首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thrombospondin-1 (TSP1) is an endogenous inhibitor of angiogenesis and induces endothelial cell (EC) apoptosis. To study the role TSP1 plays during vascular development and neovascularization, we assessed the effects of ectopic TSP1 expression in the lens on retinal vascularization in transgenic mice. The TSP1 over-expressing mice showed abnormalities in the development of retinal vasculature. There was a dramatic decrease in the density of superficial and deep vascular plexuses of the retina in transgenic mice. The retinal vessels in TSP1 transgenic mice also appeared nonuniform and abnormal in maturation. We detected an increase in the number of EC undergoing apoptosis, which was compensated, in part, by an increase in cell proliferation in retinal vasculature of TSP1 transgenic mice. The TSP1 transgenic mice also exhibited increased levels of vessel obliteration and a limited preretinal neovascularization during oxygen-induced ischemic retinopathy (OIR). Our results indicate increased expression of TSP1 attenuates normal retinal vascularization and preretinal neovascularization during OIR. Therefore, modulation of TSP1 expression may provide an effective mechanism for regulation of ocular angiogenesis.  相似文献   

2.
Basic fibroblast growth factor (FGF2) is constitutively expressed in the retina and its expression is increased by a number of insults, but its role in the retina is still uncertain. This study was designed to test the hypothesis that altered expression of FGF2 in the retina affects the development of retinal neovascularization. Mice with targeted disruption of the Fgf2 gene had no detectable expression of FGF2 in the retina by Western blot, but retinal vessels were not different in appearance or total area from wild-type mice. When FGF2-deficient mice were compared with wild-type mice in a murine model of oxygen-induced ischemic retinopathy, they developed the same amount of retinal neovascularization. Transgenic mice with a rhodopsin promoter/Fgf2 gene fusion expressed high levels of FGF2 in retinal photoreceptors but developed no retinal neovascularization or other abnormalities of retinal vessels; in the ischemic retinopathy model, they showed no significant difference in the amount of retinal neovascularization compared with wild-type mice. These data indicate that FGF2 expression is not necessary nor sufficient for the development of retinal neovascularization. This suggests that agents that specifically antagonize FGF2 are not likely to be useful adjuncts in the treatment of retinal neovascularization and therapies designed to increase FGF2 expression are not likely to be complicated by retinal neovascularization.  相似文献   

3.
Because oxidative stress has been strongly implicated in up-regulation of vascular endothelial growth factor (VEGF) expression in ischemic retinopathy, we evaluated the role of NAD(P)H oxidase in causing VEGF overexpression and retinal neovascularization. Dihydroethidium imaging analyses showed increased superoxide formation in areas of retinal neovascularization associated with relative retinal hypoxia in a mouse model for oxygen-induced retinopathy. The effect of hypoxia in stimulating superoxide formation in retinal vascular endothelial cells was confirmed by in vitro chemiluminescence assays. The superoxide formation was blocked by specific inhibitors of NAD(P)H oxidase activity (apocynin, gp91ds-tat) indicating that NAD(P)H oxidase is a major source of superoxide formation. Western blot and immunolocalization analyses showed that retinal ischemia increased expression of the NAD(P)H oxidase catalytic subunit gp91phox, which localized primarily within vascular endothelial cells. Treatment of mice with apocynin blocked ischemia-induced increases in oxidative stress, normalized VEGF expression, and prevented retinal neovascularization. Apocynin and gp91ds-tat also blocked the action of hypoxia in causing increased VEGF expression in vitro, confirming the specific role of NAD(P)H oxidase in hypoxia-induced increases in VEGF expression. In conclusion, NAD(P)H oxidase activity is required for hypoxia-stimulated increases in VEGF expression and retinal neovascularization. Inhibition of NAD(P)H oxidase offers a new therapeutic target for the treatment of retinopathy.  相似文献   

