首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An oral controlled release system based on direct compression of cross-linked amylose (CLA) and drug powders was previously introduced. For drugs with limited solubility or for some drugs for which solubility can be influenced by variation of gastro–intestinal pH, a system is required to accelerate drug release. This paper describes a novel enzymatically-controlled drug release (ECDR) system based on the addition of α-amylase to CLA tablets, which can modulate the release kinetics of drugs. The α-amylase within the tablets is able to hydrolyze α-1-4-glucosidic bonds present in the CLA semisynthetic substrate. Increasing amounts of α-amylase (5 to 25 EU) within the tablets induced a significant decrease in release time from 24 to 6 h. High amounts of external α-amylase (300–6000 EU/l) had a slight effect on the release rate. Drug release from the ECDR system seems to be controlled by two sequential mechanisms: (a) hydration and swelling of CLA tablets followed by (b) internal enzymatic hydrolysis of the hydrated gel phase.  相似文献   

2.
A multifunctional drug delivery system based on hydroxypropyl methylcellulose (HPMC)-matrices (tablets) placed within an impermeable polymeric cylinder (open at both ends) was developed. Depending on the configuration of the device, extended release, floating or pulsatile drug delivery systems could be obtained. The release behaviour of the different devices was investigated as a function of HPMC viscosity grade, HPMC content, type of drug (chlorpheniramine maleate or ibuprofen), matrix weight, position of the matrix within the polymeric cylinder, addition of various fillers (lactose, dibasic calcium phosphate or microcrystalline cellulose) and agitation rate of the release medium. The drug release increased with a reduced HPMC viscosity grade, higher aqueous drug solubility, decreased HPMC content and increased surface area of the matrix. The release was fairly independent of the agitation rate, the position of the tablet within the polymeric cylinder and the length of the cylinder. With the pulsatile device, the lag time prior to the drug release could be controlled through the erosion rate of the matrix (matrix weight and composition).  相似文献   

3.
Development of controlled drug release systems based on thiolated polymers.   总被引:3,自引:0,他引:3  
The purpose of the present study was to generate mucoadhesive matrix-tablets based on thiolated polymers. Mediated by a carbodiimide, L-cysteine was thereby covalently linked to polycarbophil (PCP) and sodium carboxymethylcellulose (CMC). The resulting thiolated polymers displayed 100+/-8 and 1280+/-84 micromol thiol groups per gram, respectively (means+/-S.D.; n=6-8). In aqueous solutions these modified polymers were capable of forming inter- and/or intramolecular disulfide bonds. The velocity of this process augmented with increase of the polymer- and decrease of the proton-concentration. The oxidation proceeded more rapidly within thiolated PCP than within thiolated CMC. Due to the formation of disulfide bonds within thiol-containing polymers, the stability of matrix-tablets based on such polymers could be strongly improved. Whereas tablets based on the corresponding unmodified polymer disintegrated within 2 h, the swollen carrier matrix of thiolated CMC and PCP remained stable for 6.2 h (mean, n=4) and more than 48 h, respectively. Release studies of the model drug rifampicin demonstrated that a controlled release can be provided by thiolated polymer tablets. The combination of high stability, controlled drug release and mucoadhesive properties renders matrix-tablets based on thiolated polymers useful as novel drug delivery systems.  相似文献   

4.
Weakly basic drugs or salts thereof demonstrate pH-dependent solubility. The resulting release from conventional matrix tablets decreases with increasing pH-milieu of the gastrointestinal tract. The aim of this study was to overcome this problem and to achieve pH-independent drug release. Two different polymers were used as matrix formers, the water-insoluble and almost unswellable ethylcellulose (EC), and the water-soluble and highly swellable hydroxypropyl methylcellulose (HPMC). Two different approaches to solve the problem of pH-dependent release of weakly basic drugs are demonstrated in this paper. The first one is based on the addition of hydroxypropyl methylcellulose acetate succinate (HPMCAS, an enteric polymer), the second one on the addition of organic acids such as fumaric, succinic or adipic acid to the drug-polymer system. The first approach failed to achieve pH-independent drug release, whereas the addition of organic acids to both matrix formers was found to maintain low pH values within the tablets during drug release in phosphate buffer (pH 6.8 or 7.4). Thus, the micro-environmental conditions for the dissolution and diffusion of the weakly basic drug were almost kept constant. The release of verapamil hydrochloride from tablets composed of ethylcellulose or HPMC and organic acids was found to be pH-independent.  相似文献   

