首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Defects of glucose transport and phosphorylation may underlie insulin resistance in obesity and non-insulin-dependent diabetes mellitus (NIDDM). To test this hypothesis, dynamic imaging of 18F-2-deoxy-glucose uptake into midthigh muscle was performed using positron emission tomography during basal and insulin-stimulated conditions (40 mU/m2 per min), in eight lean nondiabetic, eight obese nondiabetic, and eight obese subjects with NIDDM. In additional studies, vastus lateralis muscle was obtained by percutaneous biopsy during basal and insulin-stimulated conditions for assay of hexokinase and citrate synthase, and for immunohistochemical labeling of Glut 4. Quantitative confocal laser scanning microscopy was used to ascertain Glut 4 at the sarcolemma as an index of insulin-regulated translocation. In lean individuals, insulin stimulated a 10-fold increase of 2-deoxy-2[18F]fluoro-D-glucose (FDG) clearance into muscle and significant increases in the rate constants for inward transport and phosphorylation of FDG. In obese individuals, the rate constant for inward transport of glucose was not increased by insulin infusion and did not differ from values in NIDDM. Insulin stimulation of the rate constant for glucose phosphorylation was similar in obese and lean subjects but reduced in NIDDM. Insulin increased by nearly twofold the number and area of sites labeling for Glut 4 at the sarcolemma in lean volunteers, but in obese and NIDDM subjects translocation of Glut 4 was attenuated. Activities of skeletal muscle HK I and II were similar in lean, obese and NIDDM subjects. These in vivo and ex vivo assessments indicate that impaired glucose transport plays a key role in insulin resistance of NIDDM and obesity and that an additional impairment of glucose phosphorylation is evident in the insulin resistance of NIDDM.  相似文献   

2.
The present study evaluated the involvement of glucose transport and phosphorylation in glucose-stimulated insulin release from pancreatic islets. Using quantitative histochemical techniques, we investigated basal islet glucose content, islet glucose uptake in situ during acute extreme experimental hyperglycemia, and islet glucokinase activity in several animal models of diabetes and obesity. The basal islet glucose content in anaesthetized diabetic or obese rodents was either the same or higher than that in their relevant controls. The rate of glucose uptake of islet tissue in these animals after an i.v. glucose injection was different. The db+/db+ mouse and the obese Zucker rat exhibited significantly reduced islet glucose uptake rates. RIP-cHras transgenic mice, BHE/cdb rats and partially pancreatectomized rats showed normal islet glucose uptake rates. The activity of islet glucokinase was increased to a different degree related to the blood glucose level. All five animal models of diabetes or obesity exhibited either a delay or a reduction of insulin release in response to supra maximal glucose stimulation. Our results indicate that the impairment of glucose-induced insulin release in diabetes is not consistently associated with a reduction of islet glucose uptake nor a change of glucokinase activity.  相似文献   

3.
We have studied insulin-stimulated 3-O-methyl glucose transport by isolated adipocytes prepared from 10 normal and 11 obese individuals. The results demonstrated that the insulin-glucose transport dose-response curves were shifted to the right in cells from the obese patients, and that the magnitude of this rightward shift was significantly correlated to the reduction in adipocyte insulin receptors in individual subjects (r = 0.48, P less than 0.01). In three obese patients a rightward shift in the dose-response curve could be demonstrated and there was no decrease in maximal insulin effect. This corresponded to in vivo glucose clamp results showing only a rightward shift in the insulin dose-response curve for overall glucose disposal in these three subjects (1980. J. Clin. Invest. 65: 1272-1284). In the remaining eight obese patients, the in vitro glucose transport studies showed not only a rightward shift in the dose-response curves but also a marked decrease in basal and maximally insulin-stimulated rates of transport, indicating a postreceptor defect in insulin action. Again, this was consistent with the in vivo glucose clamp studies demonstrating a marked postreceptor defect in these individuals. In conclusion, these results indicate that the mechanism of the postreceptor defect in insulin action, which exists in many obese patients, is related to a decrease in the activity of the glucose transport effector system.  相似文献   

4.
It has been previously reported that maximum insulin-stimulated glucose transport and utilization were both decreased, while basal lipolysis was increased in adipocytes from obese subjects with noninsulin-dependent diabetes mellitus (NIDDM). To determine whether these values can be returned towards those obtained in equally obese subjects with normal glucose tolerance, these measures of adipocyte metabolism were quantified in 10 NIDDM subjects before and after control of hyperglycemia with insulin. The results demonstrate that maximum insulin-stimulated glucose transport (P less than 0.02) and glucose incorporation into triglyceride (P less than 0.01) and CO2 (P less than 0.05) (at 5.5 mM glucose) increased and basal lipolysis decreased (P less than 0.05) after 4 wk of insulin treatment. In contrast, glucose incorporation into lactate and other glycolytic metabolites (at 5.5 mM glucose), and sensitivity of glucose transport to insulin, did not improve with insulin therapy. The latter occurred despite an increase in insulin binding (P less than 0.01). Finally, the improvement in maximal insulin-stimulated glucose transport correlated with the fall in fasting hyperglycemia (r = 0.77, P less than 0.01). These findings demonstrate that several of the abnormalities of carbohydrate and lipid metabolism recently noted to be present in adipocytes from patients with NIDDM can be shown to significantly improve with insulin treatment.  相似文献   

