首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Lymphotoxin beta (LTβ) regulates some inflammatory mechanisms that could be operative in idiopathic inflammatory myopathies (IM). We studied LTβ and LTβR in inflammatory myopathies, normal and disease controls with immunohistochemistry, Western blotting and in situ hybridisation. LTβ occurs in myonuclei of normal controls, implying its role in normal muscle physiology. LTβ is strongly upregulated in regenerating muscle fibres in all myopathies, but not in denervated myofibres. Normal-appearing myofibres in inflammatory myopathies and muscular dystrophies express LTβ possibly reflecting early myofibre damage, representing a hitherto undescribed pathologic hallmark. Furthermore, we visualised LTβ in several inflammatory cell types in inflammatory myopathies, suggesting its involvement in the different inflammatory mechanisms underlying inflammatory myopathy subgroups.  相似文献   

2.
The expression level of tumor necrosis factor (TNF)-alpha is elevated in idiopathic inflammatory myopathies and Duchenne muscular dystrophy (DMD), but the precise role of TNF-alpha is unknown. To elucidate the possible role of TNF-alpha, we investigated the expression of TNF-alpha and its receptor in polymyositis (PM), dermatomyositis (DM), and DMD using in situ hybridization (ISH) and immunohistochemistry. We showed that TNF-alpha mRNA and protein were present in muscle fibers. TNF-alpha-positive fibers were observed in all cases of PM, DM and DMD, but were rare or absent in neurogenic disorders and normal controls. The proportion of TNF-alpha-positive fiber showed a significant positive correlation with the proportion of regenerating fibers that were positive for the developmental form of myosin heavy chain (MHC-d). The number of TNF receptor-positive fibers was small. Some muscle fibers expressed both TNF-alpha and its receptor simultaneously. Our results indicate that TNF-alpha is produced and expressed by muscle fibers and associated with muscle regeneration.  相似文献   

3.
The precise role of nicotinic acetylcholine receptors (nAChRs) in central cognitive processes still remains incompletely understood almost 150 years after its initial discovery. Central nAChRs are activated by acetylcholine, which functions in the extracellular space as a nonsynaptic messenger. Recently, a novel concept in the nAChR mode of operation has been described as a fast-type nonsynaptic transmission. In this review, we attempt to summarise the experimental findings that support the role of one of the most distributed receptor subtypes, the α7 nAChRs, and particularly focus on its procognitive effects following receptor activation. The basic characteristics of α7 nAChRs are discussed, from receptor homology to cellular-level functions. Synaptic plasticity is often implicated with α7 nAChRs on the basis of several diverse studies. Here, we provide a summary of the plastic features of the α7 receptor subtype and its role in higher level cognitive function. Finally, recent clinical evidence is reviewed, which demonstrates with increasing confidence the promise α7 nAChRs as a molecular target in future pharmacotherapy to prevent cognitive decline in various types of dementia, specifically, via the development of positive allosteric modulator compounds.  相似文献   

4.
This review summarizes recent findings on neuro-immune mechanisms underlying opioid-mediated inhibition of pain. The focus is on events occurring in peripheral injured tissues that lead to the sensitization and excitation of primary afferent neurons, and on the modulation of such mechanisms by immune cell-derived opioid peptides. Primary afferent neurons are of particular interest from a therapeutic perspective because they are the initial generators of impulses relaying nociceptive information towards the spinal cord and the brain. Thus, if one finds ways to inhibit the sensitization and/or excitation of peripheral sensory neurons, subsequent central events such as wind-up, sensitization and plasticity may be prevented. This is in part achieved by endogenously released immune cell-derived opioid peptides within inflamed tissue. In addition, exogenous opioid receptor ligands that selectively modulate primary afferent function and do not cross the blood–brain barrier, avoid centrally mediated untoward side effects of conventional analgesics (e.g., opioids, anticonvulsants). This article discusses peripheral opioid receptors and their signaling pathways, opioid peptide-producing/secreting inflammatory cells and arising therapeutic perspectives.  相似文献   

5.
Parkinson's disease (PD) is the most common neurodegenerative disorder after alzheimer's disease. Neuroinflammation and oxidative damage are implicated to be responsible for the pathogenesis of neurodegenerative diseases. However, there are a few studies showing the changes in the biomarkers for neuroinflammation and oxidative damage in neurodegenerative diseases. In our study we aimed to examine the role of the molecules that are involved in oxidative stress and inflammation in PD patients taking L: -dopa treatment. Oxidized-LDL (ox-LDL), high-sensitivity C-reactive protein (hs-CRP) and the soluble intracellular adhesion molecule (ICAM) were chosen as biomarkers for systemic inflammation and oxidative damage. The patients were classified according to the Hoehn-Yahr staging system. Forty-five idiopathic L: -dopa-given PD patients and 25 age-matched healthy controls were examined. Plasma ox-LDL and ICAM levels were significantly higher in PD patients when compared with controls (p?相似文献   