4.
The present study was undertaken to test whether inhibition of the proangiogenic inflammatory cytokine tumor necrosis factor (TNF)-alpha can modulate retinal hypoxia and preretinal neovascularization in a murine model of oxygen-induced retinopathy (OIR). OIR was produced in TNF-alpha-/- and wild-type (WT) control C57B6 neonatal mice by exposure to 75% oxygen between postnatal days 7 and 12 (P7 to P12). Half of each WT litter was treated with the cytokine inhibitor semapimod (formerly known as CNI-1493) (5 mg/kg) by daily intraperitoneal injection from the time of reintroduction to room air at P12 until P17. The extent of preretinal neovascularization and intraretinal revascularization was quantified by image analysis of retinal flat-mounts and retinal hypoxia correlated with vascularization by immunofluorescent localization of the hypoxia-sensitive drug pimonidazole (hypoxyprobe, HP). HP adducts were also characterized by Western analysis and quantified by competitive enzyme-linked immunosorbent assay. TNF-alpha-/- and WT mice showed a similar sensitivity to hyperoxia-induced retinal ischemia at P12. At P13 some delay in early reperfusion was evident in TNF-alpha-/- and WT mice treated with semapimod. However, at P17 both these groups had significantly better vascular recovery with less ischemic/hypoxic retina and preretinal neovascularization compared to untreated retinopathy in WT mice. Immunohistochemistry showed deposition of HP in the avascular inner retina but not in areas underlying preretinal neovascularization, indicating that such aberrant vasculature can reduce retinal hypoxia. Inhibition of TNF-alpha significantly improves vascular recovery within ischemic tissue and reduces pathological neovascularization in OIR. HP provides a useful tool for mapping and quantifying tissue hypoxia in experimental ischemic retinopathy.  相似文献   

5.
6.
The most common cause of new blindness in young patients is retinal neovascularization, and in the elderly is choroidal neovascularization. Therefore, there has been a great deal of attention focused on the development of new treatments for these disease processes. Previous studies have demonstrated partial inhibition of retinal neovascularization in animal models using antagonists of vascular endothelial growth factor or other signaling molecules implicated in the angiogenesis cascade. These studies have indicated potential for drug treatment, but have left many questions unanswered. Is it possible to completely inhibit retinal neovascularization using drug treatment with a mode of administration that is feasible to use in patients? Do agents that inhibit retinal neovascularization have any effect on choroidal neovascularization? In this study, we demonstrate complete inhibition of retinal neovascularization in mice with oxygen-induced ischemic retinopathy by oral administration of a partially selective kinase inhibitor that blocks several members of the protein kinase C family, along with vascular endothelial growth factor and platelet-derived growth factor receptor tyrosine kinases. The drug also blocks normal vascularization of the retina during development but has no identifiable adverse effects on mature retinal vessels. In addition, the kinase inhibitor causes dramatic inhibition of choroidal neovascularization in a laser-induced murine model. These data provide proof of concept that pharmacological treatment is a viable approach for therapy of both retinal and choroidal neovascularization.  相似文献   

7.
8.
Retinal astrocytes are located in the nerve fiber layer and along retinal blood vessels and have been hypothesized to participate in the induction and maintenance of the blood-retinal barrier. Platelet-derived growth factor-A (PDGF-A) is normally produced by retinal ganglion cells and is involved in astrocyte recruitment and proliferation. We used gain-of-function transgenic mice that express PDGF-A in photoreceptors to explore the roles of PDGF-A and astrocytes in the retina. Transgene-positive mice developed glial infiltration of the inner retina and had significantly less oxygen-induced retinal vascular closure and no neovascularization compared with littermate controls, which had prominent vascular closure and neovascularization. The increased survival of endothelial cells in transgenic mice in the face of oxygen-induced down-regulation of vascular endothelial growth factor was accompanied by an increase in astrocyte-derived fibroblast growth factor-2. Therefore, PDGF-A increases retinal astrocytes, which promote the survival of endothelial cells as well as their expression of barrier characteristics.  相似文献   

9.
Endothelial cell association with vascular basement membranes is complex and plays a critical role in regulation of cell adhesion and proliferation. The interaction between the membrane-associated 67-kd receptor (67LR) and the basement membrane protein laminin has been studied in several cell systems where it was shown to be crucial for adhesion and attachment during angiogenesis. As angiogenesis in the pathological setting of proliferative retinopathy is a major cause of blindness in the Western world we examined the expression of 67LR in a murine model of hyperoxia-induced retinopathy that exhibits retinal neovascularization. Mice exposed to hyperoxia for 5 days starting at postnatal day 7 (P7) and returned to room air (at P12) showed closure of the central retinal vasculature. In response to the ensuing retinal ischemia, there was consistent preretinal neovascularization starting around P17, which persisted until P21, after which the new vessels regressed. Immunohistochemistry was performed on these retinas using an antibody specific for 67LR. At P12, immunoreactivity for 67LR was absent in the retina, but by P17 it was observed in preretinal proliferating vessels and also within the adjacent intraretinal vasculature. Intraretinal 67LR immunoreactivity diminished beyond P17 until by P21 immunoreactivity was almost completely absent, although it persisted in the preretinal vasculature. Control P17 mice (not exposed to hyperoxia) failed to demonstrate any 67LR immunoreactivity in their retinas. Parallel in situ hybridization studies demonstrated 67LR gene expression in the retinal ganglion cells of control and hyperoxia-exposed mice. In addition, the neovascular intra- and preretinal vessels of hyperoxia-treated P17 and P21 mice labeled strongly for 67LR mRNA. This study has characterized 67LR immunolocalization and gene expression in a murine model of ischemic retinopathy. Results suggest that, although the 67LR gene is expressed at high levels in the retinal ganglion cells, the mature receptor protein is preferentially localized to the proliferating retinal vasculature and is almost completely absent from quiescent vessels. The differential expression of 67LR between proliferating and quiescent retinal vessels suggests that this laminin receptor is an important and novel target for future chemotherapeutic intervention during proliferative vasculopathies.  相似文献   

