首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Injuries to central nervous system axons result not only in Wallerian degeneration of the axon distal to the injury, but also in death or atrophy of the axotomized neurons, depending on injury location and neuron type. No method of permanently avoiding these changes has been found, despite extensive knowledge concerning mechanisms of secondary neuronal injury. The autonomous endoplasmic reticulum (ER) stress pathway in neurons has recently been implicated in retrograde neuronal degeneration. In addition to the emerging role of ER morphology in axon maintenance, we propose that ER stress is a common neuronal response to disturbances in axon integrity and a general mechanism for neurodegeneration. Thus, manipulation of the ER stress pathway could have important therapeutic implications for neuroprotection. Ann Neurol 2013;74:768–777  相似文献   

2.
A sensitive methenamine silver/Nissl stain was used to study the morphology and relationship of pre-plaques (presumed early senile plaques) in Down's syndrome brains to glial nuclei, capillaries and neuronal perikarya. The larger pre-plaques (greater than 50 microns) usually encompassed all of these tissue elements. However, the smaller pre-plaques (less than or equal to 50 microns) were almost always found immediately adjacent to, or around the cell bodies of neurons (often with associated satellite cells), and they failed to show any consistent, close spatial relationship to the other tissue components. Thus we consider an early stage of pre-plaque formation to be the deposition of amyloid adjacent to the cell body of a morphologically normal neuron. Based on the study of transitional forms, we suggest that the amyloid progressively accumulates around the cell body until the enclosed neuron degenerates. How these pre-plaque lesions might eventually develop into the typical plaque structure is uncertain. Our observations support the theory of a neuronal origin for plaque amyloid.  相似文献   

3.
The study of Golgi-impregnated lizard brains has revealed a scarce but heterogeneous neuronal population in the outer plexiform layer of the medial cortex. Some of the neuronal types detected here resemble the neurons of the dentate molecular layer of the mammalian hippocampus. According to their morphology, five intrinsic neuronal types have been clearly identified: short axon aspinous bipolar neuron (type 1, or sarmentous neuron), short axon aspinous juxtasomatic neuron (type 2, or coral neuron), short axon sparsely spinous multipolar neuron (type 3, or stellate neuron), short axon sparsely spinous juxtasomatic multipolar neuron (type 4, or deep stellate neuron, and sparsely spinous juxtasomatic horizontal neuron (type 5, or couchant neuron). Most neuronal types were identified as γ-aminobutyric acid (GABA) and parvalbumin immunoreactive, and are thus probably involved in medial cortex inhibition. Moreover, a small fraction of them displayed ß-endorphin immunoreactivity. The distribution of these neuronal types is not uniform in the laminae of the outer plexiform layer. Type 1 (sarmentous) and type 3 (stellate) neurons overlap the axonal field projection coming from the dorsal cortex and the thalamus, whereas types 4 (deep stellate) and 5 (couchant) neurons overlap ipsi- and contralateral dorsomedial projection fields as well as raphe serotoninergic and opioid immunoreactive axonal plexi. Thus, these neuronal types may be involved in the control of specific inputs to the medial cortex by presumably feed-forward inhibition; nevertheless, feed-back inhibition may also occur regarding type 4 (deep stellate) neurons that extend deep dendrites to the zinc-rich bouton field.  相似文献   

4.
5.
Ethanol ingestion during pregnancy elicits damage to the developing brain, some of which appears to result from enhanced apoptotic death of neurons. A consistent characteristic of this phenomenon is a highly differing sensitivity to ethanol within specific neuron populations. One possible explanation for this "selective vulnerability" could be cellular variations in glutathione (GSH) homeostasis. Prior studies have illustrated that ethanol elicits apoptotic death of neurons in the developing brain, that oxidative stress may be an underlying mechanism, and that GSH can be neuroprotective. In the present study, both multiphoton microscopy and flow cytometry demonstrate a striking heterogeneity in GSH content within cortical neuron populations. Ethanol differentially elicits apoptotic death and oxidative stress in these neurons. When neuron GSH content is reduced by treatment with butathione sulfoxamine, the ethanol-mediated enhancement of reactive oxygen species is exacerbated. Sorting of cells into high- and low-GSH populations further exemplifies ethanol-mediated oxidative stress whereby apoptotic indices are preferentially elevated in the low-GSH population. Western blot analysis of the low-GSH subpopulations shows higher ethanol-mediated expression of active caspase 3 and 24-kDa PARP-1 fragments compared with the high-GSH subpopulation. In addition, neuronal content of 4-hydroxynonenal adducts is higher in low-GSH neurons in response to ethanol. These studies suggest that GSH content is an important predictor of neuronal sensitivity to ethanol-mediated oxidative stress and subsequent cell death. The data support the proposition that the differences in proapoptotic responses to ethanol within specific neuron populations reflect a heterogeneity of neuron GSH content.  相似文献   