6.
7.
BACKGROUND: The nonischemic forearm exercise test (NIFET) has been shown to be as effective as the classic ischemic forearm exercise test (IFET) in the diagnosis of patients with McArdle disease. Recently, the lactate increase normalized to the mechanical energy production in NIFET was suggested to have a intermediate sensitivity and satisfactory specifity for the screening of mitochondrial disorders. METHODS: NIFET at 80% maximal contraction force (MCF) was performed in normal controls (n = 41), patients with mitochondrial disorders (n = 15) and other myopathies (diseased controls, n = 20). 26 healthy volunteers also underwent IFET at 80% MCF. The ratio of lactate increase and workload was defined as specific lactate production (mmol x s/N x l). RESULTS: In normal controls there was no significant different lactate increase during NIFET and IFET. The workload performed showed only a weak significant positive correlation with the lactate increase in the NIFET in normal controls (r(2) = 0.20) but not in IFET and NIFET with patients. A moderate negative correlation of specific lactate production and the absolute workload was found in all groups and in both protocols (r(2) = 0.22-0.34). The specific lactate production was highest in patients with other myopathies, intermediate in patients with mitochondrial disorders and lowest in normal controls. NIFET showed a sensitivity of only 20 % and a specifity of 95% for normal controls, but only 75 % for diseased controls. CONCLUSION: The specific lactate production during NIFET is neither sufficiently specific nor sensitive for the diagnosis of mitochondrial disorders. Increased specific lactate production during rest-to-work transition period might be caused by increased acetyl group deficits.  相似文献   

8.
Summary The ontogenesis of Fc receptors (FcR) and C3b/C4b receptors (CR1) was studied in peripheral nerves from ten fetuses aged from 20 to 38 weeks using immunohistochemical and functional assays. Monoclonal antibodies (mAbs) against FcR and CR1 stained nerve fibers at 10 weeks of gestation and the staining intensity increased during nerve maturation. FcR and CR1 are probably expressed on Schwann cells and are early markers during the development of peripheral nerves. Functional FcR activity was detected in nerve sections before initiation of myelination, which occurs at approximately 18–19 weeks, whereas functional CR1 activity was found in the sections after myelination. Functional CR1 activity may, therefore, be related to myelin. The ontogenesis of FcR and CR1 was also studied on Schwann cells in culture from three fetuses aged 14, 16 and 19 weeks, using immunofluorescence technique with mAbs. The FcR and CR1 are lost on cultured Schwann cells. This suggests that the receptors are not intrinsic to the cells or that Schwann cells require axonal contact for the expression of FcR and CR1.Supported by grants from the Dino Ferrari Center for Neuromuscular Disease  相似文献   

9.
Introduction: Centronuclear myopathies (CNMs) are a subtype of congenital myopathies (CMs) characterized by muscle weakness, predominant type 1 fibers, and increased central nuclei. SPEG (striated preferentially expressed protein kinase) mutations have recently been identified in 7 CM patients (6 with CNMs). We report 2 additional patients with SPEG mutations expanding the phenotype and evaluate genotype–phenotype correlations associated with SPEG mutations. Methods: Using whole exome/genome sequencing in CM families, we identified novel recessive SPEG mutations in 2 patients. Results: Patient 1, with severe muscle weakness requiring respiratory support, dilated cardiomyopathy, ophthalmoplegia, and findings of nonspecific CM on muscle biopsy carried a homozygous SPEG mutation (p.Val3062del). Patient 2, with milder muscle weakness, ophthalmoplegia, and CNM carried compound heterozygous mutations (p.Leu728Argfs*82) and (p.Val2997Glyfs*52). Conclusions: The 2 patients add insight into genotype–phenotype correlations of SPEG-associated CMs. Clinicians should consider evaluating a CM patient for SPEG mutations even in the absence of CNM features. Muscle Nerve 59 :357–362, 2019  相似文献   

