首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
PURPOSE: To evaluate three-dimensional conformal (3D-CRT), intensity-modulated (IMRT) and respiration-gated radiotherapy (RGRT) techniques for gastric irradiation for target coverage and minimization of renal doses. All techniques were four-dimensional (4D)-CT based, incorporating the intrafractional mobility of the target volume and organs at risk (OAR). METHODS AND MATERIALS: The stomach, duodenal C-loop, and OAR (kidneys, liver, and heart) were contoured in all 10 phases of planning 4D-CT scans for five patients who underwent abdominal radiotherapy. Planning target volumes (PTVs) encompassing all positions of the stomach (PTV(all phases)) were generated. Three respiratory phases for RGRT in inspiration and expiration were identified, and corresponding PTV(inspiration) and PTV(expiration) and OAR volumes were created. Landmark-based fields recommended for the Radiation Therapy Oncology Group (RTOG) 99-04 study protocol were simulated to assess PTV coverage. IMRT and 3D-CRT planning with and without additional RGRT planning were performed for all PTVs, and corresponding dose volume histograms were analyzed. RESULTS: Use of landmark-based fields did not result in full geometric coverage of the PTV(all phases) in any patient. IMRT significantly reduced mean renal doses compared with 3D-CRT (15.0 Gy +/- 0.9 Gy vs. 20.1 Gy +/- 9.3 Gy and 16.6 Gy +/- 1.5 Gy vs. 32.6 Gy +/- 7.1 Gy for the left and right kidneys, respectively; p = 0.04). No significant increase in renal sparing was seen when adding RGRT to either 3D-CRT or IMRT. Tolerance doses to the other OAR were not exceeded. CONCLUSIONS: Individualized field margins are essential for gastric irradiation. IMRT plans significantly reduce renal doses, but the benefits of RGRT in gastric irradiation appear to be limited.  相似文献   

3.
PURPOSE: To compare intensity-modulated radiotherapy (IMRT) with two-dimensional RT (2D-RT) and three-dimensional conformal radiotherapy (3D-CRT) treatment plans in different stages of nasopharyngeal carcinoma and to explore the feasibility of dose escalation in locally advanced disease. MATERIALS AND METHODS: Three patients with different stages (T1N0M0, T2bN2M0 with retrostyloid extension, and T4N2M0) were selected, and 2D-RT, 3D-CRT, and IMRT treatment plans (66 Gy) were made for each of them and compared with respect to target coverage, normal tissue sparing, and tumor control probability/normal tissue complication probability values. In the Stage T2b and T4 patients, the IMRT 66-Gy plan was combined with a 3D-CRT 14-Gy boost plan using a 3-mm micromultileaf collimator, and the dose-volume histograms of the summed plans were compared with their corresponding 66-Gy 2D-RT plans. RESULTS: In the dosimetric comparison of 2D-RT, 3D-CRT, and IMRT treatment plans, the T1N0M0 patient had better sparing of the parotid glands and temporomandibular joints with IMRT (dose to 50% parotid volume, 57 Gy, 50 Gy, and 31 Gy, respectively). In the T2bN2M0 patient, the dose to 95% volume of the planning target volume improved from 57.5 Gy in 2D-RT to 64.8 Gy in 3D-CRT and 68 Gy in IMRT. In the T4N2M0 patient, improvement in both target coverage and brainstem/temporal lobe sparing was seen with IMRT planning. In the dose-escalation study for locally advanced disease, IMRT 66 Gy plus 14 Gy 3D-CRT boost achieved an improvement in the therapeutic ratio by delivering a higher dose to the target while keeping the normal organs below the maximal tolerance dose. CONCLUSIONS: IMRT is useful in treating all stages of nonmetastatic nasopharyngeal carcinoma because of its dosimetric advantages. In early-stage disease, it provides better parotid gland sparing. In locally advanced disease, IMRT offers better tumor coverage and normal organ sparing and allows room for dose escalation.  相似文献   

