首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.

Background and purpose:

9,10-Dihydro-2,5-dimethoxyphenanthrene-1,7-diol (RSCL-0520) is a phenanthrene isolated from Eulophia ochreata, one of the Orchidaceae family, known by local tradition to exhibit medicinal properties. However, no anti-inflammatory activity or any molecular mechanisms involved have been reported or elucidated. Here, for the first time, we evaluate the anti-inflammatory properties of RSCL-0520 on responses induced by lipopolysaccharide (LPS) and mediated via Toll-like receptors (TLRs).

Experimental approach:

The in vitro anti-inflammatory activities of RSCL-0520 were investigated in LPS-stimulated monocytic cells, measuring activation of cytokine and inflammatory genes regulated by nuclear factor-κB (NF-κB). Tumour necrosis factor (TNF)-α levels in serum following LPS stimulation in mice and carrageenan-induced paw oedema in rats were used as in vivo models.

Key results:

Pretreatment with RSCL-0520 effectively inhibited LPS-induced, TLR4-mediated, NF-κB-activated inflammatory genes in vitro, and reduced both LPS-induced TNF-α release and carrageenan-induced paw oedema in rats. Treatment with RSCL-0520 reduced LPS-stimulated mRNA expression of TNF-α, COX-2, intercellular adhesion molecule-1, interleukin (IL)-8 and IL-1β, all regulated through NF-κB activation. RSCL-0520, however, did not interfere with any cellular processes in the absence of LPS.

Conclusions and implications:

RSCL-0520 blocked signals generated by TLR4 activation, as shown by down-regulation of NF-κB-regulated inflammatory cytokines. The inhibitory effect involved both MyD88-dependent and -independent signalling cascades. Our data elucidated the molecular mechanisms involved, and support the search for plant-derived TLR antagonists, as potential anti inflammatory agents.  相似文献   

6.
7.

Background and purpose:

Obesity is associated with deterioration in asthma outcomes. Although airways eosinophil accumulation is characteristic of lung allergic diseases, little is known about the influence of obesity on the allergic eosinophil trafficking from bone marrow to lung tissues, and recruitment to airways lumen. Here, we have assessed the effects of diet-induced obesity on allergic eosinophilic inflammation in mice, examining eosinophil trafficking from bone marrow to airways, and production of TH1/TH2 cytokines.

Experimental approach:

C57BL/6 mice fed for 10 weeks with standard chow or high-fat diet were sensitized and challenged with ovalbumin. At 24–96 h post-ovalbumin challenge, bronchoalveolar lavage (BAL) fluid, lung tissue and bone marrow were examined.

Key results:

The high-fat-fed mice exhibited increased body weight and epididymal fat, glucose intolerance and alterations in lipid profile compared with the lean mice. Obesity markedly elevated serum leptin and lowered adiponectin levels. Ovalbumin challenge in obese mice promoted a markedly higher eosinophil accumulation in bone marrow and connective tissue surrounding the bronchial and bronchiolar segments. Eosinophil number in BAL fluid of obese mice was lower at 24 and 48 h. Levels of interleukin (IL)-5, eotaxin, tumour necrosis factor-α and IL-10 in BAL fluid of obese mice were significantly higher than in lean mice.

Conclusions and implications:

Diet-induced obesity enhanced eosinophil trafficking from bone marrow to lung tissues, and delayed their transit through the airway epithelium into the airway lumen. Consequently, eosinophils remain longer in lung peribronchiolar segments due to overproduction of TH1/TH2 cytokines and chemokines.  相似文献   

8.

BACKGROUND AND PURPOSE

Activation of the intrarenal renin-angiotensin system (RAS) and increased renal medullary hydrogen peroxide (H2O2) contribute to hypertension. We examined whether H2O2 mediated hypertension and intrarenal RAS activation induced by angiotensin II (Ang II).