10.
11.
12.
Centronuclear myopathies (CNMs) are a group of clinically and genetically heterogeneous muscle disorders. To date, mutation in 7 different genes has been reported to cause CNMs but 30 % of cases still remain genetically undefined. Genetic investigations are often expensive and time consuming. Clinical and morphological clues are needed to facilitate genetic tests and to choose the best approach for genetic screening. We aimed to describe genotype–phenotype correlation in an Italian cohort of patients affected by CNMs, to define the relative frequencies of its defined genetic forms and to draw a diagnostic algorithm to address genetic investigations. We recruited patients with CNMs from all the Italian tertiary neuromuscular centers following clinical and histological criteria. All selected patients were screened for the four ‘canonical’ genes related to CNMs: MTM1, DNM2, RYR1 and BIN1. Pathogenetic mutations were found in 38 of the 54 screened patients (70 %), mostly in patients with congenital onset (25 of 30 patients, 83 %): 15 in MTM1, 6 in DNM2, 3 in RYR1 and one in TTN. Among the 13 patients with a childhood–adolescence onset, mutations were found in 6 patients (46 %), all in DNM2. In the group of the 11 patients with adult onset, mutations were identified in 7 patients (63 %), again in DNM2, confirming that variants in this gene are relatively more common in late-onset phenotypes. The present study provides the relative molecular frequency of centronuclear myopathy and of its genetically defined forms in Italy and also proposes a diagnostic algorithm to be used in clinical practice to address genetic investigations.  相似文献   

13.
Axon growth is a central event in the development and post-injury plasticity of the nervous system. Growing axons encounter a wide variety of environmental instructions. Much like traffic lights in controlling the migrating axons, chondroitin sulfate proteoglycans (CSPGs) and heparan sulfate proteoglycans (HSPGs) often lead to "stop" and "go" growth responses in the axons, respectively. Recently, the LAR family and NgR family molecules were identified as neuronal receptors for CSPGs and HSPGs. These discoveries provided molecular tools for further study of mechanisms underlying axon growth regulation. More importantly, the identification of these proteoglycan receptors offered potential therapeutic targets for promoting post-injury axon regeneration.  相似文献   

14.
To better understand the role of multiple neurotrophin ligands and their receptors in vertebrate brain evolution, we examined the distribution of trk neurotrophin receptors in representatives of several vertebrate classes. Trk receptors are largely expressed in homologous neuronal populations among different species/classes of vertebrates. In many neurons, trkB and trkC receptors are co-expressed. TrkB and trkC receptors are primarily found in neurons with more restricted, specialized dendritic and axonal fields that are thought to be involved in discriminative or 'analytical' functions. The neurotrophin receptor trkA is expressed predominantly in neurons with larger, overlapping dendritic fields with more heterogeneous connections ('integrative' or 'modulatory' systems) such as nociceptive and sympathetic autonomic nervous system, locus coeruleus and cholinergic basal forebrain. Surveys of trk receptor expression and function in the peripheral nervous system of different vertebrate classes reveal trends ranging from dependency on a single neurotrophin to a more complex dependency on increasing numbers of neurotrophins and their receptors, for example, in taste and inner ear innervation. Gene deletion studies in mice provide evidence for a complex regulation of neuronal survival of sensory ganglion cells by different neurotrophins. Although expression of neurotrophins and their receptors is predominantly conserved in most circuits, increasing diversity of neurotrophin ligands and their receptors and a more complex dependency of neurons on neurotrophins might have facilitated the formation of at least some new neuronal entities.  相似文献   

15.
The pig has been used as animal model for positron emission tomography (PET) studies of dopamine (DA) receptors and pharmacological perturbations of DA neurotransmission. However, the binding properties of DA receptors and transporters in pig brain have not been characterized in vitro. Therefore, the saturation binding parameters of [3H]SCH 23390 for DA D1 receptors and [3H]raclopride for DA D2/3 receptors were measured by quantitative autoradiography in cryostat sections from brain of groups of 8 week old and adult female G?ttingen minipigs. The magnitudes of Bmax and Kd for these ligands were similar in young and old pigs, and were close to those reported for rat and human brain. Furthermore, gradients in the concentrations of D1 and D2/3 sites in striatum measured in vitro agreed with earlier findings in PET studies. However, the dopamine transporter (DAT) ligand [3H]GBR12935 did not bind in pig brain cryostat sections. Whereas the tropane derivative [125I]RTI-55 labeled serotonin transporters (serotonin transporter (SERT)) in pig brain, use of the same ligand under conditions specific for DAT, revealed a pattern of binding similar to that observed for SERT conditions. Parallel studies revealed the presence of DAT in rat and ferret brain. The distribution volume (Vd) of the selective DAT ligand [11C]NS2214 ([11C]Brasofensine) was mapped in groups of normal and MPTP-lesioned G?ttingen miniature pigs. The in vivo pattern of Vd matched the distribution of SERT in vitro, and did not differ between the normal pigs and the lesioned animals with documented 60% DA depletions. However, the pattern of specific binding of the selective noradrenaline transporter ligand (S,S)-[11C]MeNER in a single Landrace pig showed that, of the three monoamine transporters, only DAT could not be detected in pig brain. We conclude that the pig is a suitable model for PET studies of DA D1 and D2/3 binding sites, which are fully developed on the eighth postnatal week. However, well-characterized piperazine and tropane radioligands failed to recognize DAT in pig brain; the two tropane radioligands lacked pharmacological specificity for DAT and SERT in pig brain in vitro and in vivo.  相似文献   