5.
The recently proposed Biopharmaceutics Classification System can be used to classify drugs and set standards for scale-up and post-approval changes as well as standards for in vitro/in vivo correlation for immediate and controlled release products. This classification scheme is based on determining the underlying process that is controlling the drug absorption rate and extent, namely, drug solubility and intestinal membrane permeability. Theoretical analysis and experimental results suggest that a permeability/solubility classification scheme can be used to set more rationale drug standards. In particular, high solubility/high permeability, rapidly dissolving drugs may be regulated on the basis of a single point rapid dissolution test while low solubility dissolution rate limited drugs can be regulated based on an in vitro dissolution test that reflects the in vivo dissolution process. This dissolution test may include multiple time points, media change, as well as surfactants in order to reflect the in vivo dissolution process and would be used by the manufacturer for requesting a waiver from a bioequivalence (BE) trial. For controlled release products, the regulation of bioequivalence standards is more complex due to the potential differences in position-dependent permeability/solubility and metabolism of drugs along the gastrointestinal tract. These differences may result in drug absorption rates that are highly transit time dependent. This paper will present the current status of the biopharmaceutic drug classification scheme, the underlying developed data base and its application to optimizing IR and CR products.  相似文献   

6.
背景:胃肠道生物黏附控释制剂能延长药物制剂在胃肠道的停留时间,提高药物的生物利用度。目的:制备5-氟尿嘧啶胃肠道生物黏附控释片。方法:利用生物可降解性玉米醇溶蛋白为骨架材料和黏附材料,氟尿嘧啶为模型药,制备氟尿嘧啶胃肠道黏附控释片。对片芯工艺进行正交设计,优化包衣液的选择,观察生物黏附缓释片的体外黏附力及体内外相关性。结果与结论:5-氟尿嘧啶玉米醇溶蛋白生物黏附片体外释放10h内均符合零级释放特征,片剂具有较好的体外黏附力,且在2~8h内体内血药浓度较为平稳,没有明显峰谷现象,体内外释放吸收具有良好的相关性。  相似文献   

7.
背景:胃肠道生物黏附控释制剂能延长药物制剂在胃肠道的停留时间,提高药物的生物利用度。目的:制备5-氟尿嘧啶胃肠道生物黏附控释片。方法:利用生物可降解性玉米醇溶蛋白为骨架材料和黏附材料,氟尿嘧啶为模型药,制备氟尿嘧啶胃肠道黏附控释片。对片芯工艺进行正交设计,优化包衣液的选择,观察生物黏附缓释片的体外黏附力及体内外相关性。结果与结论:5-氟尿嘧啶玉米醇溶蛋白生物黏附片体外释放10h内均符合零级释放特征,片剂具有较好的体外黏附力,且在2~8h内体内血药浓度较为平稳,没有明显峰谷现象,体内外释放吸收具有良好的相关性。  相似文献   

8.
Asymmetric membrane-coated capsules with in situ formation of a delivery orifice were examined for their improved osmotic effects. The release mechanisms were investigated for drugs with both moderate to high water solubility and those with poor water solubility. The capsule wall membrane was produced by a phase-inversion process, in which an asymmetric membrane was formed on stainless steel mold pins by dipping the mold pins into a coating solution containing a polymeric material followed by dipping into a quenching solution. In situ formation of a delivery orifice in the thin membrane was proven by visualization of a jet stream of chlorophyll being released from the capsule. The release mechanism for drugs with moderate to high water solubility was mainly controlled by the osmotic effect, which is a function of the drug's solubility. Permeability across the asymmetric membrane of the capsule was determined to be 4.28 x 10(-6) cm(2)/h-atm at 37 degrees C for drugs with water solubilities in a moderate to high range. Accordingly, the poorly water-soluble drug, nifedipine, was unable to create enough of an osmotic effect to activate drug release. Solubilization either by the addition of the solubility enhancer, SLS, or by a solid dispersion with HPMC could increase the solubility of nifedipine to a sufficient extent to activate drug release. It was found that the suspending ability induced by the viscous nature of HPMC further interacted with SLS to synergistically increase the maximal percent release and the release rate of nifedipine. The osmotic effect of this suspension ability was proposed as the underlying mechanism responsible for the release of poorly water-soluble drugs, i.e. nifedipine, from this system.  相似文献   

