首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim H  Kim HW  Suh H 《Biomaterials》2003,24(25):4671-4679
The purpose of this research was to develop porous poly(D,L-lactide-co-glycolide) (PLGA) scaffolds from which ascorbate-2-phosphate (AsAP) and dexamethasone (Dex) are continuously released for a month for osteogenesis of mesenchymal stem cells for bone tissue engineering. Porous PLGA matrices containing AsAP and Dex were prepared by solvent casting/particulate leaching method. In vitro release and water uptake studies were performed in Dulbecco's phosphate buffered saline at 37 degrees C and 15 rpm. Drug loading and release rates were determined by high performance liquid chromatography. Release studies of Dex and AsAP showed that, after an initial burst release lasting 4 and 9 days, respectively, release rates followed zero order kinetics with high correlation coefficients at least until 35 days. Incorporation of AsAP into the scaffolds increased the release rates of Dex and AsAP, and the scaffold water uptake. When mesenchymal stem cells (MSCs) were cultured in the AsAP and Dex containing scaffolds in vitro, the amount of mineralization was significantly higher than in control scaffolds. In conclusion, AsAP and Dex were incorporated into porous PLGA scaffolds and continuously released over a month and osteogenesis of MSCs was increased by culture in these scaffolds.  相似文献   

2.
The controlled release of growth factors from porous, polymer scaffolds is being studied for potential use as tissue-engineered scaffolds. Biodegradable polymer microspheres were coated with a biocompatible polymer membrane to permit the incorporation of the microspheres into tissue-engineered scaffolds. Surface studies with poly(D,L-lactic-co-glycolic acid) [PLGA], and poly(vinyl alcohol) [PVA] were conducted. Polymer films were dip-coated onto glass slides and water contact angles were measured. The contact angles revealed an initially hydrophobic PLGA film, which became hydrophilic after PVA coating. After immersion in water, the PVA coating was removed and a hydrophobic PLGA film remained. Following optimization using these 2D contact angle studies, biodegradable PLGA microspheres were prepared, characterized, and coated with PVA. X-ray photoelectron spectroscopy was used to further characterize coated slides and microspheres. The release of the model protein bovine serum albumin from PVA-coated PLGA microspheres was studied over 8 days. The release of BSA from PVA-coated PLGA microspheres embedded in porous PLGA scaffolds over 24 days was also examined. Coating of the PLGA microspheres with PVA permitted their incorporation into tissue-engineered scaffolds and resulted in a controlled release of BSA.  相似文献   

3.
The controlled release of growth factors from porous, polymer scaffolds is being studied for potential use as tissue-engineered scaffolds. Biodegradable polymer microspheres were coated with a biocompatible polymer membrane to permit the incorporation of the microspheres into tissueengineered scaffolds. Surface studies with poly(D,L-lactic-co-glycolic acid) [PLGA], and poly(vinyl alcohol) [PVA] were conducted. Polymer films were dip-coated onto glass slides and water contact angles were measured. The contact angles revealed an initially hydrophobic PLGA film, which became hydrophilic after PVA coating. After immersion in water, the PVA coating was removed and a hydrophobic PLGA film remained. Following optimization using these 2D contact angle studies, biodegradable PLGA microspheres were prepared, characterized, and coated with PVA. X-ray photoelectron spectroscopy was used to further characterize coated slides and microspheres. The release of the model protein bovine serum albumin from PVA-coated PLGA microspheres was studied over 8 days. The release of BSA from PVA-coated PLGA microspheres embedded in porous PLGA scaffolds over 24 days was also examined. Coating of the PLGA microspheres with PVA permitted their incorporation into tissue-engineered scaffolds and resulted in a controlled release of BSA.  相似文献   

