, the presence of micro-pores and interconnected channels within the scaffold could be verified, resulting in a TE scaffold with both micro- and macro-structural features. The intrinsic properties, such as the chemical structure and thermal characteristics of SF, were preserved after the indirect AM manufacturing process. In vitro cell culture within the SF scaffold using porcine articular chondrocytes showed a steady increase in cell numbers up to Day 14. The specific production (per cell basis) of the cartilage-specific extracellular matrix component (collagen Type II) was enhanced with culture time up to 12 weeks, indicating the re-differentiation of chondrocytes within the scaffold. Subcutaneous implantation of the scaffold-chondrocyte constructs in nude mice also confirmed the formation of ectopic cartilage by histological examination and immunostaining.  相似文献   

15.
The properties of rubber materials are dependent on the characteristics of the elastomer matrix, the filler type, the cross-linking agent, the number of ingredients, and their interactions. In the previous article, we showed that chloroprene rubber can be efficiently cross-linked with copper(I) oxide or copper(II) oxide. During the processing of rubber compounds, the incorporation of a filler and a curing substance are two substantial parameters, such as the homogeneity of mixing and cross-linking that significantly affect the properties of the vulcanizates. Therefore, this work aimed to evaluate the curing characteristics, mechanical and dynamical properties, morphology, and flammability of the composites containing chloroprene rubber cross-linked with Cu2O or CuO and filled with different fillers (silica, carbon black, montmorillonite, kaolin, chalk). It was found that the type of filler and curing agent had a significant impact on the degree of cross-linking of the chloroprene rubber and the properties of its vulcanizates. The degree and speed of the cross-linking of filled CR were higher when the CR was cured with copper(II) oxide. Among the fillers used, the presence of carbon black or silica ensured the highest degree of CR cross-linking and the most useful properties. The flammability tests indicated that all produced vulcanizates were characterized by a high oxygen index, which allows them to be classified as non-flammable materials.  相似文献   

16.
Synthetic and natural polymer association is a promising tool in tissue engineering. The aim of this study was to compare five methodologies for producing hybrid scaffolds for cell culture using poly-l-lactide (PLLA) and collagen: functionalization of PLLA electrospun by (1) dialkylamine and collagen immobilization with glutaraldehyde and by (2) hydrolysis and collagen immobilization with carbodiimide chemistry; (3) co-electrospinning of PLLA/chloroform and collagen/hexafluoropropanol (HFP) solutions; (4) co-electrospinning of PLLA/chloroform and collagen/acetic acid solutions and (5) electrospinning of a co-solution of PLLA and collagen using HFP. These materials were evaluated based on their morphology, mechanical properties, ability to induce cell proliferation and alkaline phosphatase activity upon submission of mesenchymal stem cells to basal or osteoblastic differentiation medium (ODM). Methods (1) and (2) resulted in a decrease in mechanical properties, whereas methods (3), (4) and (5) resulted in materials of higher tensile strength and osteogenic differentiation. Materials yielded by methods (2), (3) and (5) promoted osteoinduction even in the absence of ODM. The results indicate that the scaffold based on the PLLA/collagen blend exhibited optimal mechanical properties and the highest capacity for osteodifferentiation and was the best choice for collagen incorporation into PLLA in bone repair applications.  相似文献   

17.
OBJECTIVE: To investigate the cytotoxicity of silk fibroin/gelatin (SF/G) composite scaffolds in vitro as well as their biocompatibility and degradation in vivo. METHODS: The proliferation and relative growth rate of human hepatic QZG cells grown on different blends of two‐dimensional (2‐D) SF/G scaffolds were assessed using the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay. Flow cytometry was used to evaluate apoptotic rate of QZG cells on different blends of 2‐D SF/G scaffolds. The effect of silk protein materials on cell growth was observed by scanning electron microscopy. Three‐dimensional (3‐D) SF/G scaffolds of three different ratios (diameter 10 mm, thickness 1 mm) were implanted into subcutaneous pockets on male Sprague–Dawley (SD) rats. On the 7th, 14th and 30th day post‐implantation, the rats were sacrificed. The scaffold area including the surrounding tissues was retrieved. Hematoxylin and eosin staining was performed for observation under a light microscope. RESULTS: Significant cell attachment and proliferation on the SF/G scaffolds were observed. As the increased gelatin concentration, SF/G scaffolds became more amenable to cell adhesion. After the subcutaneous implantation of the SF/G scaffolds in SD rats, immunological rejection tests showed only slight inflammation, measured by the presence of inflamed cells on day 7 and 14. By day 30, each scaffold had been completely infiltrated and organized by fibroblasts and inflamed cells. The greater the gelatin concentration in the scaffold, the faster the degradation rate. CONCLUSION: Composite SF/G scaffolds are a promising candidate matrix for implantable bio‐artificial livers.  相似文献   