4.
Background: To compare the dosimetric coverage of target volumes and organs at risk in the radicaltreatment of nasopharyngeal carcinoma (NPC) between intensity-modulated radiotherapy (IMRT) and threedimensionalconformal radiotherapy (3DCRT). Materials and Methods: Data from 10 consecutive patientstreated with IMRT from June-October 2011 in Penang General Hospital were collected retrospectively foranalysis. For each patient, dose volume histograms were generated for both the IMRT and 3DCRT plans usinga total dose of 70Gy. Comparison of the plans was accomplished by comparing the target volume coverage (5measures) and sparing of organs at risk (17 organs) for each patient using both IMRT and 3DCRT. The meansof each comparison target volume coverage measures and organs at risk measures were obtained and testedfor statistical significance using the paired Student t-test. Results: All 5 measures for target volume coverageshowed marked dosimetric superiority of IMRT over 3DCRT. V70 and V66.5 for PTV70 showed an absoluteimprovement of 39.3% and 24.1% respectively. V59.4 and V56.4 for PTV59.4 showed advantages of 18.4% and16.4%. Moreover, the mean PTV70 dose revealed a 5.1 Gy higher dose with IMRT. Only 4 out of 17 organsat risk showed statistically significant difference in their means which were clinically meaningful between theIMRT and 3DCRT techniques. IMRT was superior in sparing the spinal cord (less 5.8Gy), V30 of right parotid(less 14.3%) and V30 of the left parotid (less 13.1%). The V55 of the left cochlea was lower with 3DCRT (less44.3%). Conclusions: IMRT is superior to 3DCRT due to its dosimetric advantage in target volume coveragewhile delivering acceptable doses to organs at risk. A total dose of 70Gy with IMRT should be considered as astandard of care for radical treatment of NPC.  相似文献   

5.
BACKGROUND AND PURPOSE: Adjuvant radiotherapy is currently standard treatment of Stage I seminoma (SOS). The use of computerised tomogram (CT) planning is compared with traditional planning for greater treatment individualisation. MATERIAL AND METHODS: Two plans were generated for each of 10 patients: one using traditional rectangular para-aortic fields, and one using conformal fields. The primary target volume compared was the dosimetric coverage of the inferior vena cava and aorta. RESULTS: The dosimetric analysis of traditional plans showed that they provided reasonable dosimetric coverage of the CTV. However, if 1cm is used for uncertainty based on nodal coverage then the periphery of the PTV could be significantly under-dosed. The CT based plan delivered improved dosimetry to the vessel PTV compared with the traditional field (CT D 95=24.7 Gy, traditional D 95=23.6 Gy, P=0.002). CT-based plans were significantly wider than traditional plans (CT=11.8 cm, traditional=9 cm, P=0.002). The CT plan tended to irradiate relatively small volumes of the kidneys to higher doses. CONCLUSIONS: Traditional para-aortic fields may deliver suboptimal dosimetry to an anatomically defined PTV. Our CT-based fields tend to be wider than traditional fields, and provide improved dosimetry to vessels based target volumes. Given that traditional fields are often delivering significantly less than the prescribed dose to the target volume, and that marginal relapses cause a high proportion of treatment failure, there is a suggestion that CT-based plans may avoid under-dosage and geographical miss sometimes seen with traditional plans.  相似文献   

6.
The study was undertaken in order to compare dose plans for intensity-modulated radiotherapy (IMRT) with 3D conformal radiotherapy (3D-CRT) dose plans in patients with nasopharyngeal carcinoma (NPC). Clinical data from 20 consecutive patients treated with IMRT are presented. For 11 patients 3D-CRT plans were made and compared to the IMRT plans with respect to doses to the planning target volumes (PTVs) and to organs at risk (OARs). For comparison of the conformation of dose to defined target volumes the conformity index (CI) was used. Target volume coverage and critical organ protection were significantly improved with IMRT compared to 3D-CRT. One-year loco-regional control, distant metastasis-free survival, and overall survival were 79%, 72%, and 80%. Two patients have had recurrence in the clinical target volume (CTV) only and seven patients have relapsed in distant organs and/or in head-and-neck areas outside the target areas. The study confirms that IMRT is superior to 3D-CRT in the treatment of NPC. As locoregional control of NPC improves we are facing an increasing number of recurrences outside the irradiated area.  相似文献   