EXPERIMENTAL APPROACH

Ang II (200 ng·kg−1·min−1) or saline were infused in Sprague Dawley rats from day 0 to day 14. Polyethylene glycol (PEG)-catalase (10 000 U·kg−1·day−1) was given to Ang II-treated rats, from day 7 to day 14. Systolic blood pressure was measured throughout the study. H2O2, angiotensin AT1 receptor and Nox4 expression and nuclear factor-κB (NF-κB) activation were evaluated in the kidney. Plasma and urinary H2O2 and angiotensinogen were also measured.

KEY RESULTS

Ang II increased H2O2, AT1 receptor and Nox4 expression and NF-κB activation in the renal medulla, but not in the cortex. Ang II raised plasma and urinary H2O2 levels, increased urinary angiotensinogen but reduced plasma angiotensinogen. PEG-catalase had a short-term antihypertensive effect and transiently suppressed urinary angiotensinogen. PEG-catalase decreased renal medullary expression of AT1 receptors and Nox4 in Ang II-infused rats. Renal medullary NF-κB activation was correlated with local H2O2 levels and urinary angiotensinogen excretion. Loss of antihypertensive efficacy was associated with an eightfold increase of plasma angiotensinogen.

CONCLUSIONS AND IMPLICATIONS

The renal medulla is a major target for Ang II-induced redox dysfunction. H2O2 appears to be the key mediator enhancing intrarenal RAS activation and decreasing systemic RAS activity. The specific control of renal medullary H2O2 levels may provide future grounds for the treatment of hypertension.  相似文献   

9.

BACKGROUND AND PURPOSE

Kaempferol, a dietary flavonoid and phyto-oestrogen, is known to have anti-inflammatory properties. Microglial activation has been implicated in various neurodegenerative diseases. Anti-inflammatory effects of kaempferol and the underlying mechanisms were investigated by using LPS-stimulated microglial BV2 cells.

EXPERIMENTAL APPROACH

Cell viability was measured using MTT and neutral red assays. elisa, Western blot, immunocytochemistry and electrophoretic mobility-shift assay were used to analyse NO, PGE2, TNF-α and IL-1β production, inducible NOS (iNOS), COX-2 expression and the involvement of signalling pathways such as toll-like receptor-4 (TLR4), MAPK cascades, PKB (AKT) and NF-κB. Accumulation of reaction oxygen species (ROS) was measured by nitroblue tetrazolium and 2′7′-dichlorofluorescein diacetate assay. Matrix metalloproteinase activity was investigated by zymography and immunoblot assay. Phagocytotic activity was assessed by use of latex beads.

KEY RESULTS

Kaempferol significantly attenuated LPS-induced NO, PGE2, TNF-α, IL-1β and ROS production and phagocytosis in a concentration-dependent manner. Kaempferol suppressed the expression of iNOS, COX-2, MMP-3 and blocked the TLR4 activation. Moreover, kaempferol inhibited LPS-induced NF-κB activation and p38 MAPK, JNK and AKT phosphorylation.

CONCLUSION AND IMPLICATIONS

Kaempferol was able to reduce LPS-induced inflammatory mediators through the down-regulation of TLR4, NF-κB, p38 MAPK, JNK and AKT suggesting that kaempferol has therapeutic potential for the treatment of neuroinflammatory diseases.  相似文献   

10.

BACKGROUND AND PURPOSE

Cerebral aneurysm is a frequent cerebrovascular event and a major cause of fatal subarachnoid haemorrhage, but there is no medical treatment for this condition. Haemodynamic stress and, recently, chronic inflammation have been proposed as major causes of cerebral aneurysm. Nevertheless, links between haemodynamic stress and chronic inflammation remain ill-defined, and to clarify such links, we evaluated the effects of prostaglandin E2 (PGE2), a mediator of inflammation, on the formation of cerebral aneurysms.

EXPERIMENTAL APPROACH

Expression of COX and prostaglandin E synthase (PGES) and PGE receptors were examined in human and rodent cerebral aneurysm. The incidence, size and inflammation of cerebral aneurysms were evaluated in rats treated with COX-2 inhibitors and mice lacking each prostaglandin receptor. Effects of shear stress and PGE receptor signalling on expression of pro-inflammatory molecules were studied in primary cultures of human endothelial cells (ECs).

