首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Several degenerative brain disorders such as Alzheimer''s disease (AD), Parkinson''s disease (PD) and Dementia with Lewy bodies (DLB) are characterized by the simultaneous appearance of amyloid‐β (Aβ) and α‐synuclein (α‐syn) pathologies and symptoms that are similar, making it difficult to differentiate between these diseases. Until now, an accurate diagnosis can only be made by postmortem analysis. Furthermore, the role of α‐syn in Aβ aggregation and the arising characteristic olfactory impairments observed during the progression of these diseases is still not well understood. Therefore, we assessed Aβ load in olfactory bulbs of APP‐transgenic mice expressing APP695 KM670/671NL and PSEN1 L166P under the control of the neuron‐specific Thy‐1 promoter (referred to here as APPPS1) and APPPS1 mice co‐expressing SNCA A30P (referred to here as APPPS1 × [A30P]aSYN). Furthermore, the olfactory capacity of these mice was evaluated in the buried food and olfactory avoidance test. Our results demonstrate an age‐dependent increase in Aβ load in the olfactory bulb of APP‐transgenic mice that go along with exacerbated olfactory performance. Our study provides clear evidence that the presence of α‐syn significantly diminished the endogenous and seed‐induced Aβ deposits and significantly ameliorated olfactory dysfunction in APPPS1 × [A30P]aSYN mice.  相似文献   

2.
Despite accumulating evidence of a central role for oligomeric amyloid β (Aβ) in the pathogenesis of Alzheimer''s Disease (AD), there is scant information on the relationship between the levels and distribution of oligomeric Aβ and those of other neurodegenerative abnormalities in AD. In the present study, we have found oligomeric Aβ to be associated with both diffuse and neuritic plaques (mostly co‐localized with Aβ1–42) and with cerebrovascular deposits of Aβ in paraffin sections of formalin‐fixed human brain tissue. The amount of oligomeric Aβ that was labeled in the sections correlated with total Aβ plaque load, but not phospho‐tau load, cerebral amyloid angiopathy (CAA) severity or APOE genotype. Although soluble, oligomeric and insoluble Aβ levels were all significantly increased in AD brain homogenates, case‐to‐case variation and overlap between AD and controls were considerable. Over the age‐range studied (43–98 years), the levels of soluble Aβ, oligomeric Aβ42, oligomeric Aβ40 and insoluble Aβ did not vary significantly with age. Oligomeric Aβ1–42 and insoluble Aβ levels were significantly higher in women. Overall, the level of insoluble Aβ, but neither oligomeric nor soluble Aβ, was associated with Braak stage, CAA severity and APOEε4 frequency, raising questions as to the role of soluble and oligomeric Aβ in the progression of AD.  相似文献   

3.
Little is known about the relationship between soluble amyloid β (Aβ) and age. We have measured soluble and insoluble Aβ by enzyme‐linked immunosorbent assay (ELISA) in post‐mortem frontal cortex in normal brains (16–95 years) and AD. Insoluble Aβ increased with age, and was significantly higher in Alzheimer''s disease (AD) than age‐matched controls. However, levels of soluble Aβ declined with age and were significantly greater in younger adults than older adults with or without AD. In AD, insoluble : soluble Aβ ratio was much higher than in age‐matched controls. The high levels of soluble Aβ in young adults included oligomeric species of Aβ1‐42. These observations do not preclude Aβ oligomers as neurotoxic mediators of AD but suggest that if they are, the toxicity may be restricted to certain species (eg, β‐pleated protofibrillar species not detected by our assay) or takes decades to manifest. The dramatically increased insoluble : soluble Aβ in AD points to an altered dynamic equilibrium of Aβ in AD, reflecting both enhanced aggregation and continued overproduction or impaired removal of the soluble peptide in older age, when the concentration of this peptide should be declining.  相似文献   