7.
PURPOSE: To perform a dosimetric comparison of three-dimensional conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and helical tomotherapy (HT) plans for pelvic and para-aortic RT in postoperative endometrial cancer patients; and to evaluate the integral dose (ID) received by critical structures within the radiation fields. METHODS AND MATERIALS: We selected 10 patients with Stage IIIC endometrial cancer. For each patient, three plans were created with 3D-CRT, IMRT, and HT. The IMRT and HT plans were both optimized to keep the mean dose to the planning target volume (PTV) the same as that with 3D-CRT. The dosimetry and ID for the critical structures were compared. A paired two-tailed Student t test was used for data analysis. RESULTS: Compared with the 3D-CRT plans, the IMRT plans resulted in lower IDs in the organs at risk (OARs), ranging from -3.49% to -17.59%. The HT plans showed a similar result except that the ID for the bowel increased 0.27%. The IMRT and HT plans both increased the IDs to normal tissue (see Table 1 and text for definition), pelvic bone, and spine (range, 3.31-19.7%). The IMRT and HT dosimetry showed superior PTV coverage and better OAR sparing than the 3D-CRT dosimetry. Compared directly with IMRT, HT showed similar PTV coverage, lower Ids, and a decreased dose to most OARs. CONCLUSION: Intensity-modulated RT and HT appear to achieve excellent PTV coverage and better sparing of OARs, but at the expense of increased IDs to normal tissue and skeleton. HT allows for additional improvement in dosimetry and sparing of most OARs.  相似文献   

8.
9.
10.
PURPOSE: To compare the dose coverage of planning and clinical target volume (PTV, CTV), and organs-at-risk (OAR) between intensity-modulated (3D-IMRT) and conventional conformal radiotherapy (3D-CRT) before and after internal organ variation in prostate cancer. METHODS AND MATERIALS: We selected 10 patients with clinically significant interfraction volume changes. Patients were treated with 3D-IMRT to 80 Gy (minimum PTV dose of 76 Gy, excluding rectum). Fictitious, equivalent 3D-CRT plans (80 Gy at isocenter, with 95% isodose (76 Gy) coverage of PTV, with rectal blocking above 76 Gy) were generated using the same planning CT data set ("CT planning"). The plans were then also applied to a verification CT scan ("CT verify") obtained at a different moment. PTV, CTV, and OAR dose coverage were compared using non-parametric tests statistics for V95, V90 (% of the volume receiving 95 or 90% of the dose) and D50 (dose to 50% of the volume). RESULTS: Mean V95 of the PTV for "CT planning" was 94.3% (range, 88-99) vs 89.1% (range, 84-94.5) for 3D-IMRT and 3D-CRT (p=0.005), respectively. Mean V95 of the CTV for "CT verify" was 97% for both 3D-IMRT and 3D-CRT. Mean D50 of the rectum for "CT planning" was 26.8 Gy (range, 22-35) vs 43.5 Gy (range, 33.5-50.5) for 3D-IMRT and 3D-CRT (p=0.0002), respectively. For "CT verify", this D50 was 31.1 Gy (range, 16.5-44) vs 44.2 Gy (range, 34-55) for 3D-IMRT and 3D-CRT (p=0.006), respectively. V95 of the rectum was 0% for both plans for "CT planning", and 2.3% (3D-IMRT) vs 2.1% (3D-CRT) for "CT verify" (p=non-sig.). CONCLUSION: Dose coverage of the PTV and OAR was better with 3D-IMRT for each patient and remained so after internal volume changes.  相似文献   