9.
The present study is carried out to design oral controlled drug delivery systems for highly water-soluble drugs using guar gum as a carrier in the form of three-layer matrix tablets. Trimetazidine dihydrochloride was chosen as a model drug because of its high water solubility. Matrix tablet granules containing 30% (M1), 40% (M2) or 50% (M3) of guar gum were prepared by the wet granulation technique using starch paste as a binder. Three-layer matrix tablets of trimetazidine dihydrochloride were prepared by compressing on either side of guar gum matrix tablet granules of trimetazidine dihydrochloride M1, M2 or M3 with 200 mg of guar gum granules containing either 65% of guar gum (T1M1, T1M2 or T1M3), 75% of guar gum (T2M1, T2M2 or T2M3) or 85% of guar gum (T3M1, T3M2 or T3M3) as release retardant layers. The three-layer matrix tablets were evaluated for hardness, thickness, drug content uniformity, and were subjected to in vitro drug release studies. The amount of trimetazidine dihydrochloride released from the matrix and three-layer matrix tablets at different time intervals was estimated using a HPLC method. The three-layer guar gum matrix tablet (T3M3) provided the required release rate on par with the theoretical release rate for guar gum formulations meant for twice daily administration. The three-layer guar gum matrix tablet (T3M3) showed no change either in physical appearance, drug content or in dissolution pattern after storage at 40 degrees C/RH 75% for 6 months. The DSC study did not show any possibility of interaction between trimetazidine dihydrochloride and guar gum/other formulation excipients used in the study. The results indicated that guar gum, in the form of three-layer matrix tablets, is a potential carrier in the design of oral controlled drug delivery systems for highly water-soluble drugs such as trimetazidine dihydrochloride.  相似文献   

10.
Lactose-based placebo tablets were coated using various combinations of two methacrylic acid copolymers, Eudragit L100-55 and Eudragit S100, by spraying from aqueous systems. The Eudragit L100-55-Eudragit S100 combinations (w/w) studied were 1:0, 4:1, 3:2, 1:1, 2:3, 1:4, 1:5 and 0:1. The coated tablets were tested in vitro for their suitability for pH dependent colon targeted oral drug delivery. The same coating formulations were then applied on tablets containing mesalazine as a model drug and evaluated for in vitro dissolution rates under various conditions. The disintegration data obtained from the placebo tablets demonstrate that disintegration rate of the studied tablets is dependent on: (i) the polymer combination used to coat the tablets, (ii) pH of the disintegration media, and (iii) the coating level of the tablets. Dissolution studies performed on the mesalazine tablets further confirmed that the release profiles of the drug could be manipulated by changing the Eudragit L100-55 and Eudragit S100 ratios within the pH range of 5.5 to 7.0 in which the individual polymers are soluble respectively, and a coating formulation consisting of a combination of the two copolymers can overcome the issue of high gastrointestinal (GI) pH variability among individuals. The results also demonstrated that a combination of Eudragit L100-55 and Eudragit S100 can be successfully used from aqueous system to coat tablets for colon targeted delivery of drugs and the formulation can be adjusted to deliver drug at any other desirable site of the intestinal region of the GI tract on the basis of pH-variability. For colon targeted delivery of drugs the proposed combination system is superior to tablets coated with either Eudragit L100-55 or Eudragit S100 alone.  相似文献   