4.
White matter (WM) disease is associated with disruption of the gliovascular unit, which involves breach of the blood–brain barrier (BBB). We quantified pericytes as components of the gliovascular unit and assessed their status in vascular and other common dementias. Immunohistochemical and immunofluorescent methods were developed to assess the distribution and quantification of pericytes connected to the frontal lobe WM capillaries. Pericytes with a nucleus were identified by collagen 4 (COL4) and platelet‐derived growth factor receptor‐β (PDGFR‐β) antibodies with further verification using PDGFR‐β‐specific ELISA. We evaluated a total of 124 post‐mortem brains from subjects with post‐stroke dementia (PSD), vascular dementia (VaD), Alzheimer’s disease (AD), AD‐VaD (Mixed) and post‐stroke non‐demented (PSND) stroke survivors as well as normal aging controls. COL4 and PDGFR‐β reactive pericytes adopted the characteristic “crescent” or nodule‐like shapes around capillary walls. We estimated densities of pericyte somata to be 225 ±38 and 200 ±13 (SEM) per COL4 mm2 area or 2.0 ± 0.1 and 1.7 ± 0.1 per mm capillary length in young and older aging controls. Remarkably, WM pericytes were reduced by ~35%–45% in the frontal lobe of PSD, VaD, Mixed and AD subjects compared to PSND and controls subjects (P < 0.001). We also found pericyte numbers were correlated with PDGFR‐β reactivity in the WM. Our results first demonstrate a reliable method to quantify COL4‐positive pericytes and then, indicate that deep WM pericytes are decreased across different dementias including PSD, VaD, Mixed and AD. Our findings suggest that downregulation of pericytes is associated with the disruption of the BBB in the deep WM in several aging‐related dementias.  相似文献   

5.
Aβ immunization of Alzheimer''s disease (AD) patients in the AN1792 (Elan Pharmaceuticals) trial caused Aβ removal and a decreased density of neurons in the cerebral cortex. As preservation of neurons may be a critical determinant of outcome after Aβ immunization, we have assessed the impact of previous Aβ immunization on the expression of a range of apoptotic proteins in post‐mortem human brain tissue. Cortex from 13 AD patients immunized with AN1792 (iAD) and from 27 nonimmunized AD (cAD) cases was immunolabeled for proapoptotic proteins implicated in AD pathophysiology: phosphorylated c‐Jun N‐terminal kinase (pJNK), activated caspase3 (a‐casp3), phosphorylated GSK3β on tyrosine 216 (GSK3βtyr216), p53 and Cdk5/p35. Expression of these proteins was analyzed in relation to immunization status and other clinical data. The antigen load of all of these proapoptotic proteins was significantly lower in iAD than cAD (P < 0.0001). In cAD, significant correlations (P < 0.001) were observed between: Cdk5/p35 and GSK3βtyr216; a‐casp3 and Aβ42; p53 and age at death. In iAD, significant correlations were found between GSK3βtyr216 and a‐casp3; both spongiosis and neuritic curvature ratio and Aβ42; and Cdk5/p35 and Aβ‐antibody level. Although neuronal loss was increased by immunization with AN1792, our present findings suggest downregulation of apoptosis in residual neurons and other cells.  相似文献   

6.
7.
We recently found that insoluble Aβ increases, but soluble Aβ decreases with age in normal brains. We now report the changes in activities of β‐secretase (BACE‐1) and Aβ‐degrading enzymes with age, and their relationships to concentrations of soluble and insoluble Aβ. We measured BACE‐1 activity and the levels and activities of neprilysin (NEP), insulin‐degrading enzyme (IDE) and angiotensin‐converting enzyme (ACE) in normal control brains (16 years–95 years). We also compared the measurements to those in AD. BACE‐1 activity correlated closely with age in controls and was significantly higher in AD. In controls, NEP and IDE activities (but not protein levels) increased with age but ACE activity and level did not. BACE‐1 activity correlated directly with insoluble but inversely with soluble Aβ. IDE activity correlated directly with insoluble Aβ and NEP activity was inversely related to soluble Aβ. ACE level correlated directly with insoluble and inversely with soluble Aβ in controls but not AD. Both Aβ‐synthesizing and ‐degrading enzyme activities increase with age, coinciding with declining soluble Aβ and increasing insoluble Aβ. Further research is needed to establish whether these changes in enzyme activity and Aβ levels are causally related and if so how.  相似文献   