6.
We have prepared the poly-d-lysine (PDL) bound surfaces for neuron cell culture by covalent binding between the poly-d-Lysine and substrates and investigated neuronal cell adhesion properties and cell growth morphology. The number of neuronal cell and the number of neurite per neuronal cell on PDL bound surfaces was much more than those on PDL coated surfaces and also the neuronal cells on PDL bounded surfaces survived a longer time. On the pattern of covalently bound PDL, neuronal cells and their neurites are confined within the grid line leading to patterned neuronal networks with the long-term survival.  相似文献   

7.
Neural plasticity in the song control system of seasonally breeding songbirds accompanies seasonal changes in singing behavior. The volume of Area X, a song control nucleus that forms a portion of the avian basal ganglia, is 75% larger in the spring than it is in the fall. The neuronal basis of the seasonal plasticity in Area X is largely unknown, however. We examined neuronal attributes of Area X in wild adult male song sparrows (Melospiza melodia) captured during the spring and the fall after being implanted for 30 days with osmotic pumps containing [3H]thymidine. We measured the volume of Area X from thionin-stained sections, and neuronal density and number, and average area of the soma from sections labeled with an antibody against Hu, a neuron-specific protein. We sampled two neuron classes: "small" neurons that were most likely striatal-like spiny neurons and "large" neurons, which most likely included pallidal-like projection neurons. We also analyzed seasonal patterns of neuronal recruitment to Area X. The average area of the soma and neuronal spacing for both neuronal classes were greater in breeding birds. There was no difference in total neuron number for both neuronal classes between seasons. The average area of the soma and density and number of newly recruited neurons did not vary across seasons. These results demonstrate that seasonal plasticity in Area X includes changes in neuron size and neuronal density, but not changes in the rate at which new neurons are recruited.  相似文献   

8.
The digital reconstruction of single neurons from 3D confocal microscopic images is an important tool for understanding the neuron morphology and function. However the accurate automatic neuron reconstruction remains a challenging task due to the varying image quality and the complexity in the neuronal arborisation. Targeting the common challenges of neuron tracing, we propose a novel automatic 3D neuron reconstruction algorithm, named Rivulet, which is based on the multi-stencils fast-marching and iterative back-tracking. The proposed Rivulet algorithm is capable of tracing discontinuous areas without being interrupted by densely distributed noises. By evaluating the proposed pipeline with the data provided by the Diadem challenge and the recent BigNeuron project, Rivulet is shown to be robust to challenging microscopic imagestacks. We discussed the algorithm design in technical details regarding the relationships between the proposed algorithm and the other state-of-the-art neuron tracing algorithms.  相似文献   