5.
We tested the hypothesis that endothelium-dependent vasodilatation is a determinant of insulin resistance of skeletal muscle glucose uptake in human obesity. Eight obese (age 26+/-1 yr, body mass index 37+/-1 kg/m2) and seven nonobese males (25+/-2 yr, 23+/-1 kg/m2) received an infusion of bradykinin into the femoral artery of one leg under intravenously maintained normoglycemic hyperinsulinemic conditions. Blood flow was measured simultaneously in the bradykinin and insulin- and the insulin-infused leg before and during hyperinsulinemia using [15O]-labeled water ([15O]H2O) and positron emission tomography (PET). Glucose uptake was quantitated immediately thereafter in both legs using [18F]- fluoro-deoxy-glucose ([18F]FDG) and PET. Whole body insulin-stimulated glucose uptake was lower in the obese (507+/-47 mumol/m2 . min) than the nonobese (1205+/-97 micromol/m2 . min, P < 0.001) subjects. Muscle glucose uptake in the insulin-infused leg was 66% lower in the obese (19+/-4 micromol/kg muscle . min) than in the nonobese (56+/-9 micromol/kg muscle . min, P < 0.005) subjects. Bradykinin increased blood flow during hyperinsulinemia in the obese subjects by 75% from 16+/-1 to 28+/-4 ml/kg muscle . min (P < 0.05), and in the normal subjects by 65% from 23+/-3 to 38+/-9 ml/kg muscle . min (P < 0.05). However, this flow increase required twice as much bradykinin in the obese (51+/-3 microg over 100 min) than in the normal (25+/-1 mug, P < 0.001) subjects. In the obese subjects, blood flow in the bradykinin and insulin-infused leg (28+/-4 ml/kg muscle . min) was comparable to that in the insulin-infused leg in the normal subjects during hyperinsulinemia (24+/-5 ml/kg muscle . min). Despite this, insulin-stimulated glucose uptake remained unchanged in the bradykinin and insulin-infused leg (18+/-4 mumol/kg . min) compared with the insulin-infused leg (19+/-4 micromol/kg muscle . min) in the obese subjects. Insulin-stimulated glucose uptake also was unaffected by bradykinin in the normal subjects (58+/-10 vs. 56+/-9 micromol/kg . min, bradykinin and insulin versus insulin leg). These data demonstrate that obesity is characterized by two distinct defects in skeletal muscle: insulin resistance of cellular glucose extraction and impaired endothelium-dependent vasodilatation. Since a 75% increase in blood flow does not alter glucose uptake, insulin resistance in obesity cannot be overcome by normalizing muscle blood flow.  相似文献   

6.
Insulin binding, glucose transport, and glucose oxidation were studied in isolated adipocytes obtained from fasting rats. Fasting led to an increase in the overall binding affinity for insulin, while the number of receptor sites per cell remained constant. Glucose oxidation was markedly attenuated during fasting. Basal rates of oxidation decreased by about 50%, while insulin-stimulated rates decreased 6 to 10-fold. Glucose transport was assessed by measuring initial uptake rate of 2-deoxy-glucose. Fasting led to a 40-50% decrease in the apparent maximal transport capacity (Vmax) of 2-deoxy-glucose uptake with no change in apparent Km. A progressive decrease in basal and insulin-stimulated rates of 2-deoxy-glucose uptake was seen from 24-72 h of starvation and a significant correlation (r=0.85, P less than 0.001) existed between basal and maximal insulin-stimulated uptake rates in individual animals. When 2-deoxy-glucose uptake was plotted as a function of insulin bound, due to the decrease in maximal uptake capacity, cells from fasting animals took up less hexose for any amount of insulin bound. When the insulin bound was plotted as a function of the percent insulin effect on uptake, control cells and cells from 24-h-fasted rats gave comparable results, while cells from 48- and 72-h-fasted animals still took up less hexose for any amount of bound insulin. The effects of fasting on 3-O-methyl glucose uptake were comparable to the 2-deoxy-glucose data. In conclusion: (a) insulin binding is increased during fasting due to an increased overall binding affinity with no change in receptor number; (b) glucose oxidation is severely impaired during fasting; (c) 2-deoxy-glucose uptake decreases with fasting due to a decrease in maximal transport capacity (Vmax) with no change in Km; (d) the decrease in glucose oxidation is much greater than the decrease in glucose transport, indicating impaired intracellular oxidative metabolism; and (e) coupling between insulin receptors and the glucose transport system is normal after 24 h of fasting but is impaired at 48 and 72 h.  相似文献   