8.
9.
Alzheimer's disease (AD) is the most common form of dementia. To date, several genes have been identified as the cause of AD, including PSEN1, PSEN2, and APP. The association between APOE and late-onset AD has also been reported. We here used a bench top next-generation sequencer, which uses an integrated semiconductor device, detects hydrogen ions, and operates at a high-speed using nonoptical technology. We examined 45 Japanese AD patients with positive family histories, and 29 sporadic patients with early onset (<60-year-old). Causative mutations were detected in 5 patients in the familial group (11%). Three patients had a known heterozygous missense mutation in the PSEN1 gene (p.H163R). Two patients from 1 family had a novel heterozygous missense mutation in the PSEN1 gene (p.F386L). In the early onset group, 1 patient carrying homozygous APOEε4 had a novel heterozygous missense mutation in the PSEN2 gene (p.T421M). Approximately 43% patients were APOEε4 positive in our study. This new sequencing technology is useful for detecting genetic variations in familial AD.  相似文献   

10.
BackgroundAlzheimer''s disease (AD) is an incurable and irreversible neurodegenerative disease, without a clear pathogenesis. Therefore, identification of candidates before amyloid‐β plaque (Aβ) deposition proceeds is of major significance for earlier intervention in AD.MethodsTo explore the potential noninvasive earlier biomarkers of AD in a 5XFAD mouse model, microRNAs (miRNAs) from urinary exosomes in 1‐month‐old pre‐Aβ accumulation 5XFAD mice models and their littermate controls were profiled by microarray analysis. The differentially expressed miRNAs were further analyzed via droplet digital PCR (ddPCR).ResultsMicroarray analysis demonstrated that 48 differentially expressed miRNAs (18 upregulated and 30 downregulated), of which six miRNAs – miR‐196b‐5p, miR‐339‐3p, miR‐34a‐5p, miR‐376b‐3p, miR‐677‐5p, and miR‐721 – were predicted to display gene targets and important signaling pathways closely associated with AD pathogenesis and verified by ddPCR.ConclusionsUrinary exosomal miRNAs showing differences in expression prior to Aβ‐plaque deposition were identified. These exosomal miRNAs represent potential noninvasive biomarkers that may be used to prevent AD in clinical applications.  相似文献   

11.
Olfactory dysfunction is one of the early symptoms seen in Parkinson’s disease (PD). However, the mechanisms underlying olfactory pathology that impacts PD disease progression and post‐mortem appearance of alpha‐Synuclein (α‐Syn) inclusions in and beyond olfactory bulb in PD remain unclear. It has been suggested that environmental toxins inhaled through the nose can induce inflammation in the olfactory bulb (OB), where Lewy body (LB) is the first to be found, and then, spread to related brain regions. We hypothesize that OB inflammation triggers local α‐Syn pathology and promotes its spreading to cause PD. In this study, we evaluated this hypothesis by intranasal infusion of lipopolysaccharides (LPS) to induce OB inflammation in mice and examined cytokines expression and PD‐like pathology. We found intranasal LPS‐induced microglia activation, inflammatory cytokine expression and α‐Syn overexpression and aggregation in the OB via interleukin‐1β (IL‐1β)/IL‐1 receptor type I (IL‐1R1) dependent signaling. In addition, an aberrant form of α‐Syn, the phosphorylated serine 129 α‐Syn (pS129 α‐Syn), was found in the OB, substantia nigra (SN) and striatum 6 weeks after the LPS treatment. Moreover, 6 weeks after the LPS treatment, mice showed reduced SN tyrosine hydroxylase, decreased striatal dopaminergic metabolites and PD‐like behaviors. These changes were blunted in IL‐1R1 deficient mice. Further studies found the LPS treatment inhibited IL‐1R1‐dependent autophagy in the OB. These results suggest that IL‐1β/IL‐1R1 signaling in OB play a vital role in the induction and propagation of aberrant α‐Syn, which may ultimately trigger PD pathology.  相似文献   