9.
The mechanisms of neuronal degeneration in motor neuron disease are not fully understood. We tested the hypothesis that oxidative stress in vitro and axotomy in vivo induce single-strand breaks (SSB) in DNA, a form of early DNA damage, in adult motor neurons early during their degeneration. We developed and characterized a novel cell suspension system enriched in motor neurons from adult rat spinal cord ventral horn. This cell system is approximately 84% neurons, with approximately 86% of these neurons being motor neurons; approximately 72% of these motor neurons are alpha-motor neurons. Motor neuron viability in suspension is approximately 100% immediately after isolation and approximately 61% after 12 hours of incubation. During incubation, isolated motor neurons generate high levels of superoxide. We used single-cell gel electrophoresis (comet assay) to detect DNA-SSB in motor neurons. Exposure of motor neurons to nitric oxide (NO) donors (sodium nitroprusside or NONOate), H2O2, or NO donor plus H2O2 rapidly induces DNA-SSB and causes motor neuron degeneration, the occurrence of which is dose and time related, as represented by comet formation and cell loss. Motor neuron toxicity is potentiated by cotreatment with NO donor and H2O2 (at nontoxic concentrations alone). Peroxynitrite causes DNA-SSB in motor neurons. The DNA damage profiles (shown by the comet morphology and moment) of NO donors, NO donor plus H2O2, and peroxynitrite are similar. In an in vivo model of motor neuron apoptosis, DNA-SSB accumulate slowly in avulsed motor neurons before apoptotic nuclear features emerge, and the comet fingerprint is similar to NO toxicity. We conclude that motor neurons challenged by oxidative stress and axotomy accumulate DNA-SSB early in their degeneration and that the formation of peroxynitrite is involved in the mechanisms.  相似文献   

10.
We investigated effects of different substrates and culture media on the early morphological differentiation of rat neocortical neurons in culture. In particular, we examined the effects of homotypic astrocytes, the adhesive glycoprotein laminin and the polycationic substrate poly-L-lysine, as well as diffusible astrocyte-derived conditioned medium factors and serum on (1) soma area, (2) total neuron area and (3) primary neurite number. To assess variations in morphological reactions of neurons with a defined neurotransmitter phenotype, we analyzed the differentiation of GABAergic neurons. The morphology of young neocortical neurons was dramatically affected by both substrate and culture medium. Replacement of the astrocytic monolayer or the astrocyte-conditioned medium by other substrates or non-conditioned medium, respectively, was accompanied by (1) spreading and flattening of neuronal somata, (2) a marked decrease in total neuron area and (3) an increase in the number of primary neurites. The various morphological parameters studied exhibited different sensitivities to changes of these external factors. Moreover, the influences of epigenetic factors on the generation of primary neurites depended on the transmitter phenotype of the neuron. The induced morphological alterations were transient. At the end of the first week in culture, the surviving neurons underwent substantial remodeling of their morphology leading to an expression of in vivo shape characteristics. These observations suggest that despite an early, transient sensitivity to environmental influences, the neuronal differentiation with respect to the morphological parameters studied in culture is to a large degree determined by intrinsic factors.  相似文献   

11.
12.
以兔大脑中动脉阻断型(MCAo)局灶脑缺血模型为对象,把含胎免脑干中缝核血清素(5—HT)能性神经元的细胞悬液用脑立体定向术移植到缺血灶内。对术后存活一、二、三个月的兔进行脑5—HT的免疫组化研究。结果表明植入的5—HT阳性细胞能够在脑缺血灶内存活、生长并成熟,同时发出细胞突起与宿主细胞形成联系;移植神经元最初集聚成簇,逐渐向周围脑实质内迁移并与宿主脑整合起来。  相似文献   

13.
目的:将成年大鼠骨髓间质干细胞(mesenchymal stem cells,MSCs)体外定向诱导分化为神经元样细胞。方法:成年大鼠骨髓间质干细胞,进行体外扩增、纯化培养,对纯化后的MSCs,使用碱性成纤维生长因子(basic fibroblast growth factor,bFGF)和神经培养添加剂N2进行诱导,使MSCs分化为神经元样细胞,并进行免疫细胞化学方法鉴定。结果:95.6%的MSCs出现形态改变,呈神经元样。免疫细胞化学法鉴定,显示神经元特异性烯醇化酶(NSE)、神经丝蛋白(NF)和神经干细胞标志物巢蛋白(nestin)阳性表达。结论体外MSCs可以分化为神经元样细胞。  相似文献   