4.
Heparin-immobilized porous biodegradable scaffolds were fabricated to release basic fibroblast growth factor (bFGF) in a sustained manner. Heparin was covalently conjugated onto the surface of macroporous PLGA scaffolds fabricated by a gas-foaming/salt-leaching method. Sustained release of bFGF was successfully achieved for over 20 days due to high affinity of bFGF onto the immobilized heparin. It appears that bFGF release rate was regulated by the specific interaction between bFGF and heparin. The bFGF fraction released from the scaffolds maintained its bioactivity, as judged from determining the proliferation extent of human umbilical vein endothelial cells (HUVECs) in vitro. When heparin-immobilized scaffolds loaded with bFGF were implanted subcutaneously in vivo, they effectively induced the formation of blood vessels in the vicinity of the implant site. This study demonstrated that local and sustained delivery of angiogenic growth factor for tissue regeneration could be achieved by surface modification of porous scaffolds with heparin.  相似文献   

5.
In this study, hydrophilic PLGA/Pluronic F127 scaffolds loaded with a pDNA/PEI-PEG complex were prepared to estimate their potential use as a polymeric matrix for pDNA delivery. The scaffold was fabricated by a novel precipitation/particulate leaching method. The prepared pDNA/PEI-PEG complex-loaded PLGA/Pluronic F127 scaffold exhibited a highly porous (porosity, 93-95%) and open pore structure, as well as hydrophilicity, which can provide the good environment for cell adhesion and growth. The pDNA/PEI-PEG complexes were efficiently loaded into the PLGA/Pluronic F127 scaffold and continuously released from the scaffolds up to ~90% of the initial loading amount over a period of 8 wk, which may lead to continuous gene transfection into human bone marrow mesenchymal stem cells (hBMMSCs). From the in vitro cell culture in the scaffolds for transfection, it was observed that the pDNA/PEI-PEG complex-loaded hydrophilic PLGA/Pluronic F127 scaffold has a higher transfection efficiency of the pDNA/PEI-PEG complexes into hBMMSCs than the hydrophobic PLGA ones. The cell viability associated with the pDNA/PEI-PEG complexes released from the PLGA/Pluronic F127 scaffold was not significantly different from that of the PLGA/Pluronic F127 scaffold without pDNA, indicating its low cytotoxicity, probably due to the sustained release of the pDNA/PEI-PEG complex from the scaffolds. From these results, we could suggest that the pDNA/PEI-PEG complex-loaded hydrophilic PLGA/Pluronic F127 scaffold can be an effective gene delivery system for 3D tissue formation.  相似文献   

6.
Localized dual-drug delivery from biodegradable scaffolds is an important strategy in tissue engineering. In this study, porous poly(L-lactide-co-glycolide) (PLGA)/β-tricalcium phosphate scaffolds containing both dexamethasone (Dex) and bovine serum albumin (BSA) were prepared by incorporating Dex-loaded and BSA-loaded microspheres into the scaffolds. PLGA microspheres containing Dex or BSA were prepared by spray-drying and double emulsion/solvent evaporation, respectively. In vitro release studies indicated that microspheres prepared from PLGA in 3:1 molar ratio of L-lactide/glycolide and 89.5 kDa relative molecular mass showed prolonged release profiles compared with those prepared from PLGA in 1:1 L-lactide/glycolide molar ratio and 30.5 kDa relative molecular mass. Additionally, introduction of poly(ethylene glycol) in the PLGA chain could improve the encapsulation efficiency and reduce the release rate. Based on the above results, controllable dual-release of Dex and BSA with relatively higher or lower release rate was achieved by incorporating Dex-loaded and BSA-loaded microspheres with different release profiles into the PLGA/β-tricalcium phosphate scaffolds.  相似文献   

7.
Highly porous poly(D,L-lactic-co-glycolic acid) (PLGA) scaffolds were fabricated by a thermally-induced phase-separation (TIPS) method to deliver plasmid DNA in a controlled manner. A variety of TIPS parameters directly affecting pore structures and their interconnectivities of the scaffold, such as polymer concentration, solvent/non-solvent ratio, quenching methods and annealing time, were systematically examined to explore their effects on sustained release behaviors of plasmid DNA. Plasmid DNA was directly loaded into the inner pore region of the scaffold during the TIPS process. By optimizing the parameters, PLGA scaffolds releasing plasmid DNA over 21 days were successfully fabricated. DNA release profiles were mainly affected by the pore structures and their interconnectivities of the scaffolds. Plasmid DNA released from the scaffolds fully maintained its structural integrity and showed comparable transfection efficiency to native plasmid DNA. These biodegradable polymeric scaffolds capable of sustained DNA release can be potentially applied for various tissue engineering purposes requiring a combined gene delivery strategy.  相似文献   