12.
13.
14.
Lewy bodies (LB) and Lewy neurites (LN), which are primarily composed of α‐synuclein (α‐syn), are neuropathological hallmarks of Parkinson''s disease (PD) and dementia with Lewy bodies (DLB). We recently found that the neuronal phosphoprotein synapsin III (syn III) controls dopamine release via cooperation with α‐syn and modulates α‐syn aggregation. Here, we observed that LB and LN, in the substantia nigra of PD patients and hippocampus of one subject with DLB, displayed a marked immunopositivity for syn III. The in situ proximity ligation assay revealed the accumulation of numerous proteinase K‐resistant neuropathological inclusions that contained both α‐syn and syn III in tight association in the brain of affected subjects. Most strikingly, syn III was identified as a component of α‐syn‐positive fibrils in LB‐enriched protein extracts from PD brains. Finally, a positive correlation between syn III and α‐syn levels was detected in the caudate putamen of PD subjects. Collectively, these findings indicate that syn III is a crucial α‐syn interactant and a key component of LB fibrils in the brain of patients affected by PD.  相似文献   

15.
Circadian disruption is prevalent in Alzheimer''s disease (AD) and may contribute to cognitive impairment, psychological symptoms, and neurodegeneration. This study aimed to evaluate the effects of environmental and genetic factors on the molecular clock and to establish a link between circadian rhythm disturbance and AD. We investigated the pathological effects of chronic sleep deprivation (CSD) in the APPswe/PS1ΔE9 transgenic mice and their wild‐type (WT) littermates for 2 months and evaluated the expression levels of clock genes in the circadian rhythm‐related nuclei. Our results showed that CSD impaired learning and memory, and further exaggerated disease progression in the AD mice. Furthermore, CSD caused abnormal expression of Bmal1, Clock, and Cry1 in the circadian rhythm‐related nuclei of experimental mice, and these changes are more significant in AD mice. Abnormal expression of clock genes in AD mice suggested that the expression of clock genes is affected by APP/PS1 mutations. In addition, abnormal tau phosphorylation was found in the retrosplenial cortex, which was co‐located with the alteration of BMAL1 protein level. Moreover, the level of tyrosine hydroxylase in the locus coeruleus of AD and WT mice was significantly increased after CSD. There may be a potential link between the molecular clock, Aβ pathology, tauopathy, and the noradrenergic system. The results of this study provided new insights into the potential link between the disruption of circadian rhythm and the development of AD.  相似文献   

16.
In vascular dementia (VaD) and Alzheimer’s disease (AD), cerebral hypoperfusion and blood‐brain barrier (BBB) leakiness contribute to brain damage. In this study, we have measured biochemical markers and mediators of cerebral hypoperfusion and BBB in the frontal (BA6) and parietal (BA7) cortex and underlying white matter, to investigate the pathophysiology of vascular dysfunction in AD, VaD and mixed dementia. The ratio of myelin‐associated glycoprotein to proteolipid protein‐1 (MAG:PLP1), a post‐mortem biochemical indicator of the adequacy of ante‐mortem cerebral perfusion; the concentration of fibrinogen adjusted for haemoglobin level, a marker of blood‐brain barrier (BBB) leakiness; the level of vascular endothelial growth factor‐A (VEGF), a marker of tissue hypoxia; and endothelin‐1 (EDN1), a potent vasoconstrictor, were measured by ELISA in the frontal and parietal cortex and underlying white matter in 94 AD, 20 VaD, 33 mixed dementia cases and 58 age‐matched controls. All cases were assessed neuropathologically for small vessel disease (SVD), cerebral amyloid angiopathy (CAA) severity, Aβ and phospho‐tau parenchymal load, and Braak tangle stage. Aβ40 and Aβ42 were measured by ELISA in guanidine‐HCl tissue extracts. We found biochemical evidence of cerebral hypoperfusion in AD, VaD and mixed dementia to be associated with SVD, Aβ level, plaque load, EDN1 level and Braak tangle stage, and to be most widespread in mixed dementia. There was evidence of BBB leakiness in AD—limited to the cerebral cortex and related to EDN1 level. In conclusion, abnormalities of cerebral perfusion and BBB function in common types of dementia can largely be explained by a combination of arteriolosclerosis, and Aβ‐, tau‐ and endothelin‐related vascular dysfunction. The relative contributions of these processes vary considerably both between and within the diseases.  相似文献   