11.
12.
PURPOSE: To compare dosimetric endpoints between three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT) at our center with limited IMRT experience, and to perform an external audit of the IMRT plans. METHODS AND MATERIALS: Ten patients, who received adjuvant chemoradiation for gastric cancer, formed the study cohort. For standardization, the planning target volume (PTV) and organs at risk were recontoured with the assistance of a study protocol radiologic atlas. The cohort was replanned with CMS Xio to generate coplanar 3D-CRT and IMRT plans. All 10 datasets, including volumes but without the plans (i.e., blinded), were transmitted to an experienced center where IMRT plans were designed using Nomos Corvus (IMRT-C) and ADAC Pinnacle (IMRT-P). All IMRT plans were normalized to D95% receiving 45 Gy. RESULTS: Intensity-modulated radiotherapy yielded higher PTV V45 (volume that receives > or = 45 Gy) (p < 0.001) than 3D-CRT. No difference in V20 was seen in the right (p = 0.9) and left (p = 0.3) kidneys, but the liver mean dose (p < 0.001) was superior with IMRT. For the external audit, IMRT-C (p = 0.002) and IMRT-P (p < 0.001) achieved significantly lower left kidney V20 than IMRT, and IMRT-P (p < 0.001) achieved lower right kidney V20 than IMRT. The IMRT-C (p = 0.003) but not IMRT-P (p = 0.6) had lower liver mean doses than IMRT. CONCLUSIONS: At our institution with early IMRT experience, IMRT improved PTV dose coverage and liver doses but not kidney doses. An external audit of IMRT plans showed that an experienced center can yield superior IMRT plans.  相似文献   

13.
PURPOSE: To compare dose distribution and normal tissue sparing in partial-breast treatment using three-dimensional conformal radiotherapy (3D-CRT) vs. intensity-modulated radiotherapy (IMRT). METHODS AND MATERIALS: Sixty-three patients with Tis-1N0M0 breast cancer were treated on a Phase II prospective accelerated partial-breast IMRT protocol at two facilities between April 2004 and January 2006. Fifty-six patients had data sets sufficient to adequately contour all structures. These cases were subsequently replanned with 3D-CRT techniques using the same contours, to compare the dose distribution patterns of 3D-CRT vs. IMRT. RESULTS: The average planning target volume (PTV) to ipsilateral breast (IB) ratio was 24% (range, 7-58%). The average volume of IB receiving 25%, 50%, 75%, and 100% of the prescribed dose was 4.0%, 5.0%, 5.5%, and 10.5% less with IMRT than with 3D (p < 0.01). The dose reduction to normal breast was further improved in the subset of patients whose PTV to IB ratio was >25%, and in patients with contoured breast volume <750 cm(3). No difference was detected in delivery to the lumpectomy cavity or clinical target volume. The PTV volume receiving 95% of the dose was higher in the 3D conformal plans (p < 0.01), but no significant difference was observed in the PTV volume receiving 90% (p = 0.17). The irradiated heart and lung volumes were small with both techniques but also favored IMRT. CONCLUSIONS: In T1N0 patients treated with external beam partial-breast radiotherapy, IMRT improves normal tissue sparing in the ipsilateral breast compared with 3DRT, without compromising dose delivery to the lumpectomy cavity and clinical target volume.  相似文献   