18.
Vascular grafts made of synthetic polymers perform poorly in cardiac and peripheral bypass applications. In these applications, chitosan-based materials can be produced and shaped to provide a novel scaffold for vascular tissue engineering. The goal of this study was to evaluate in vitro the mechanical properties of a novel chitosan formulation to assess its potential for this scaffold. Two chitosan-based hydrogel tubes were produced by modulating chitosan concentration. Based on the standard ISO 7198:1998, the hydrogel tubes were characterized in vitro in terms of suture retention strength, tensile strength, compliance, and burst pressure. By increasing chitosan concentration, suture retention value increased to reach 1.1 N; average burst strength and elastic moduli also increased significantly. The compliance seemed to exhibit a low value for chitosan tubes of high concentration. By modulating chitosan concentration, we produced scaffolds with suitable mechanical properties to be implanted in vivo and withstand physiological blood pressures.  相似文献   

19.
Recently, there has been great interest in the application of polysaccharides in the preparation of diverse biomaterials which result from their biocompatibility, biodegradability and biological activity. In this work, the investigations on chitosan/poly(aspartic acid)-based hydrogels modified with starch were described. Firstly, a series of hydrogel matrices was prepared and investigated to characterize their swelling properties, structure via FT-IR spectroscopy, elasticity and tensile strength using the Brookfield texture analyzer as well as their impact on simulated physiological liquids. Hydrogels consisting of chitosan and poly(aspartic acid) in a 2:1 volume ratio were elastic (9% elongation), did not degrade after 30-day incubation in simulated physiological liquids, exhibited a relative biocompatibility towards these liquids and similar swelling in each absorbed medium. This hydrogel matrix was modified with starch wherein two of its form were applied—a solution obtained at an elevated temperature and a suspension obtained at room temperature. Hydrogels modified with hot starch solution showed higher sorption that unmodified materials. This was probably due to the higher starch inclusion (i.e., a larger number of hydrophilic groups able to interact with the adsorbed liquid) when this polysaccharide was given in the form of a hot solution. Hydrogels modified with a cold starch suspension had visible heterogeneous inequalities on their surfaces and this modification led to the obtainment materials with unrepeatable structures which made the analysis of their properties difficult and may have led to misleading conclusions.  相似文献   

20.
易蔚  魏旭峰  俞世强 《心脏杂志》2006,18(5):524-527
目的研究环氧氯丙烷(EC)处理对组织工程心脏瓣膜去细胞支架材料理化性质的影响。方法对EC处理的去细胞组织工程猪瓣支架材料进行胶原酶消化实验,茚三酮实验,血浆蛋白吸附率和血小板黏附率实验,与戊二醛(GA)处理的及未经处理的去细胞猪瓣支架材料进行对照研究,评价EC处理对生物材料理化性质的影响。结果胶原蛋白经EC或GA处理后,抗消化能力显著增加(P<0.01);GA处理后的胶原蛋白再经EC处理后,抗消化能力进一步增加(P<0.01)。胶原蛋白经EC和GA处理后,茚三酮值均明显下降(P<0.01),GA处理后的胶原蛋白经EC处理后,茚三酮值进一步下降(P<0.01)。EC和GA处理胶原蛋白的交联度增加,EC处理能使GA处理的胶原蛋白交联度进一步增加(P<0.01)。EC处理的组织工程瓣膜去细胞支架材料血浆中蛋白质吸附率和血小板黏附率均降低。结论EC处理能够进一步改善组织工程瓣膜去细胞支架材料的理化性质,有利于提高血液相容性和减缓钙化,是组织工程瓣生物支架材料很好的处理方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号