17.
Cortical tissue injury is common in multiple sclerosis (MS) and associates with disability progression. We have previously shown that HLA‐DRB1*15 genotype status associates with the extent of cortical inflammatory pathology. In the current study, we sought to examine the influence of HLA‐DRB1*15 on relationships between inflammation and neurodegeneration in MS. Human post‐mortem MS cases (n = 47) and controls (n = 10) were used. Adjacent sections of motor cortex were stained for microglia (Iba1+, CD68+, TMEM119+), lymphocytes (CD3+, CD8+), GFAP+ astrocytes, and neurons (NeuN+). A subset of MS cases (n = 20) and controls (n = 7) were double‐labeled for neurofilament and glutamic acid decarboxylase 65/67 (GAD+) to assess the extent of the inhibitory synaptic loss. In MS cases, microglial protein expression positively correlated with neuron density (Iba1+: r = 0.548, p < 0.001, CD68+: r = 0.498, p = 0.001, TMEM119+ r = 0.437, p = 0.003). This finding was restricted to MS cases not carrying HLA‐DRB1*15. Evidence of a 14% reduction in inhibitory synapses in MS was detected (MS: 0.299 ± 0.006 synapses/μm2 neuronal membrane versus control: 0.348 ± 0.009 synapses/μm2 neuronal membrane, p = 0.005). Neurons expressing inhibitory synapses were 24% smaller in MS cases compared to the control (MS: 403 ± 15 μm2 versus control: 531 ± 29 μm2, p = 0.001), a finding driven by HLA‐DRB1*15+ cases (15+: 376 ± 21 μm2 vs. 15−: 432 ± 22 μm2, p = 0.018). Taken together, our results demonstrate that HLA‐DRB1*15 modulates the relationship between microglial inflammation, inhibitory synapses, and neuronal density in the MS cortex.  相似文献   

18.

Key points

  • Exercise acutely increases the concentrations of metabolites and hormones such as growth hormone (GH) and, to a lesser extent, insulin‐like growth factor 1 (IGF‐1); however, the biological function of this response is unclear.
  • Pharmacological administration of these hormones stimulates collagen synthesis in muscle and tendon; however, whether the post‐exercise biochemical milieu has a similar action is unknown.
  • Treating engineered ligaments with serum obtained from young healthy men after exercise resulted in more collagen and improved tensile strength over those treated with serum from resting men.
  • Further, we show that the increase in collagen induced by post‐exercise serum (i) is not reproduced by treatment with recombinant GH or IGF‐1, and (ii) is associated with the activation of PI3 kinase/mTORC1 and ERK1/2 signalling.