11.
Selection of hydrogels as excipients in controlled drug release systems depends on the characteristics of the gel and of the drug. Three types of derivatives were synthesized from cross-linked high amylose starch (HASCL-6) by substitution of hydroxylic groups with cationic (carboxymethyl: CM), anionic (aminoethyl: AE) and acetate (Ac) groups. These new polymeric excipients are able to control the release over 20 h from monolithic tablets loaded with 20 to 60% drug. Three drugs were used as model tracer: acetaminophen (uncharged), acetylsalicylic acid (having an acidic group) and metformin (having a basic group). It was found that the release of ionic drugs from CM-HASCL-6 and AE-HASCL-6 matrices can be partially controlled by ionic interaction between pendant groups of polymer and drugs. The substitution degree of HASCL-6 derivatives can also be varied to modulate the drug's release time. These derivatives represent a novel generation of pharmaceutical excipients, recommended for high loading dosage formulations.  相似文献   

12.
A controlled porosity osmotic pump system for poorly water soluble drugs has been developed using sulfobutyl ether-beta-cyclodextrin sodium salt, (SBE)7m-beta-CD, which can act as both a solubilizing and an osmotic agent. The release of testosterone, a poorly water soluble drug (0.039 mg/ml at 37 degrees C), was evaluated using a new model device. The effect of (SBE)7m-beta-CD as the solubilizing and osmotic pump agent was compared with hydroxypropyl-beta-cyclodextrin (HP-beta-CD), a neutral cyclodextrin, and a sugar mixture (osmotic agent only). Testosterone release from the device was significantly faster with (SBE)7m-beta-CD than with HP-beta-CD or the sugar mixture. The solubility of testosterone in the device increased to 76.7 mg/ml through complexation with (SBE)7m-beta-CD in the imbibed water. It appears that testosterone release from the device in the presence of (SBE)7m-beta-CD was mainly due to osmotic pumping while for HP-beta-CD the major contribution appears to be due to diffusion. In the case of the sugar mixture, testosterone was poorly released, presumably due to the absence of a solubilizer. Therefore, it was concluded that (SBE)7m-beta-CD provides novel properties for the development of controlled- porosity osmotic pump tablets for poor solubility drugs.  相似文献   

13.
The purpose of this study was to investigate the influence of sodium bicarbonate on the physicochemical properties of controlled release hot-melt extruded (HME) tablets containing Eudragit RS PO and/or Eudragit E PO. Acetohydroxamic acid and chlorpheniramine maleate were used as model drugs. Sodium bicarbonate was incorporated into the tablet formulations and the drug release properties and buoyancy in media for HME tablets and directly compressed (DC) tablets were investigated. The HME tablets prepared from the powder blend containing both Eudragit RS PO and sodium bicarbonate exhibited sustained release properties and the tablets floated on the surface of the media for 24 h. The cross-sectional morphology of the HME tablets showed a porous structure since CO(2) gas was generated due to the thermal decomposition of sodium bicarbonate in the softened acrylic polymers at elevated temperature during the extrusion process. In contrast, all DC tablets prepared in this study showed no buoyancy and rapid drug release in the dissolution media. The drug release rate from floating HME tablets was controlled by both the incorporation of Eudragit E PO into the matrix tablet and the diameter of the die used in the extrusion equipment. The drug release profiles and buoyancy of the floating HME tablets were stable when stored at 40 degrees C/75%RH for 3 months.  相似文献   

14.
This work investigates the relationship between polymer microstructure and drug release kinetics in the bioerodible polyanhydride system, poly[(1,6-bis-p-carboxyphenoxy hexane)-co-(sebacic anhydride)] (CPH-SA). Model drugs, p-nitroaniline (PNA) and disperse yellow 3 (DY), were selected based on compatibility with CPH and SA, respectively. The polymer microstructure and compatibility of the drug with the constituent monomers were determined to have significant influence over the release kinetics of the drugs studied. Polymer systems with homogeneous microstructure, poly(SA) and 50:50 CPH-SA, showed simultaneous polymer degradation and drug release, although the solubility of the drug in the polymer influenced the shape of the release profiles. For the heterogeneous copolymers, 20:80 and 80:20 CPH-SA, individual monomer release kinetics demonstrated the effects of drug partitioning within a phase-separated microstructure. The PNA molecules partition preferentially into the CPH microdomains in the 20:80 CPH-SA copolymer while the DY molecules partition preferentially into the SA microdomains in the 80:20 CPH-SA copolymer. These studies suggest that the drug release mechanism is driven by polymer microstructure, compatibility of the drug with the constituent polymer phases, and solubility of the drug within the polymer. A thorough understanding of drug-polymer interactions as well as the polymer microstructure will pave the way for more accurate predictions of drug release from bioerodible polyanhydrides.  相似文献   