KEY RESULTS

COX-2, microsomal PGES-1 and prostaglandin E receptor 2 (EP2) were induced in ECs in the walls of cerebral aneurysms. Shear stress applied to primary ECs induced COX-2 and EP2. Inhibition or loss of COX-2 or EP2in vivo attenuated each other''s expression, suppressed nuclear factor κB (NF-κB)-mediated chronic inflammation and reduced incidence of cerebral aneurysm. EP2 stimulation in primary ECs induced NF-κB activation and expression of the chemokine (C-C motif) ligand 2, essential for cerebral aneurysm.

CONCLUSIONS AND IMPLICATIONS

These results suggest that shear stress activated PGE2-EP2 pathway in ECs and amplified chronic inflammation via NF-κB. We propose EP2 as a therapeutic target in cerebral aneurysm.  相似文献   

11.
12.

Background and purpose:

Here we have examined the effects of the novel peptide antagonist N-[1-(2,6-dichlorophenyl)methyl]-3-(1-pyrrolidinylmethyl)-1H-indol-5-yl]aminocarbonyl}-glycinyl-L-lysinyl-L-phenylalanyl-N-benzhydrylamide (K-14585) on proteinase-activated receptor (PAR)2-mediated intracellular signalling events.

Experimental approach:

Using NCTC2544 cells expressing PAR2, we assessed the effects of K-14585 on PAR2-mediated [3H] inositol phosphate accumulation, MAP kinase activation, p65 NFκB phosphorylation and DNA binding and IL-8 production.

Key results:

Pretreatment with K-14585 (5 µM) inhibited [3H] inositol phosphate levels stimulated by PAR2-activating peptide Ser-Leu-Ile-Gly-Lys-Val (SLIGKV-OH) in PAR2-expressing NCTC2544 cells. K-14585 pretreatment did not influence PAR2-mediated extracellular regulated kinase activation but inhibited p38 MAP kinase phosphorylation. At a higher concentration (30 µM), K-14585 alone stimulated p38 MAP kinase activation. These effects were replicated in EAhy926 cells, endogenously expressing PAR2, but not in parental or PAR4-expressing NCTC2544 cells, suggesting these effects were PAR2-dependent. SLIGKV-mediated stimulation of p38 MAP kinase phosphorylation was substantially reduced by the Gq/11 inhibitor YM-254890, without affecting K-14585-mediated phosphorylation. Pretreatment with K-14585 inhibited PAR2-mediated p65 NFκB phosphorylation and NFκB-DNA binding. K-14585 (30 µM) alone stimulated comparable NFκB reporter activity to SLIGKV-OH. K-14585 inhibited SLIGKV-stimulated IL-8 production, but given alone increased IL-8. While SLIGKV-induced IL-8 formation was reduced by both SB203580 and YM-254890, the response to K-14585 was sensitive to SB203580 but not YM-254890.

Conclusions and implications:

These data reveal that K-14585 has a duality of action functioning both as an antagonist and agonist due to either partial agonist actions or possible agonist-directed signalling. The data also suggest two modes of p38 MAP kinase activation emanating from PAR2, one Gq/11-dependent and the other Gq/11-independent.  相似文献   

13.

BACKGROUND AND PURPOSE

Endocannabinoids have both anti-inflammatory and neuroprotective properties against harmful stimuli. We previously demonstrated that the endocannabinoid 2-arachidonoylglycerol (2-AG) protects hippocampal neurons by limiting the inflammatory response via a CB1 receptor-dependent MAPK/NF-κB signalling pathway. The purpose of the present study was to determine whether PPARγ, an important nuclear receptor, mediates 2-AG-induced inhibition of NF-κB phosphorylation and COX-2 expression, and COX-2-enhanced miniature spontaneous excitatory postsynaptic currents (mEPSCs).

EXPERIMENTAL APPROACH

By using a whole-cell patch clamp electrophysiological recording technique and immunoblot analysis, we determined mEPSCs, expression of COX-2 and PPARγ, and phosphorylation of NF-kB in mouse hippocampal neurons in culture.