Abstract

Exercise stimulates a dramatic change in the concentration of circulating hormones, such as growth hormone (GH), but the biological functions of this response are unclear. Pharmacological GH administration stimulates collagen synthesis; however, whether the post‐exercise systemic milieu has a similar action is unknown. We aimed to determine whether the collagen content and tensile strength of tissue‐engineered ligaments is enhanced by serum obtained post‐exercise. Primary cells from a human anterior cruciate ligament (ACL) were used to engineer ligament constructs in vitro. Blood obtained from 12 healthy young men 15 min after resistance exercise contained GH concentrations that were ∼7‐fold greater than resting serum (P < 0.001), whereas IGF‐1 was not elevated at this time point (P = 0.21 vs. rest). Ligament constructs were treated for 7 days with medium supplemented with serum obtained at rest (RestTx) or 15 min post‐exercise (ExTx), before tensile testing and collagen content analysis. Compared with RestTx, ExTx enhanced collagen content (+19%; 181 ± 33 vs. 215 ± 40 μg per construct P = 0.001) and ligament mechanical properties – maximal tensile load (+17%, P = 0.03 vs. RestTx) and ultimate tensile strength (+10%, P = 0.15 vs. RestTx). In a separate set of engineered ligaments, recombinant IGF‐1, but not GH, enhanced collagen content and mechanics. Bioassays in 2D culture revealed that acute treatment with post‐exercise serum activated mTORC1 and ERK1/2. In conclusion, the post‐exercise biochemical milieu, but not recombinant GH, enhances collagen content and tensile strength of engineered ligaments, in association with mTORC1 and ERK1/2 activation.

Abbreviations

ACL
anterior cruciate ligament
ERK
extracellular signal‐regulated kinase
GH
growth hormone
IGF‐1
insulin‐like growth factor 1
mTORC1
mechanistic/mammalian target of rapamycin complex 1
TGF‐β1
transforming growth factor‐β1
  相似文献   

19.
Pericytes are vascular mural cells that surround capillaries of the central nervous system (CNS). They are crucial for brain development and contribute to CNS homeostasis by regulating blood–brain barrier function and cerebral blood flow. It has been suggested that pericytes are lost in Alzheimer''s disease (AD), implicating this cell type in disease pathology. Here, we have employed state‐of‐the‐art stereological morphometry techniques as well as tissue clearing and two‐photon imaging to assess the distribution of pericytes in two independent cohorts of AD (n = 16 and 13) and non‐demented controls (n = 16 and 4). Stereological quantification revealed increased capillary density with a normal pericyte population in the frontal cortex of AD brains, a region with early amyloid β deposition. Two‐photon analysis of cleared frontal cortex tissue confirmed the preservation of pericytes in AD cases. These results suggest that pericyte demise is not a general hallmark of AD pathology.  相似文献   

20.
Alzheimer''s disease (AD) is the most prevalent form of dementia. Key AD symptoms include memory and cognitive decline; however, comorbid symptoms such as depression and sensory‐perceptual dysfunction are often reported. Among these, a deterioration of olfactory sensation is observed in approximately 90% of AD patients. However, the precise pathophysiological basis underlying olfactory deficits because of AD remains elusive. The olfactory glomeruli in the olfactory bulb (OB) receive sensory information in the olfactory processing pathway. Maintaining the structural and functional integrity of the olfactory glomerulus is critical to olfactory signalling. Herein, we conducted an in‐depth histopathological assessment to reveal detailed structural alterations in the olfactory glomeruli in AD patients. Fresh frozen post‐mortem OB specimens obtained from six AD patients and seven healthy age‐matched individuals were examined. We used combined immunohistochemistry and stereology to assess the gross morphology and histological alterations, such as those in the expression of Aβ protein, microglia, and neurotransmitters in the OB. Electron microscopy was employed to study the ultrastructural features in the glomeruli. Significant accumulation of Aβ, morphologic damage, altered neurotransmitter levels, and microgliosis in the olfactory glomeruli of AD patients suggests that glomerular damage could affect olfactory function. Moreover, greater neurodegeneration was observed in the ventral olfactory glomeruli of AD patients. The synaptic ultrastructure revealed distorted postsynaptic densities and a decline in presynaptic vesicles in AD specimens. These findings show that the primary olfactory pathway is affected by the pathogenesis of AD, and may provide clues to identifying the mechanism involved in olfactory dysfunction in AD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号