15.
Effect of incorporating pharmaceutical excipients on the in vitro release profiles and the release mechanism of monolithic hydroxypropylmethylcellulose (4000 cps) matrix tablets (m-HPMC tablets) in terms of mimicking the dual drug release character of bi-layered Tylenol ER tablets was studied. We also compared the in vitro release profiles of optimized m-HPMC matrix tablet and Tylenol ER tablet in water, pH 1.2 gastric fluid, and pH 6.8 intestinal fluid, and in vivo drug bioavailabilities in healthy human volunteers. Acetaminophen was used as the model drug. The m-HPMC tablets were prepared using a wet granulation method followed by direct compression. Release profiles and swelling rates of m-HPMC tablets were found to be highly influenced by the types and amounts of pharmaceutical excipients incorporated. Starch 1500 (Prejel) and sodium lauryl sulfate (SLS) played a key role in determining the dissolution rate of m-HPMC tablets. Additional excipients, i.e., microcrystalline cellulose (Avicel PH101) and NaH2PO4 were used to tune the release profiles of m-HPMC tablets. The effect of pharmaceutical excipients on drug release from HPMC-based matrix tablets was found to be mainly due to a change in hydrophilic gel expansion and on physical interactions between the drug and HPMC. The optimized m-HPMC tablet with a balanced ratio of Prejel, SLS, Avicel PH101, and NaH2PO4 in the formulation showed dual release profiles in water, pH 1.2 gastric fluid, and pH 6.8 intestinal fluid in vitro. Dual release was defined as immediate drug release within few minutes followed by extended release over 8 h. The similarity factors of m-HPMC tablets and bi-layered Tylenol ER tablets were 79.8, 66.1, and 82.7 in water, gastric fluid and intestinal fluid, respectively, indicating the equivalence of the two release profiles. No significant in vivo bioavailability differences were observed in healthy human volunteers. The developed m-HPMC tablet with dual release characteristics can be easily prepared using a conventional high-speed tablet machine and could provide an alternative to commercially available bilayered Tylenol ER tablets.  相似文献   

16.
The electrospun fiber mat for drug delivery is a novel formulation with promising clinical applications in the future. The influence of the solubility and compatibility of drugs in the drug/polymer/solvent system on the encapsulation of the drug inside the poly(L-lactide) (PLLA) electrospun fibers and the release behavior of this formulation were examined by using paclitaxel, doxorubicin hydrochloride and doxorubicin base as model drugs. The burst release of the drugs can be avoided by using compatible drugs with polymers, and the drug release can follow nearly zero-order kinetics due to the degradation of the PLLA fibers in the presence of proteinase K.  相似文献   

17.
The aim of the study was to develop a mucoadhesive ocular insert for the controlled delivery of ophthalmic drugs and to evaluate its efficacy in vivo. The inserts tested were based either on unmodified or thiolated poly(acrylic acid). Water uptake and swelling behavior of the inserts as well as the drug release rates of the model drugs fluorescein and two diclofenac salts with different solubility properties were evaluated in vitro. Fluorescein was used as fluorescent tracer to study the drug release from the insert in humans. The mean fluorescein concentration in the cornea/tearfilm compartment as a function of time was determined after application of aqueous eye drops and inserts composed of unmodified and of thiolated poly(acrylic acid). The acceptability of the inserts by the volunteers was also evaluated. Inserts based on thiolated poly(acrylic acid) were not soluble and had good cohesive properties. A controlled release was achieved for the incorporated model drugs. The in vivo study showed that inserts based on thiolated poly(acrylic acid) provide a fluorescein concentration on the eye surface for more than 8 h, whereas the fluorescein concentration rapidly decreased after application of aqueous eye drops or inserts based on unmodified poly(acrylic acid). Moreover, these inserts were well accepted by the volunteers. The present study indicates that ocular inserts based on thiolated poly(acrylic acid) are promising new solid devices for ocular drug delivery.  相似文献   