KEY RESULTS

Exogenous and endogenous 2-AG-produced suppressions of NF-κB-p65 phosphorylation, COX-2 expression and excitatory synaptic transmission in response to pro-inflammatory interleukin-1β (IL-1β) and LPS were inhibited by GW9662, a selective PPARγ antagonist, in hippocampal neurons in culture. PPARγ agonists 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and rosiglitazone mimicked the effects of 2-AG on NF-κB-p65 phosphorylation, COX-2 expression and mEPSCs, and these effects were eliminated by antagonism of PPARγ. Moreover, exogenous application of 2-AG or elevation of endogenous 2-AG by inhibiting its hydrolysis with URB602 or JZL184, selective inhibitors of monoacylglycerol lipase (MAGL), prevented the IL-1β- and LPS-induced reduction of PPARγ expression. The 2-AG restoration of the reduced PPARγ expression was blocked or attenuated by pharmacological or genetic inhibition of the CB1 receptor.

CONCLUSIONS AND IMPLICATIONS

Our results suggest that CB1 receptor-dependent PPARγ expression is an important and novel signalling pathway in endocannabinoid 2-AG-produced resolution of neuroinflammation in response to pro-inflammatory insults.

LINKED ARTICLES

This article is part of a themed issue on Cannabinoids in Biology and Medicine. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2011.163.issue-7  相似文献   

14.

Background and purpose:

Reactive oxygen species (ROC) are the main causes of carbon tetrachloride (CCl4)-induced acute liver injury. Chondroitin-4-sulphate (C4S) is known to inhibit lipid peroxidation through antioxidant mechanisms. Activation of nuclear factor (NF)-κB and caspases may strongly intensify inflammation and cell damage, in addition to that directly exerted by ROS. We investigated whether treatment with C4S, besides exerting antioxidant activity, was able to modulate NF-κB and apoptosis activation in CCl4-induced liver injury in mice.

Experimental approach:

Acute hepatitis was induced in mice by an i.p. injection of CCl4. Varying doses of C4S were administered i.p. 1 h before, 6 and 12 h after CCl4 injection. 24 h after CCl4 injection, the mice were killed for biochemical and histological analysis.

Key results:

CCl4 injection produced: marked elevation of alanine aminotransferase and aspartate aminotransferase; hepatic membrane lipid peroxidation, assayed by 8-isoprostane levels; and depletion of reduced glutathione and superoxide dismutase. CCl4 also decreased NF-κB translocation and IkBα, and increased gene expression of mRNA and protein of metalloproteases (MMP)-2 and -9, and of pro- and cleaved forms of caspases-3 and -7. There was also increased liver polymorphonuclear infiltration, evaluated by elastase assay, and hepatic cell disruption.C4S treatment inhibited lipid peroxidation; blocked NF-κB activation and IkBα protein loss; decreased mRNA and proteins for MMPs and caspases; restored endogenous antioxidants; limited hepatic polymorphonuclear accumulation and tissue damage.

Conclusions and implications:

As antioxidants may inhibit NF-κB and caspase activation, we hypothesize that treatment with C4S was able to inhibit NF-κB and apoptosis activation in hepatic injury.  相似文献   

15.
16.
17.

Background and purpose:

Growing evidence implicates NF-κB as an important contributor to metastasis and increased chemoresistance of melanoma. Here, we report the effects of parthenolide on either untreated, cisplatin- or TNFα-treated melanoma cell lines A375, 1205Lu and WM793, exhibiting different levels of constitutive NF-κB activity.

Experimental approach:

Electrophoretic mobility shift assay was used to assess changes in NF-κB activity, and real-time PCR to evaluate expression of NF-κB-regulated genes. Cell cycle arrest and apoptosis were assessed by flow cytometry. Cell death was also visualized by fluorescence microscopy. Migration was determined by scratch assay and invasiveness by Matrigel assay.