8.
Modulation of protein delivery from modular polymer scaffolds   总被引:2,自引:0,他引:2  
Lee M  Chen TT  Iruela-Arispe ML  Wu BM  Dunn JC 《Biomaterials》2007,28(10):1862-1870
Growth factors are increasingly employed to promote tissue regeneration with various biomaterial scaffolds. In vitro release kinetics of protein growth factors from tissue engineering scaffolds are often investigated in aqueous environment, which is significantly different from in vivo environment. This study investigates the release of model proteins with net-positive (histone) and net-negative charge (bovine serum albumin, BSA) from various scaffolding surfaces and from encapsulated microspheres in the presence of ions, proteins, and cells. The release kinetics of proteins in media with varying concentrations of ions (NaCl) suggests stronger electrostatic interaction between the positively charged histone with the negatively charged substrates. While both proteins released slowly from hydrophobic PCL surfaces, plasma etching resulted in rapid release of BSA, but not histone. Interestingly, although negatively charged BSA released readily from negatively charged collagen (col), BSA released slowly from col-coated PCL scaffolds. Such electrostatic interaction effects were abolished in the presence of serum proteins and cells as evidenced by the rapid release of proteins from col-coated scaffolds. To achieve sustained release in the complex environment of serum proteins and cells, the model proteins were encapsulated into poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres, which were embedded within col-coated PCL scaffolds. Protein release from microspheres was modulated by changing the lactide-to-glycolide ratio of PLGA polymer. BSA adsorbed to col released faster than histone encapsulated in microspheres in the presence of serum and cells. Collectively, the data suggest that growth factor release is highly influenced by scaffold surface and the presence of ions, proteins, and cells in the media. Strategies to deliver multiple growth factors and studies which investigate their release should consider these important variables.  相似文献   

9.
An injectable poly(DL-lactic-co-glycolic acid) (PLGA) system comprising both porous and protein-loaded microspheres capable of forming porous scaffolds at body temperature was developed for tissue regeneration purposes. Porous and non-porous (lysozyme loaded) PLGA microspheres were formulated to represent ‘low molecular weight’ 22–34 kDa, ‘intermediate molecular weight’ (IMW) 53 kDa and ‘high molecular weight’ 84–109 kDa PLGA microspheres. The respective average size of the microspheres was directly related to the polymer molecular weight. An initial burst release of lysozyme was observed from both microspheres and scaffolds on day 1. In the case of the lysozyme-loaded microspheres, this burst release was inversely related to the polymer molecular weight. Similarly, scaffolds loaded with 1 mg lysozyme/g of scaffold exhibited an inverse release relationship with polymer molecular weight. The burst release was highest amongst IMW scaffolds loaded with 2 and 3 mg/g. Sustained lysozyme release was observed after day 1 over 50 days (microspheres) and 30 days (scaffolds). The compressive strengths of the scaffolds were found to be inversely proportional to PLGA molecular weight at each lysozyme loading. Surface analysis indicated that some of the loaded lysozyme was distributed on the surfaces of the microspheres and thus responsible for the burst release observed. Overall the data demonstrates the potential of the scaffolds for use in tissue regeneration.  相似文献   