14.
刺五加皂甙对谷氨酸毒性神经元凋亡的保护作用   总被引:8,自引:0,他引:8  
目的观察神经元在谷氨酸毒性损伤时一氧化氮(NO)的动态变化及其与凋亡的关系,探讨刺五加皂甙(ASS)的有效保护浓度。方法采用谷氨酸(Glu)诱导的皮质神经元凋亡模型。随机分成Glu组、正常对照组及ASS3组;用流式细胞仪检测神经元凋亡率,用硝酸还原酶法测定细胞培养上清液中NO的含量,用MTT法测定神经元存活率并在电镜下观察细胞形态学变化。结果(1)Glu呈剂量和时间依赖性增加神经元培养液中NO含量,ASS能不同程度地减少NO含量;(2)与Glu共培养的神经元,其存活率呈剂量和时间依赖性下降,ASS能增加神经元存活率;(3)经Glu处理的神经元发生凋亡,细胞超微结构呈现凋亡样改变,其凋亡率与正常对照组比较有显著性差异(P<0.01)。ASS能减少Glu毒性神经元凋亡。结论NO介导了Glu毒性神经元凋亡,ASS可能通过抑制NO的释放及其神经毒性作用,拮抗Glu引起的神经元凋亡。  相似文献   

15.
Previous work has shown that administration of the neurotrophin NT-3 intrathecally or to the proximal stump can prevent axotomy-induced sensory neuron loss and that NT-3 can stimulate sensory neuron differentiation in vitro. We have examined the effect of axotomy and systemic NT-3 administration on neuronal loss, apoptosis (defined by morphology and activated caspase-3 immunoreactivity), and nestin expression (a protein expressed by neuronal precursor cells) in dorsal root ganglia (DRG) following axotomy of the adult rat sciatic nerve. Systemic administration of 1.25 or 5 mg of NT-3 over 1 month had no effect on the incidence of apoptotic neurons but prevented the overall loss of neurons seen at 4 weeks in vehicle-treated animals. Nestin-immunoreactive neurons began to appear 2 weeks after sciatic transection in untreated animals and steadily increased in incidence over the next 6 weeks. NT-3 administration increased the number of nestin-immunoreactive neurons at 1 month by two- to threefold. Nestin-IR neurons had a mean diameter of 20.78 +/- 2.5 microm and expressed the neuronal markers neurofilament 200, betaIII-tubulin, protein gene product 9.5, growth associated protein 43, trkA, and calcitonin gene-related peptide. Our results suggest that the presence of nestin in DRG neurons after nerve injury is due to recent differentiation and that exogenous NT-3 may prevent neuron loss by stimulating this process, rather than preventing neuron death.  相似文献   

16.
The electroresponsiveness fingerprint of a neuron reflects the types and distributions of the ionic channels that are embedded in the neuronal membrane as well as its morphology. Theoretical analysis shows that subtle changes in the density of channels can contribute substantially to the electroresponsive fingerprints of neurons. We have confirmed these predictions, using the dynamic clamp approach to emulate changes in channels' densities in neurons from the inferior olive. We demonstrate how the density of T-type channels determines the behavioral destiny of neurons. We argue that regulation of channel densities could be an efficient mechanism for controlling the electrical activity of single cells, as well as the output of neuronal networks.  相似文献   

17.
Low expression of the human serotonin transporter (5-HTT) gene presumably interacts with stressful life events enhancing susceptibility for affective disorders. 5-Htt knockout (KO) mice display an anxious phenotype, and behavioural differences compared to wild-type (WT) mice are exacerbated after repeated loser experience in a resident-intruder stress paradigm. To assess whether genotype-dependent and stress-induced behavioural differences are reflected in alterations of neuronal morphology in limbic areas, we studied dendritic length and complexity of pyramidal neurons in the anterior cingulate and infralimbic cortices (CG, IL), hippocampus CA1 region, and of pyramidal neurons and interneurons in the lateral (La) and basolateral (BL) amygdaloid nuclei in Golgi-Cox-stained brains of male WT and 5-Htt KO control and loser mice. Spine density was analysed for IL apical and amygdaloid apical and basal pyramidal neuron dendrites. While group differences were absent for parameters analysed in CG, CA1 and amygdaloid interneurons, pyramidal neurons in the IL displayed tendencies to shorter and less spinous distal apical dendrites in 5-Htt KO controls, and to extended proximal dendrites in WT losers compared to WT controls. In contrast, spine density of several dendritic compartments of amygdaloid pyramids was significantly higher in 5-Htt KO mice compared to WT controls. While a tendency to increased spine density was observed in the same dendritic compartments in WT after stress, changes were lacking in stressed compared to control 5-Htt KO mice. Our findings indicate that disturbed 5-HT homeostasis results in alterations of limbic neuronal morphology, especially in higher spinogenesis in amygdaloid pyramidal neurons. Social stress leads to similar but less pronounced changes in the WT, and neuroplasticity upon stress is reduced in 5-Htt KO mice.  相似文献   