10.
This study was conducted to determine the perivascular cell responses to increased endothelial cell expression of insulin-like growth factor binding protein-3 (IGFBP-3) in mouse retina. The contribution of bone marrow cells in the IGFBP-3-mediated response was examined using green fluorescent protein-positive (GFP(+)) adult chimeric mice subjected to laser-induced retinal vessel occlusion injury. Intravitreal injection of an endothelial-specific IGFBP-3-expressing plasmid resulted in increased differentiation of GFP(+) hematopoietic stem cells (HSCs) into pericytes and astrocytes as determined by immunohistochemical analysis. Administration of IGFBP-3 plasmid to mouse pups that underwent the oxygen-induced retinopathy model resulted in increased pericyte ensheathment and reduced pericyte apoptosis in the developing retina. Increased IGFBP-3 expression reduced the number of activated microglial cells and decreased apoptosis of neuronal cells in the oxygen-induced retinopathy model. In summary, IGFBP-3 increased differentiation of GFP(+) HSCs into pericytes and astrocytes while increasing vascular ensheathment of pericytes and decreasing apoptosis of pericytes and retinal neurons. All of these cytoprotective effects exhibited by IGFBP-3 overexpression can result in a more stable retinal vascular bed. Thus, endothelial expression of IGFBP-3 may represent a physiologic response to injury and may represent a therapeutic strategy for the treatment of ischemic vascular eye diseases, such as diabetic retinopathy and retinopathy of prematurity.  相似文献   

11.
Akt, or protein kinase B, is an important signaling molecule that modulates many cellular processes such as cell growth, survival, and metabolism. However, the vivo roles and effectors of Akt in retinal angiogenesis are not explicitly clear. We therefore detected the expression of Akt using Western blotting or RT-PCR technologies in an animal model of oxygen-induced retinopathy, and investigated the effects of recombinant Akt on inhibiting vessels loss and Akt inhibitor on suppressing experimental retinal neovascularization in this model. We showed that in the hyperoxic phase of oxygen-induced retinopathy, the expression of Akt was greatly suppressed. In the hypoxic phase, the expression of Akt was increased dramatically. No significant differences were found in normoxic groups. Compared with control groups, administration of the recombinant Akt in the first phase of retinopathy markedly reduced capillary-free areas, while the administration of the Akt inhibitor in the second phase of retinopathy significantly decreased retinal neovascularization but capillary-free areas. These results indicate that Akt play a critical role in the pathological process (vessels loss and neovascularization) of mouse model of oxygen-induced retinopathy, which may provide a valubale therapeutic tool for ischemic-induced retinal diseases.  相似文献   

12.
Retinal vasculogenesis and ischemic retinopathies provide good model systems for study of vascular development and neovascularization (NV), respectively. Vascular endothelial cell growth factor (VEGF) has been implicated in the pathogenesis of retinal vasculogenesis and in the development of retinal NV in ischemic retinopathies. However, insulin-like growth factor-I and possibly other growth factors also participate in the development of retinal NV and intraocular injections of VEGF antagonists only partially inhibit retinal NV. One possible conclusion from these studies is that it is necessary to block other growth factors in addition to VEGF to achieve complete inhibition of retinal NV. We recently demonstrated that a partially selective kinase inhibitor, PKC412, that blocks phosphorylation by VEGF and platelet-derived growth factor (PDGF) receptors and several isoforms of protein kinase C (PKC), completely inhibits retinal NV. In this study, we have used three additional selective kinase inhibitors with different selectivity profiles to explore the signaling pathways involved in retinal NV. PTK787, a drug that blocks phosphorylation by VEGF and PDGF receptors, but not PKC, completely inhibited retinal NV in murine oxygen-induced ischemic retinopathy and partially inhibited retinal vascularization during development. CGP 57148 and CGP 53716, two drugs that block phosphorylation by PDGF receptors, but not VEGF receptors, had no significant effect on retinal NV. These data and our previously published study suggest that regardless of contributions by other growth factors, VEGF signaling plays a critical role in the pathogenesis of retinal NV. Inhibition of VEGF receptor kinase activity completely blocks retinal NV and is an excellent target for treatment of proliferative diabetic retinopathy and other ischemic retinopathies.  相似文献   