14.
PURPOSE: To investigate dosimetric improvements with respect to tumor-dose conformity and normal tissue sparing using intensity-modulated radiotherapy (IMRT) compared with three-dimensional conformal radiotherapy (3D-CRT) for advanced-stage non-small-cell lung cancer (NSCLC). METHODS AND MATERIALS: Forty-one patients with Stage III-IV and recurrent NSCLC who previously underwent 3D-CRT were included. IMRT plans were designed to deliver 63 Gy to 95% of the planning target volume using nine equidistant coplanar 6-MV beams. Inverse planning was performed to minimize the volumes of normal lung, heart, esophagus, and spinal cord irradiated above their tolerance doses. Dose distributions and dosimetric indexes for the tumors and critical structures in both plans were computed and compared. RESULTS: Using IMRT, the median absolute reduction in the percentage of lung volume irradiated to >10 and >20 Gy was 7% and 10%, respectively. This corresponded to a decrease of >2 Gy in the total lung mean dose and of 10% in the risk of radiation pneumonitis. The volumes of the heart and esophagus irradiated to >40-50 Gy and normal thoracic tissue volume irradiated to >10-40 Gy were reduced using the IMRT plans. A marginal increase occurred in the spinal cord maximal dose and lung volume >5 Gy in the IMRT plans, which could be have resulted from the significant increase in monitor units and thus leakage dose in IMRT. CONCLUSION: IMRT planning significantly improved target coverage and reduced the volume of normal lung irradiated above low doses. The spread of low doses to normal tissues can be controlled in IMRT with appropriately selected planning parameters. The dosimetric benefits of IMRT for advanced-stage non-small-cell lung cancer must be evaluated further in clinical trials.  相似文献   

15.
16.
17.
PURPOSE: To compare intensity-modulated radiotherapy (IMRT) treatment planning with three-dimensional conformal radiotherapy (3D-CRT) planning for paranasal sinus carcinoma. MATERIALS AND METHODS: Treatment plans using traditional 3-field technique, 3D-CRT planning, and inverse planning IMRT were developed for a case of paranasal sinus cancer requiring adjuvant radiotherapy. Plans were compared with respect to dose conformality, dose-volume histograms, doses to critical normal tissues, and ease of treatment delivery. RESULTS: The inverse-planned IMRT technique was more conformal around the tumor target volume than conventional techniques. The dose-volume histograms demonstrated significantly better critical normal-tissue sparing with the IMRT plans, while able to deliver a minimum dose of 60 Gy to the clinical tumor volume and 70 Gy to the gross tumor volume. Acute toxicities in our analysis were minimal. CONCLUSIONS: IMRT planning provided improved tumor target coverage when compared to 3D-CRT treatment planning. There was significant sparing of optic structures and other normal tissues, including the brainstem. Inverse planning IMRT provided the best treatment for all paranasal sinus carcinomas, but required stringent immobilization criteria. Further studies are needed to establish the true clinical advantage of this modality.  相似文献   

18.
PURPOSE: To determine whether intensity-modulated radiotherapy (IMRT) treatment increases the total integral dose of nontarget tissue relative to the conventional three-dimensional conformal radiotherapy (3D-CRT) technique for high-grade gliomas. METHODS AND MATERIALS: Twenty patients treated with 3D-CRT for glioblastoma multiforme were selected for a comparative dosimetric evaluation with IMRT. Original target volumes, organs at risk (OAR), and dose-volume constraints were used for replanning with IMRT. Predicted isodose distributions, cumulative dose-volume histograms of target volumes and OAR, normal tissue integral dose, target coverage, dose conformity, and normal tissue sparing with 3D-CRT and IMRT planning were compared. Statistical analyses were performed to determine differences. RESULTS: In all 20 patients, IMRT maintained equivalent target coverage, improved target conformity (conformity index [CI] 95% 1.52 vs. 1.38, p < 0.001), and enabled dose reductions of normal tissues, including brainstem (D(mean) by 19.8% and D(max) by 10.7%), optic chiasm (D(mean) by 25.3% and D(max) by 22.6%), right optic nerve (D(mean) by 37.3% and D(max) by 28.5%), and left optic nerve (D(mean) by 40.6% and D(max) by 36.7%), p < or = 0.01. This was achieved without increasing the total nontarget integral dose by greater than 0.5%. Overall, total integral dose was reduced by 7-10% with IMRT, p < 0.001, without significantly increasing the 0.5-5 Gy low-dose volume. CONCLUSIONS: These results indicate that IMRT treatment for high-grade gliomas allows for improved target conformity, better critical tissue sparing, and importantly does so without increasing integral dose and the volume of normal tissue exposed to low doses of radiation.  相似文献   