18.
Microchip technology in drug delivery   总被引:2,自引:0,他引:2  
The realization that the therapeutic efficacy of certain drugs can be affected dramatically by the way in which they are delivered has created immense interest in controlled drug delivery systems. Much previous work in drug delivery focused on achieving sustained drug release rates over time, while a more recent trend is to make devices that allow the release rate to be varied over time. Advances in microfabrication technology have made an entirely new type of drug delivery device possible. Proof-of-principle experiments have shown that silicon microchips have the ability to store and release multiple chemicals on demand. Future integration of active control electronics, such as microprocessors, remote control units, or biosensors, could lead to the development of a 'pharmacy on a chip,' ie 'smart' microchip implants or tablets that release drugs into the body automatically when needed.  相似文献   

19.
Verapamil was encapsulated with ethylcellulose (EC) and cellulose acetate (CA) in various ratios of drug and polymer by the hot melt technique and the prepared microcapsules were evaluated for size range, drug content, drug release profiles, and kinetics of drug release. The microcapsules were compressed into tablets to study the variation of drug release between the 2 types of formulations (ie, microcapsules and tablets). The size analysis of prepared microcapsules was done by a standard sieving method and in vitro dissolution studies were carried out in USP XXI dissolution test apparatus in 0.1 N HCl as dissolution media to study the drug release profiles of the microcapsules. Scanning electron microscopy studies were carried out to investigate the surface characteristics of the microcapsules prepared from both type of polymers. Drug release profiles from the compressed non-disintegrating matrix tablets prepared from the microcapsules were also investigated. All the microcapsules were discrete, free flowing, and reproducible with respect to size distribution and drug content. Maximum percentage of the microcapsules belonged to the size range of 35/50. Drug release durations of VERCA1 (drug: CA 3:1), VERCA2 (drug: CA 2:1), and VERCA3 (drug: CA 1:1) microcapsules were extended up to 3, 5, and 6 hours, respectively, and those of VEREC1 (drug: EC 3:1), VEREC2 (drug: EC 2:1), and VEREC3 (drug: EC 1:1) microcapsules were extended up to 4, 5, and 7 hours, respectively. The microcapsules of both types having a drug:polymer ratio of 1:1 had the slowest release rate in their respective categories. The microcapsules were compressed into nondisintegrating matrix tablets. The hardness of the tablets was tested using the Monsanto Hardness Tester and was found to be 6-7 kg/cm. All the tablets contained the drug verapamil within 100% +/- 5%. The drug release data of both the microcapsules and tablets prepared were examined kinetically, and the ideal kinetic model was determined for the drug release. The tablets prepared by compressing the microcapsule formulations were more satisfactory in releasing the drug at a controlled and uniform rate following Higuchian kinetics and the formulations VCACRT3 and VECCRT3 were able to control release of drug up to 12 hours. Thus, it is possible to formulate a single-unit, controlled-release dosage form of verapamil for oral administration at least once every 12 hours using the polymers CA and EC.  相似文献   

20.
Osmotically controlled oral drug delivery systems utilize osmotic pressure for controlled delivery of active agent(s). Drug delivery from these systems, to a large extent, is independent of the physiological factors of the gastrointestinal tract and these systems can be utilized for systemic as well as targeted delivery of drugs. The release of drug(s) from osmotic systems is governed by various formulation factors such as solubility and osmotic pressure of the core component(s), size of the delivery orifice, and nature of the rate-controlling membrane. By optimizing formulation and processing factors, it is possible to develop osmotic systems to deliver drugs of diverse nature at a pre-programmed rate. In the present review, different types of oral osmotic systems, various aspects governing drug release from these systems, and critical formulation factors are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号