18.
Oxidative stress, which is defined as the over-production of free radicals, can dramatically alter neuronal function and has been linked to status epilepticus (SE). The pathological process and underlying mechanisms involved in the oxidative stress during SE are still not fully clear. In the current study, SE was induced in rats by lithium–pilocarpine administration. Our data show that hippocampal neuron death occurs at 6 h and is sustained for 7 days after SE. The production of nitric oxide (NO) started to increase at 30 min and was evident at 6 h and 7 days after SE, which coincided with increased expression of neuronal nitric oxide synthase (nNOS), inducible nitric oxide synthase (iNOS) and malondialdehyde (MDA) after SE, whereas, activated caspase-3 prominently appeared at 7 days after SE. Further, FK506, an immunosuppressant, partially rescued the neuron death and attenuated the expression of NO, nNOS, iNOS, MDA and activated caspase-3. Taken together, our study indicates that oxidative stress mediated hippocampal neuron death occurs prior to caspase-3 activation and that FK506 plays an important role in protecting hippocampal neurons during status epilepticus.  相似文献   

19.
Amyotrophic lateral sclerosis (ALS) is a fatal disorder characterized by the progressive loss of motor neurons. Although the molecular mechanism underlying motor neuron degeneration remains unknown; non-neuronal cells (including astrocytes) shape motor neuron survival in ALS. Astrocytes closely interact with neurons to provide an optimized environment for neuronal function and respond to all forms of injury in a typical manner known as reactive astrogliosis. A strong reactive astrogliosis surrounds degenerating motor neurons in ALS patients and ALS-animal models. Although reactive astrogliosis in ALS is probably both primary and secondary to motor neuron degeneration; astrocytes are not passive observers and they can influence motor neuron fate. Due to the important functions that astrocytes perform in the central nervous system; it is of key importance to understand how these functions are altered when astrocytes become reactive in ALS. Here; we review the current evidences supporting a potential toxic role of astrocytes and their viability as therapeutic targets to alter motor neuron degeneration in ALS.  相似文献   

20.
A pattern of peripheral neurodegeneration occurs in chronic diabetes mellitus in which an early, but selective retraction of distal axons may occur prior to any irretrievable neuronal loss. Clinical observations suggest that sensory systems undergo damage before those of motor neurons. In this work, we examined the fate of the spinal motor neuron in a long-term chronic model of experimental (streptozotocin-induced) diabetes already known to be associated with substantial loss of sensory neurons. The integrity, physiological function, and critical forms of protein expression of the full motor neuron tree was examined in mice exposed to 8 months of diabetes. Motor neurons developed progressive features of distal loss of axonal terminals but without perikaryal dropout, indicating distal axon retraction. While numbers and caliber of motor neuron perikarya and their nerve trunk axons were preserved, axons developed conduction velocity slowing, loss of motor units and neuromuscular junctions, and compensatory single motor unit action potential enlargement. Four critical proteins directly linked to diabetic complications were altered in motor neurons of diabetic mice: an elevated perikaryal expression of RAGE and PARP, molecules associated with cellular stress, along with concurrent rises in HSP-27 and pAKT, molecules alternatively identified with neuroprotective survival. Moreover, Akt mRNA was increased in diabetic lumbar spinal cords. Overall these findings indicate that although motor neurons are resistant to irretrievable dropout, they are targeted nonetheless by diabetes and gradually withdraw their terminals from distal innervation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号