19.
PURPOSE: Lungs are the major dose-limiting organ during radiotherapy (RT) for non-small-cell lung cancer owing to the development of pneumonitis. This study compared intensity-modulated RT (IMRT) with three-dimensional conformal RT (3D-CRT) in reducing the dose to the lungs. METHODS: Ten patients with localized non-small-cell lung cancer underwent computed tomography (CT). The planning target volume (PTV) was defined and the organs at risk were outlined. An inverse-planning program, AutoPlan, was used to design the beam angle-optimized six-field noncoplanar 3D-CRT plans. Each 3D-CRT plan was compared with a series of five IMRT plans per patient. The IMRT plans were created using a commercial algorithm and consisted of a series of three, five, seven, and nine equidistant coplanar field arrangements and one six-field noncoplanar plan. The planning objectives were to minimize the lung dose while maintaining the dose to the PTV. The percentage of lung volume receiving >20 Gy (V20) and the percentage of the PTV covered by the 90% isodose (PTV90) were the primary endpoints. The PTV90/V20 ratio was used as the parameter accounting for both the reduction in lung volume treated and the PTV coverage. RESULTS: All IMRT plans, except for the three-field coplanar plans, improved the PTV90/V20 ratio significantly compared with the optimized 3D-CRT plan. Nine coplanar IMRT beams were significantly better than five or seven coplanar IMRT beams, with an improved PTV90/V20 ratio. CONCLUSION: The results of our study have shown that IMRT can reduce the dose to the lungs compared with 3D-CRT by improving the conformity of the plan.  相似文献   

20.
PURPOSE: The success of partial breast irradiation critically depends on proper target localization. We examined the use of fluorodeoxyglucose-positron emission tomography (FDG-PET)/computed tomography (CT) for improved lumpectomy cavity (LC) delineation and treatment planning. METHODS AND MATERIALS: Twelve breast cancer patients underwent FDG-PET/CT on a GE Discovery scanner with a median time from surgery to PET/CT of 49 days. The LC was contoured on the CT scan by a radiation oncologist and, together with a nuclear medicine physician, on the PET/CT scan. The volumes were calculated and compared in each patient. Treatment planning target volumes (PTVs) were calculated by expanding the margin 2 cm beyond the LC, maintaining a 5-mm margin from the skin and chest wall, and the treatment plans were evaluated. In addition, a study with a patient-like phantom was conducted to evaluate the effect that the window/level settings might have on contouring. RESULTS: The margin of the LC was well visualized on all FDG-PET images. The phantom results indicated that the difference between the known volume and the FDG-PET-delineated volume was <10%, regardless of the window/level settings. The PET/CT volumes were larger than the CT volumes in all cases (median volume ratio, 1.68; range, 1.24-2.45; p = 0.004). The PET/CT-based PTVs were also larger than the CT-based PTV (median volume ratio, 1.16; range, 1.08-1.64; p = 0.006). In 9 of 12 patients, a CT-based treatment plan did not provide adequate coverage of the PET/CT-based PTV (99% of the PTV received <95% of the prescribed dose), resulting in substantial cold spots in some plans. In these cases, treatment plans were generated which were specifically designed to cover the larger PET/CT-based PTV. Although these plans showed an increased dose to the normal tissues, the increases were modest: the non-target breast volume receiving > or =50 Gy, lung volume receiving > or =30 Gy, and heart volume receiving > or =5 Gy increased by 5.7%, 0.8%, and 0.2%, respectively. The normal tissue dose-volume objectives were still met with these plans. CONCLUSION: The results of our study have shown that FDG-PET/CT can be used to define the LC volume. The increased FDG uptake was likely a result of postoperative inflammation in the LC. The targets defined using PET/CT were significantly larger than those defined with CT alone. Our results have shown that treatment plans can be generated to cover these larger PET/CT target volumes with only a modest increase in irradiated tissue volume compared with CT-determined PTVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号