Key results:

Parthenolide suppressed both constitutive and induced NF-κB activity in melanoma cells. This was accompanied by down-regulation of cancer-related genes, with NF-κB-binding sites in their promoters, including: Bcl-XL, survivin, cyclin D1, interleukin 8 and matrix metalloproteinase 9. When the various effects of 6 µM parthenolide were compared, apoptosis associated with loss of mitochondrial membrane potential was most efficiently induced in 1205Lu cells, cell cycle arrest in G0/G1 phase was observed in WM793 cells, and high metastatic potential was markedly reduced in A375 cells. These findings not only reflected differences between melanoma cell lines in basal expression of NF-κB-regulated genes, but also suggested other parthenolide targets involved in cell cycle progression, migration, invasiveness and survival.

Conclusions:

Inhibition of constitutive and therapeutically induced NF-κB pathway by parthenolide might be useful in the treatment of melanoma, although the diversity of changes induced in melanoma cells with different genetic backgrounds indicate context-dependent poly-pharmacological properties of this compound.  相似文献   

18.
19.

Aim:

To study the molecular mechanisms underlying α-tocopheryl succinate (α-TOS)-induced apoptosis in erbB2-positive breast cancer cells and to determine whether α-TOS and the human recombinant TNF-related apoptosis-inducing ligand (hrTRAIL) act synergically to induce cell death of erbB2-expressing breast cancer cells.

Methods:

The annexin V binding method was used to measure apoptosis induced by α-TOS and/or hrTRAIL. RT-PCR and Western blotting were performed to detect gene and protein expression. A colorimetric assay was performed to detect caspase activity. The TransAMTM NF-κB p65 kit was used to assess NF-κB activation.

Results:

α-TOS (100 μmol/L) significantly inhibited NF-κB nuclear translocation in erbB2-expressing breast cancer cells; this inhibition is expected to result in the inactivation of NF-κB. α-TOS (50 and 100 μmol/L) inhibited the expression of Flice-like inhibitory protein (FLIP) and cellular inhibitor of apoptosis protein 1 (c-IAP1) in erbB2-positive cells. α-TOS (100 μmol/L) inhibited Akt activation and augmented the activity of caspase 3 and caspase 8 in breast cancer cells expressing erbB2. α-TOS (50 μmol/L) and hrTRAIL (30 mg/mL) acted synergically to induce apoptosis in breast cancer cells. α-TOS also decreased the hrTRAIL-induced transient activation of NF-κB .

Conclusion:

Our results suggest that α-TOS mediates the apoptosis of erbB2-positive breast cancer cells and acts synergically with hrTRAIL via the NF-κB pathway.  相似文献   

20.

BACKGROUND AND PURPOSE

Betulinic acid (BA) is a naturally occurring triterpenoid widely distributed throughout the plant kingdom. We previously reported that BA inhibits lipopolysaccharide (LPS)-induced interleukin-6 production through modulation of nuclear factor κB (NF-κB) in human peripheral blood mononuclear cells (hPBMCs). This study attempted to identify other mechanisms through which BA modulates LPS signalling in mononuclear cells. The effects of BA on signalling pathways downstream were focused on in this study.

EXPERIMENTAL APPROACH

We determined the ability of BA to interfere with p38 and extracellular regulated kinase (ERK) phosphorylation as well as Akt phosphorylation and nuclear factor-κB activation using LPS-activated hPBMCs as an in vitro model. LPS-induced endotoxin shock in mice was the in vivo model employed.

KEY RESULTS

BA inhibited LPS-induced COX-2 protein expression and prostaglandin E2 production and also attenuated LPS-induced ERK and Akt phosphorylation, but not p38 in hPBMCs. BA abolished LPS-induced IκBα phosphorylation and thus normalized the levels of IκBα in cytosol. BA also inhibited LPS-induced reactive oxygen species formation and lactate dehydrogenase release. Interestingly, BA improved the life span of mice in endotoxin shock and also inhibited PGE2 production and myeloperoxidase activity in vivo.

CONCLUSIONS AND IMPLICATIONS

BA modulates LPS-induced COX-2 expression in hPBMCs by inhibiting ERK and Akt pathways as well as by modulating IκBα phosphorylation. At the same time, no cell toxicity was observed. The effect of the drug was confirmed through in vivo experiments. The study gives an insight into the molecular mechanisms of BA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号