10.
Cao X  Schoichet MS 《Biomaterials》1999,20(4):329-339
Nerve growth factor (NGF) may enhance axonal regeneration following injury to the central nervous system (CNS), such as after spinal cord injury. The release profile of NGF, co-encapsulated with ovalbumin, was tailored from biodegradable polymeric microspheres using both polymer degradation and protein loading. Biodegradable polymeric microspheres were prepared from PLGA 50/50, PLGA 85/15, PCL and a blend of PCL/PLGA 50/50 (1:1, w/w), where the latter was used to further tailor the degradation rate. The amount of protein loaded in the microspheres was varied, with PCL encapsulating the greatest amount of protein and PLGA 50/50 encapsulating the least. A two-phase release profile was observed for all polymers where the first phase resulted from release of surface proteins and the second phase resulted predominantly from polymer degradation. Polymer degradation influenced the release profile most notably from PLGA 50/50 and PLGA 85/15 microspheres. The amount and bioactivity of released NGF was followed over a 91 d period using a NGF-ELISA and PC12 cells, respectively. NGF was found to be bioactive for 91 d, which is longer than previously reported.  相似文献   

11.
The ideal biomaterial for the repair of bone defects is expected to have good mechanical properties, be fabricated easily into a desired shape, support cell attachment, allow controlled release of bioactive factors to induce bone formation, and biodegrade into nontoxic products to permit natural bone formation and remodeling. The synthetic polymer poly(propylene fumarate) (PPF) holds great promise as such a biomaterial. In previous work we developed poly(DL-lactic-co-glycolic acid) (PLGA) and PPF microspheres for the controlled delivery of bioactive molecules. This study presents an approach to incorporate these microspheres into an injectable, porous PPF scaffold. Model drug Texas red dextran (TRD) was encapsulated into biodegradable PLGA and PPF microspheres at 2 microg/mg microsphere. Five porous composite formulations were fabricated via a gas foaming technique by combining the injectable PPF paste with the PLGA or PPF microspheres at 100 or 250 mg microsphere per composite formulation, or a control aqueous TRD solution (200 microg per composite). All scaffolds had an interconnected pore network with an average porosity of 64.8 +/- 3.6%. The presence of microspheres in the composite scaffolds was confirmed by scanning electron microscopy and confocal microscopy. The composite scaffolds exhibited a sustained release of the model drug for at least 28 days and had minimal burst release during the initial phase of release, as compared to drug release from microspheres alone. The compressive moduli of the scaffolds were between 2.4 and 26.2 MPa after fabrication, and between 14.9 and 62.8 MPa after 28 days in PBS. The scaffolds containing PPF microspheres exhibited a significantly higher initial compressive modulus than those containing PLGA microspheres. Increasing the amount of microspheres in the composites was found to significantly decrease the initial compressive modulus. The novel injectable PPF-based microsphere/scaffold composites developed in this study are promising to serve as vehicles for controlled drug delivery for bone tissue engineering.  相似文献   

12.
The objective of this study was to investigate the effect of aqueous solubility of model drugs and glycolide monomer (GM) from poly(D,L-lactide-co-glycolide) (PLGA) discs on in vitro release rates and polymer degradation. 5-Fluorouracil (5-FU), a water-soluble compound, and dexamethasone in a water-insoluble base form were selected as model drugs. Glycolide monomer, that has moderate solubility in water, was a non-toxic and biodegradable additive as a derivative material of hydrolysis of PLGA in order to obtain desirable drugs release rates. PLGA discs with or without GM were formulated by means of compression molding method. The prepared polymeric discs were incubated at 37 degrees C in phosphate-buffered saline (PBS, pH 7.4) and characterized at scheduled time points for water uptake, mass loss, diameter and morphology change, molecular weight and composition change using scanning electron microscopy (SEM), gel-permeation chromatography (GPC), and H-NMR, respectively. The supernatants were taken out of the sample vials and were analyzed for drug release. The 5-FU release was found to be increasing in proportion to the drug loading amount with an initial burst for 5 days, while dexamethasone release showed inverse relationship with the increasing drug loading amount. However, the release behaviors of 5-FU and dexamethasone polymeric discs containing GM showed faster release rates than control discs (without GM) and did not show lag periods during the in vitro release test due to adding GM, which acted as a channeling agent that has moderate solubility in water. Polymer degradation was found to be affected by aqueous solubility of drugs and GM. In conclusion, we observed that drugs release rates were influenced by their aqueous solubility and loading amount and also GM plays a major role in controlling drug release rates regardless of solubility of drugs. This system appears to be promising for controlled drug delivery aimed at local therapy.  相似文献   