13.
The Eph receptor/ephrin system is a recently discovered regulator of vascular development during embryogenesis. Activation of EphA2, one of the Eph receptors, reportedly suppresses cell proliferation and adhesion in a wide range of cell types, including vascular endothelial cells. Vascular endothelial growth factor (VEGF) plays a primary role in both pathological angiogenesis and abnormal vascular leakage in diabetic retinopathy. In the study described herein, we demonstrated that EphA2 stimulation by ephrinA1 in cultured bovine retinal endothelial cells inhibits VEGF-induced VEGFR2 receptor phosphorylation and its downstream signaling cascades, including PKC (protein kinase C)-ERK (extracellular signal-regulated kinase) 1/2 and Akt. This inhibition resulted in the reduction of VEGF-induced angiogenic cell activity, including migration, tube formation, and cellular proliferation. These inhibitory effects were further confirmed in animal models. Intraocular injection of ephrinA1 suppressed ischemic retinal neovascularization in a dose-dependent manner in a mouse model. At a dose of 125 ng/eye, the inhibition was 36.0 +/- 14.9% (P < 0.001). EphrinA1 also inhibited VEGF-induced retinal vascular permeability in a rat model by 46.0 +/- 10.0% (P < 0.05). These findings suggest a novel therapeutic potential for EphA2/ephrinA1 in the treatment of neovascularization and vasopermeability abnormalities in diabetic retinopathy.  相似文献   

14.
Macrophages are important participants in neovascularization. This study was designed to examine the role of the monocyte/macrophage chemotactic proteins, monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1alpha (MIP-1alpha) in a mouse model of oxygen-induced ischemic retinopathy and to determine whether the morphology and distribution of macrophages/microglia are concomitantly altered. The MCP-1, MIP-1alpha mRNA levels increased at 3 h after ischemia. MCP-1, MIP-1alpha, and vascular endothelial growth factor protein levels were also increased markedly and were maximal on days 1, 0.5, and 1, respectively, after ischemia. In situ hybridization showed that MCP-1 and MIP-1alpha were localized in the hypoxic inner retina. Immunostaining demonstrated that the macrophages/microglia in the retina had morphological changes with enlarged processes, and some were closely associated with neovascular tufts at postnatal day 17. Coadministration of the neutralizing antibodies against MCP-1 and MIP-1alpha inhibited retinal neovascularization by 30%. Our data suggest that MCP-1 and MIP-1alpha are involved in the induction of retinal neovascularization and play a role in the inflammation induced by the ischemic retinopathy, possibly by modulating or attracting macrophages/microglia.  相似文献   

15.
Recently, the proinflammatory cytokine IL-18 has been shown to have a role in angiogenesis. This study aimed to elucidate its role in abnormal neovascularization (NV) in an oxygen-induced retinopathy (OIR) mouse model of the retinopathy seen in human premature newborns. IL-18 was constitutively expressed in the retina in C57BL/6 mice, but expression transiently dropped on Day 17 after birth in mice exposed to 75% oxygen for 5 days between Days 7 and 12. Coincident with the IL-18 reduction in oxygen-treated mice, vascular endothelial growth factor was expressed in the retina, and OIR developed. By Day 24, NV in the retina had regressed to normal levels. By contrast, IL-18 knockout mice, exposed to elevated oxygen concentrations, developed more severe OIR on Day 17, and it is important that this persisted until Day 24. This suggested that IL-18 negatively regulated retinal NV. To investigate this further, we administrated recombinant IL-18 to C57BL/6 mice during the development of OIR but found no significant inhibition of retinopathy. However, when IL-18-binding protein was administered during the OIR recovery phase to neutralize endogenous IL-18, OIR was still apparent on Day 24. We therefore concluded that IL-18 regulates pathogenic retinal NV by promoting its regression rather than inhibiting its development. This suggests some useful, new approaches to treating retinopathy in humans.  相似文献   

