共查询到8条相似文献,搜索用时 31 毫秒
1.
Andrew L. Paek Salma Kaochar Hope Jones Aly Elezaby Lisa Shanks Ted Weinert 《Genes & development》2009,23(24):2861-2875
Large-scale changes (gross chromosomal rearrangements [GCRs]) are common in genomes, and are often associated with pathological disorders. We report here that a specific pair of nearby inverted repeats in budding yeast fuse to form a dicentric chromosome intermediate, which then rearranges to form a translocation and other GCRs. We next show that fusion of nearby inverted repeats is general; we found that many nearby inverted repeats that are present in the yeast genome also fuse, as does a pair of synthetically constructed inverted repeats. Fusion occurs between inverted repeats that are separated by several kilobases of DNA and share >20 base pairs of homology. Finally, we show that fusion of inverted repeats, surprisingly, does not require genes involved in double-strand break (DSB) repair or genes involved in other repeat recombination events. We therefore propose that fusion may occur by a DSB-independent, DNA replication-based mechanism (which we term “faulty template switching”). Fusion of nearby inverted repeats to form dicentrics may be a major cause of instability in yeast and in other organisms. 相似文献
2.
Nearby inverted repeats fuse to generate acentric and dicentric palindromic chromosomes by a replication template exchange mechanism 下载免费PDF全文
Ken'Ichi Mizuno Sarah Lambert Giuseppe Baldacci Johanne M. Murray Antony M. Carr 《Genes & development》2009,23(24):2876-2886
Gene amplification plays important roles in the progression of cancer and contributes to acquired drug resistance during treatment. Amplification can initiate via dicentric palindromic chromosome production and subsequent breakage–fusion–bridge cycles. Here we show that, in fission yeast, acentric and dicentric palindromic chromosomes form by homologous recombination protein-dependent fusion of nearby inverted repeats, and that these fusions occur frequently when replication forks arrest within the inverted repeats. Genetic and molecular analyses suggest that these acentric and dicentric palindromic chromosomes arise not by previously described mechanisms, but by a replication template exchange mechanism that does not involve a DNA double-strand break. We thus propose an alternative mechanism for the generation of palindromic chromosomes dependent on replication fork arrest at closely spaced inverted repeats. 相似文献
3.
We have determined the nucleotide sequences around the junction points of oligomeric-deleted ptDNAs possessing a head-to-head
or tail-to-tail configuration from long-term cultured cell lines and albino plants. It was shown that DNA rearrangement occurred
by direct fusion of deleted ptDNAs in an inverted orientation, which was linked by an asymmetrical sequence of 254–698 bp
derived from either of the ptDNAs joined. It is notable that inverted repeats of 7–14 bp flank the asymmetrical sequences
at each of the junction points. These features of the DNA sequence around the junction points are commonly observed in oligomeric
ptDNA with a large-scale deletion regardless of the cell lines employed. It is suggested that the short inverted repeats are
involved in the intermolecular recombination of ptDNA.
Received: 1 July / 21 October 1996 相似文献
4.
Jeffrey D. Palmer Bernardita Osorio Jane Aldrich William F. Thompson 《Current genetics》1987,11(4):275-286
Summary We have compared the sequence organization of four previously uncharacterized legume chloroplast DNAs - from alfalfa, lupine, wisteria and subclover — to that of legume chloroplast DNAs that either retain a large, ribosomal RNA-encoding inverted repeat (mung bean) or have deleted one half of this repeat (broad bean). The circular, 126 kilobase pair (kb) alfalfa chloroplast genome, like those of broad bean and pea, lacks any detectable repeated sequences and contains only a single set of ribosomal RNA genes. However, in contrast to broad bean and pea, alfalfa chloroplast DNA is unrearranged (except for the deletion of one segment of the inverted repeat) relative to chloroplast DNA from mung bean. Together with other findings reported here, these results allow us to determine which of the four possible inverted repeat configurations was deleted in the alfalfa-pea-broad bean lineage, and to show how the present-day broad bean genome may have been derived from an alfalfa-like ancestral genome by two major sequence inversions. The 147 kb lupine chloroplast genome contains a 22 kb inverted repeat and has essentially complete colinearity with the mung bean genome. In contrast, the 130 kb wisteria genome has deleted one half of the inverted repeat and appears colinear with the alfalfa genome. The 140 kb subclover genome has been extensively rearranged and contains a family of at least five dispersed repetitive sequence elements, each several hundred by in size; this is the first report of dispersed repeats of this size in a land plant chloroplast genome. We conclude that the inverted repeat has been lost only once among legumes and that this loss occurred prior to all the other rearrangements observed in subclover, broad bean and pea. Of those lineages that lack the inverted repeat, some are stable and unrearranged, other have undergone a moderate amount of rearrangement, while still others have sustained a complex series of rearrangement either with or without major sequence duplications and transpositions. 相似文献
5.
Silvana Beri Maria Clara Bonaglia Roberto Giorda 《European journal of human genetics : EJHG》2013,21(7):757-761
Submicroscopic structural variations, including deletions, duplications, inversions and more complex rearrangements, are widespread in normal human genomes. Inverted segmental duplications or highly identical low-copy repeat (LCR) sequences can mediate the formation of inversions and more complex structural rearrangements through non-allelic homologous recombination. In a patient with 7q36 inverted duplication/terminal deletion, we demonstrated the central role of a pair of short inverted LCRs in the vasoactive intestinal peptide receptor gene (VIPR2)-LCRs in generating the rearrangement. We also revealed a relatively common VIPR2-LCR-associated inversion polymorphism disrupting the gene in almost 1% of healthy subjects, and a small number of complex duplications/triplications. In genome-wide studies of several thousand patients, a significant association of rare microduplications with variable size, all involving VIPR2, with schizophrenia was recently described, suggesting that altered vasoactive intestinal peptide signaling is likely implicated in the pathogenesis of schizophrenia. Genetic testing for VIPR2-LCR-associated inversions should be performed on available cohorts of psychiatric patients to evaluate their potential pathogenic role. 相似文献
6.