13.
We have encapsulated the chemotherapeutic agent doxorubicin into biodegradable polymer microspheres, and incorporated these microspheres into gelatin scaffolds, resulting in a controlled delivery system. Doxorubicin was encapsulated in poly(D,L-lactide-co-glycolide) (PLGA) using a double emulsion/solvent extraction method. Characterization of the microspheres including diameter, surface morphology, and in vitro drug release was determined. The release of doxorubicin up to 30 days in phosphate buffered solution was assessed by measuring the absorbance of the releasate solution. Gelatin scaffolds were crosslinked using glutaraldehyde and microspheres were added to gelatin during gelation. The murine mammary mouse tumor cell line, 4T1, was treated with various doses of doxorubicin. A propidium iodide assay was utilized to visualize dead cells. Using a Transwell basket assay, PLGA microspheres and gelatin constructs were suspended above 4T1 cells for 48 h. Viable cells were determined using the CyQUANT cell proliferation assay. Results indicate that the release was controlled by the incorporation of PLGA microspheres into gelatin constructs. A significant difference was seen in the cumulative release over days 5-16 (p < 0.05). The bioactivity of doxorubicin released from the microspheres and scaffolds was maintained as proven by significant reduction in viable cells after treatment with PLGA microspheres as well as with the gelatin constructs (p < 0.001). The drug-polymer conjugate can be used as a controlled drug delivery system in a biocompatible scaffold that could potentially promote preservation of soft tissue contour.  相似文献   

14.
背景:聚乳酸-羟基乙酸支架材料具有良好的生物相容性、无毒、可以良好的塑性,并具有一定的强度和韧性。但其降解产物为酸性,会影响局部pH值变化,不利组织生长。 目的:制备能够良好缓释蛋白类药物的复合支架。 方法:以牛血清蛋白为模型药物,以离子凝胶法制备壳聚糖微球。将微球与纳米羟基磷灰石和聚乳酸-羟基乙酸按一定比例混合,以冰粒子为致孔剂,采用粒子沥虑-冷冻干燥复合工艺制备CMs/nHA/PLGA复合缓释支架。利用扫描电镜、透射电镜、压泵仪和力学性能测试仪检测复合支架的形态和性能,并考察其在体外对蛋白类药物释放的规律。 结果与结论:制备的壳聚糖纳米微球形态良好,呈规则球形或类球形,粒径分布在220~770 nm,以380~650 nm为多。微球对药物的载药量为39.2%,包封率为68.3%,两者均与牛血清蛋白的初始量相关,载药量随牛血清蛋白初始量的增加而增加,包封率则反之。复合支架呈白色多孔状,孔径为125~355 mm,孔与孔之间联通良好,孔隙率达83.4%,压缩强度为1.4~ 2.1 MPa,10周降解率为28.6%。PLGA/nHA支架对牛血清蛋白的2 d累积释放量为85%,而壳聚糖和CMs/nHA/PLGA复合支架对牛血清蛋白的9 d累积释放量分别是为48.9%和35.7%。提示制作的壳聚糖纳米微球和CMs/nHA/PLGA支架材料对牛血清蛋白有良好的缓释作用,复合支架材料形态好,强度和降解速率合适。  相似文献   