16.
17.
Because retinal ischemia is a common cause of vision loss, we sought to determine the effects of ischemia on neuroretinal function and survival in murine oxygen-induced retinopathy (OIR) and to define the role of endogenous erythropoietin (EPO) in this model. OIR is a reproducible model of ischemia-induced retinal neovascularization; it is used commonly to develop antiangiogenic strategies. We investigated the effects of ischemia in murine OIR on retinal function and neurodegeneration by electroretinography and detailed morphology. OIR was associated with significant neuroretinal dysfunction, with reduced photopic and scotopic ERG responses and reduced b-wave/a-wave ratios consistent with specific inner-retinal dysfunction. OIR resulted in significantly increased apoptosis and atrophy of the inner retina in areas of ischemia. EPO deficiency in heterozygous Epo-Tag transgenic mice was associated with more profound retinal dysfunction after OIR, indicated by a significantly greater suppression of ERG amplitudes, but had no measurable effect on the extent of retinal ischemia, preretinal neovascularization, or neuroretinal degeneration in OIR. Systemic administration of recombinant EPO protected EPO-deficient mice against this additional suppression, but EPO supplementation in wild-type animals with OIR did not rescue neuroretinal dysfunction or degeneration. Murine OIR offers a valuable model of ischemic neuroretinal dysfunction and degeneration in which to investigate adaptive tissue responses and evaluate novel therapeutic approaches. Endogenous EPO can protect neuroretinal function in ischemic retinopathy.  相似文献   

18.
19.
Normal human retinal vascular development uses angiogenesis and vasculogenesis, both of which are interrupted in the vaso-obliteration phase of retinopathy of prematurity (ROP). Canine oxygen-induced retinopathy (OIR) closely resembles human ROP. Canine retinal endothelial cells (ECs) and angioblasts were used to model OIR and characterize the effects of hyperoxia on angiogenesis and vasculogenesis. Cell cycle analysis showed that hyperoxia reduced the number of G1 phase cells and showed increased arrest in S phase for both cell types. Migration of ECs was significantly inhibited in hyperoxia (P < 0.01). Hyperoxia disrupted the cytoskeleton of angioblasts but not ECs after 2 days. Differentiation of angioblasts into ECs (determined by acetylated low-density lipoprotein uptake) was evaluated after basic fibroblast growth factor treatment. Differentiation of angioblasts into pericytes was determined by smooth muscle actin expression after treatment with platelet-derived growth factor. Differentiation into ECs was significantly inhibited by hyperoxia (P < 0.0001). The percentage of CXCR4(+) cells (a marker for retinal vascular precursors) increased in both treatment groups after hyperoxia. These data show novel mechanisms of hyperoxia-induced disruption of vascular development.  相似文献   

20.
 目的:通过观察apelin及其受体APJ和一氧化氮合酶(NOS)在氧诱导的新生小鼠增生性视网膜病变中的表达,探讨apelin/APJ和一氧化氮(NO)是否参与了早产儿视网膜病变新生血管的发生。方法:36只7日龄C57BL/6J新生小鼠随机均分为高氧组和对照组。高氧组暴露在75%±2%的氧浓度下5 d后,在正常空气环境下饲养5 d;对照组小鼠在正常氧环境下饲养10 d。两组均在17日龄处死,取左眼眼球做石蜡切片,HE染色计数突破内界膜的血管内皮细胞核数,以判断造模是否成功。实时荧光定量PCR检测右眼视网膜组织apelin和APJ mRNA的表达,免疫荧光组织化学法检测视网膜apelin、APJ、eNOS和iNOS蛋白的表达。结果:高氧组视网膜平均每个切面突破内界膜的血管内皮细胞核数(35.13±10.13)明显高于对照组(0.30±0.21,P<0.01),说明造模成功。高氧组apelin和APJ mRNA水平显著高于对照组,分别为对照组的32.2倍和17.6倍(均P<0.01)。组织免疫荧光结果显示高氧组apelin和APJ蛋白表达明显强于对照组,并且主要强表达于新生血管周围;高氧组eNOS和iNOS蛋白表达明显强于对照组,但主要强表达于新生血管下方视网膜组织,在突破内界膜的血管内皮细胞核周围未见表达明显增强。结论:Apelin/APJ及NOS可能与氧诱导的新生小鼠增生性视网膜病变新生血管的发生有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号