16.
Class-A scavenger receptor (SR-A) is expressed by microglia, and we show here that it is also expressed by astrocytes, where it participates on their inflammatory activation. Astrocytes play a key role on the inflammatory response of the central nervous system, secreting several soluble mediators like cytokines and radical species. Exposure to SR ligands activated MAPKs and NF-κB signaling and increased production of IL1β and nitric oxide (NO). IL1β classically an inflammatory cytokine surprisingly did not increase but inhibited LPS+IFNγ-induced NO production by astrocytes. Our results suggest that SRs expressed by astrocytes participate in the modulation of inflammatory activation.  相似文献   

17.
Multiple sclerosis is an inflammatory disease of the CNS and a leading cause of disability. Inflammatory mediators play an orchestrating part in lesional development leading to symptoms. Chemokines -- chemoattractant cytokines -- regulate the inflammatory composite of the MS lesion. This review focuses on the present data regarding CXCL10 (previously known as IP-10) and CXRC3 in multiple sclerosis, since consistent data has suggested that this chemokine/chemokine receptor pair has a pivotal role in leukocyte recruitment into the central nervous system (CNS) in multiple sclerosis.  相似文献   

18.

Background

Growing evidence suggests that small ubiquitin-like modifier (SUMO) conjugation plays a key role in brain plasticity by modulating activity-dependent synaptic transmission. However, these observations are based largely on cell culture experiments. We hypothesized that episodic and fear memories would be affected by silencing SUMO1–3 expression.

Methods

To investigate the role of SUMO conjugation in neuronal functioning in vivo, we generated a novel Sumo transgenic mouse model in which a Thy1 promoter drives expression of 3 distinct microRNAs to silence Sumo1–3 expression, specifically in neurons. Wild-type and Sumo1–3 knockdown mice were subjected to a battery of behavioural tests to elucidate whether Sumoylation is involved in episodic and emotional memory.

Results

Expression of Sumo1–3 microRNAs and the corresponding silencing of Sumo expression were particularly pronounced in hippocampal, amygdala and layer V cerebral cortex neurons. The Sumo knockdown mice displayed anxiety-like responses and were impaired in episodic memory processes, contextual and cued fear conditioning and fear-potentiated startle.

Limitations

Since expression of Sumo1–3 was silenced in this mouse model, we need to verify in future studies which of the SUMO paralogues play the pivotal role in episodic and emotional memory.

Conclusion

Our results indicate that a functional SUMO conjugation pathway is essential for emotionality and cognition. This novel Sumo knockdown mouse model and the technology used in generating this mutant may help to reveal novel mechanisms that underlie a variety of neuropsychiatric conditions associated with anxiety and impairment of episodic and emotional memory.  相似文献   

19.
20.
β-arrestin-1 (β-arr1) and β-arrestin-2 (β-arr2) are cytosolic proteins well-known to participate in G protein-coupled receptor desensitisation and signalling. We used genetically-inactivated mice to evaluate the role of β-arr1 or β-arr2 in platelet function, P2Y receptor desensitisation, haemostasis and thrombosis. Platelet aggregation, soluble fibrinogen binding and P-selectin exposure induced by various agonists were near normal in β-arr1-/- and β-arr2-/- platelets. In addition, deficiency in β-arr1 or β-arr2 was not critical for P2Y receptors desensitisation. A functional redundancy between β-arr1 and β-arr2 may explain these unchanged platelet responses. Interestingly, β-arr1-/- but not β-arr2-/- mice were protected against laser- and FeCl3-induced thrombosis. The tail bleeding times, number of rebleeds and volume of blood loss were unchanged in β-arr1-/- and β-arr2-/- mice, suggesting no defect in haemostasis. β-arr1-/- platelet activation upon adhesion to immobilised fibrinogen was inhibited, as attested by a 37 ± 5% (n = 3, p<0.0001) decrease in filopodia extension, suggesting defective signalling through integrin αIIbβ3. β-arr1 appeared to be located downstream of Src family kinases and to regulate αIIbβ3 signalling by increasing Akt phosphorylation. Overall, this study supports a role for β-arr1 in promoting thrombus formation, in part through its participation in αIIbβ3 signalling, and no role of β-arr1 and β-arr2 in agonist-induced platelet activation and P2Y receptors desensitisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号