15.
Biodegradable poly(lactic-co-glycolic acid) (PLGA) scaffolds are widely used for the delivery of therapeutic molecules such as plasmid DNA (pDNA) and growth factors. However, many of these scaffolds must be implanted, and it would be beneficial to develop PGLA systems that can be injected in a minimally invasive manner. In this study, we present an injectable, porous PLGA scaffold that solidifies in situ for controlled gene delivery. Micro-scale porosity was engineered into the system to facilitate cell migration, proliferation and extracellular matrix elaboration. Relatively rapid release of pDNA was achieved through simple mixing into the polymer solution prior to scaffold solidification, whereas sustained release was achieved by incorporating pDNA-laden PLGA microspheres into the polymer solution. Sustained pDNA release was obtained for over 70 days. When the released pDNA was complexed with PEI and used to transfect HEK293 cells, substantial gene transfection was achieved from all time points, demonstrating that the pDNA was bioactive for the entire time course of the study. These in situ forming porous scaffolds for pDNA delivery are easy to prepare and can be injected without invasive surgery. Importantly, localized delivery of bioactive pDNA can be achieved for short to prolonged time periods, and small changes in the system composition permit facile tailoring of release profiles. In the future, this system may be used to control host cell regenerative responses by, for example, inducing cellular migration into the porous scaffold architecture via release of pDNA encoding for chemokines or pro-angiogenic molecules.  相似文献   

16.
Kim SS  Park MS  Gwak SJ  Choi CY  Kim BS 《Tissue engineering》2006,12(10):2997-3006
Although biodegradable polymer/ceramic composite scaffolds can overcome the limitations of conventional ceramic bone substitutes, the osteogenic potential of these scaffolds needs to be further enhanced for efficient bone tissue engineering. In this study, bonelike apatite was efficiently coated onto the scaffold surface by using polymer/ceramic composite scaffolds instead of polymer scaffolds and by using an accelerated biomimetic process to enhance the osteogenic potential of the scaffold. The creation of bonelike, apatite-coated polymer scaffold was achieved by incubating the scaffolds in simulated body fluid (SBF). The apatite growth on porous poly(D,L-lactic-co-glycolic acid)/nanohydroxyapatite (PLGA/ HA) composite scaffolds was significantly faster than on porous PLGA scaffolds. In addition, the distribution of coated apatite was more uniform on PLGA/HA scaffolds than on PLGA scaffolds. After a 5-day incubation period, the mass of apatite coated onto PLGA/HA scaffolds incubated in 5 x SBF was 2.3-fold higher than PLGA/HA scaffolds incubated in 1 x SBF. Furthermore, when the scaffolds were incubated in 5 x SBF for 5 days, the mass of apatite coated onto PLGA/HA scaffolds was 4.5-fold higher than PLGA scaffolds. These results indicate that the biomimetic apatite coating can be accelerated by using a polymer/ceramic composite scaffold and concentrated SBF. When seeded with osteoblasts, the apatite-coated PLGA/HA scaffolds exhibited significantly higher cell growth, alkaline phosphatase activity, and mineralization in vitro compared to the apatite-coated PLGA scaffolds. Therefore, the apatite-coated PLGA/HA scaffolds may provide enhanced osteogenic potential when used as scaffold for bone tissue engineering.  相似文献   

17.
Kim DH  Martin DC 《Biomaterials》2006,27(15):3031-3037
The release of the anti-inflammatory agent dexamethasone (DEX) from nanoparticles of poly(lactic-co-glycolic acid) (PLGA) embedded in alginate hydrogel (HG) matrices was investigated. DEX-loaded PLGA nanoparticles were prepared using a solvent evaporation technique and were characterized for size, drug loading, and in-vitro release. The crosslinking density of the HG was studied and correlated with drug release kinetics. The amount of DEX loaded in the nanoparticles was estimated as approximately 13 wt%. The typical particle size ranged from 400 to 600 nm. The in-vitro release of DEX from NPs entrapped in the HG showed that 90% of the drug was released over 2 weeks. The impedance of the NP-loaded HG coatings on microfabricated neural probes was measured and found to be similar to the unmodified and uncoated probes. The in-vivo impedance of chronically implanted electrodes loaded with DEX was maintained at its initial level, while that of the control electrode increased by 3 times after about 2 weeks after implantation until it stabilized at approximately 3 MOmega. This improvement in performance is presumably due to the reduced amount of glial inflammation in the immediate vicinity of the DEX-modified neural probe.  相似文献   

18.
This study investigated the in vivo degradation of poly(propylene fumarate) (PPF)/poly(DL-lactic-co-glycolic acid) (PLGA) composite scaffolds designed for controlled release of osteogenic factors. PPF/PLGA composites were implanted into 15.0mm segmental defects in the rabbit radius, harvested after 12 and 18 weeks, and analyzed using histological techniques to assess the extent of polymer degradation as well as the tissue response within the pores of the scaffolds. Polymer degradation was limited to micro-fragmentation of the scaffold at the ends and edges of the implant at both 12 and 18 weeks. The tissue within the pores of the scaffold consisted of fibrous tissue, blood vessels and some inflammatory cells. In areas where polymer breakdown was evident, an increased inflammatory response was observed. In contrast, areas of bone ingrowth into the polymer scaffold were characterized by minimal inflammatory response and polymer degradation. Our results show that minimal degradation of porous PPF occurs within 18 weeks of implantation in a rabbit model. Further, the in vivo degradation data of porous PPF/PLGA scaffolds are comparable with earlier obtained in vitro data.  相似文献   

19.
We have developed a method for nerve tissue regeneration using longitudinally oriented channels within biodegradable polymers created by a combined lyophilizing and wire-heating process. This type of cell-adhesive scaffold provides increased area to support and guide extending axons subsequent to nerve injury. Utilizing Ni-Cr wires as mandrels to create channels in scaffold increased safety, effectiveness, and reproducibility. The scaffolds tested were made from different biodegradable polymers, chitosan and poly(D,L-lactide-co-glycolide) (PLGA), because of their availability, ease of processing, low inflammatory response, and approval by the FDA. According to our experimental results, the high permeability and the characteristic porous structure of chitosan proved to be a better material for nerve guidance than PLGA. The scanning electron micrographs revealed that the scaffolds were consistent along the longitudinal axis with channels being distributed evenly throughout the scaffolds. There was no evidence to suggest merging or splitting of individual channels. The diameter of the channels was about 100 mum, similar to the 115 micromameter of the Ni-Cr wire. Regulating the size and quantity of the Ni-Cr wires allow us to control the number and the diameter of the channels. Furthermore, the neutralizing processes significantly influenced the porous structure of chitosan scaffolds. Using weak base (NaHCO(3) 1M) to neutralize chitosan scaffolds made the porous structure more uniform. The innovative method of using Ni-Cr wires as mandrels could be easily tailored to other polymer and solvent systems. The high permeability and the characteristic porous structure of chitosan made it a superior material for nerve tissue engineering. These scaffolds could be useful for guiding regeneration of the peripheral nerve or spinal cord after a transection injury.  相似文献   

20.
Hepatic tissue engineering offers a promising approach toward alleviating the need for donor liver, yet many challenges must be overcome including choice of scaffold, cell source, and immunologic barriers. Poly(lactic-co-glycolic acid) (PLGA) polymers are innovative biodegradable materials that have been shown to be useful as scaffolds for seeding and culturing various types of cells. In this study, a porous sponge scaffold of modified PLGA polymer with collagen was investigated for its ability to improve the growth and metabolism of human hepatocytes. We evaluated the biocompatibility of collagen-modified PLGA (C-PLGA) scaffolds with hepatocytes isolated from human liver. Cell adhesion and function (cell density, culture lifespan, albumin synthesis, urea synthesis, and ammonia elimination and diazepam clearance) were assessed during different culture periods. The number of hepatocytes cultured in C-PLGA scaffolds was higher compared with those cultured in PLGA scaffolds without collagen modification, and the lifespan of hepatocytes cultured in C-PLGA scaffolds was longer than that of cells cultured in PLGA scaffolds. Albumin and urea synthesis and ammonia elimination from attached hepatocytes were greater in C-PLGA than in PLGA scaffolds, with the exception of diazepam clearance. Collagen-modified PLGA scaffold is a promising biomaterial for hepatic tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号