7.
To determine whether the impaired insulin-stimulated glucose uptake in obese individuals is associated with altered insulin receptor signaling, we measured both glucose uptake and early steps in the insulin action pathway in intact strips of human skeletal muscle. Biopsies of rectus abdominus muscle were taken from eight obese and eight control subjects undergoing elective surgery (body mass index 52.9 +/- 3.6 vs 25.7 +/- 0.9). Insulin-stimulated 2-deoxyglucose uptake was 53% lower in muscle strips from obese subjects. Additional muscle strips were incubated in the basal state or with 10(-7) M insulin for 2, 15, or 30 min. In the lean subjects, tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 (IRS-1), measured by immunoblotting with anti-phosphotyrosine antibodies, was significantly increased by insulin at all time points. In the skeletal muscle from the obese subjects, insulin was less effective in stimulating tyrosine phosphorylation (maximum receptor and IRS-1 phosphorylation decreased by 35 and 38%, respectively). Insulin stimulation of IRS-1 immunoprecipitable phosphatidylinositol 3-kinase (PI 3-kinase) activity also was markedly lower in obese subjects compared with controls (10- vs 35-fold above basal, respectively). In addition, the obese subjects had a lower abundance of the insulin receptor, IRS-1, and the p85 subunit of PI 3-kinase (55, 54, and 64% of nonobese, respectively). We conclude that impaired insulin-stimulated glucose uptake in skeletal muscle from severely obese subjects is accompanied by a deficiency in insulin receptor signaling, which may contribute to decreased insulin action.  相似文献   

8.
We have studied the relationship between glucose uptake rate and Glut 1 and Glut 4 protein and mRNA levels per fat cell in lean (FA/FA) and obese (fa/fa) Zucker rats at 5, 10, and 20 wk of age, and after induction of acute diabetes with streptozotocin. 5 wk obese rats exhibit insulin hyperresponsive glucose uptake, whereas 20 wk obese rats show insulin resistant glucose uptake. The relative abundance of Glut 1 and Glut 4 mRNA and protein per equal amount of total RNA and total membrane protein, respectively, is lower in adipocytes from obese rats. However, at all ages the enlargement of fat cells from obese rats is accompanied by a severalfold increase in total RNA and total membrane protein per cell. Thus, on a cellular basis, mRNA and protein levels of Glut 4 increases in young obese rats and gradually declines as a function of age. Basal glucose uptake is increased severalfold in fat cells from obese rats, and in parallel Glut 1 expression per cell in obese rats is two- to threefold increased over lean rats at all ages. Acute diabetes in 20 wk obese rats causes a profound downregulation of glucose uptake and a concomitant reduction of both Glut 1 and Glut 4 protein levels. Thus, changes in Glut 4 expression are a major cause of alteration in insulin-stimulated glucose uptake of adipocytes during evolution of obesity and diabetes in Zucker rats.  相似文献   

9.
Insulin action and obesity are both correlated with the density of muscle capillary supply in humans. Since the altered muscle anatomy in the obese might affect interstitial insulin concentrations and reduce insulin action, we have cannulated peripheral lymphatic vessels in lean and obese males, and compared peripheral lymph insulin concentrations with whole body glucose uptake during a euglycemic, hyperinsulinemic clamp. Lymph insulin concentrations in the lower limb averaged only 34% of arterial insulin concentrations during 150 min of insulin infusion. Obese subjects had the highest arterial (P < or = 0.0001) and lymph insulin (P < 0.005) concentrations, but the lowest glucose uptake rates (P < 0.002). In contrast to the initial steep rise then plateau of arterial insulins, both lymph insulin and whole body glucose uptake rates rose slowly and did not consistently reach a plateau. In each individual, the glucose uptake closely correlated with peripheral lymphatic insulin concentrations (mean r2 = 0.95). The coupling between glucose uptake and lymph insulin (glucose uptake/pmol insulin) was much steeper in lean subjects than in the obese (P < or = 0.0001). These results indicate that even if insulin diffusion into tissues is rate limiting for insulin action, a tissue defect rather than an insulin diffusion defect causes insulin resistance in obese subjects.  相似文献   

10.
To examine the role of glucose transport proteins in cellular insulin resistance, we studied subcutaneous adipocytes isolated from lean control, obese control (body mass index [BMI] 33.4 +/- 0.9), and untreated obese non-insulin-dependent diabetes mellitus (NIDDM) patients (BMI 35.2 +/- 2.1; fasting glucose 269 +/- 20 mg/dl). Glucose transporters were measured in plasma membrane (PM), low-density (LDM), and high-density (HDM) microsomal subfractions from basal and maximally insulin-stimulated cells using the cytochalasin B binding assay, and normalized per milligram of membrane protein. In all subgroups, insulin led to an increase in PM glucose transporters and a corresponding depletion of transporters in the LDM. Insulin recruited 20% fewer transporters to the PM in the obese subgroup when compared with lean controls, and this was associated with a decline in LDM transporters with enlarging cell size in the control subjects. In NIDDM, PM, and LDM, transporters were decreased 50% in both basal and stimulated cells when compared with obese controls having similar mean adipocyte size. Cellular depletion of glucose transporters was not the only cause of insulin resistance, because the decrease in rates of [14C]-D-glucose transport (basal and insulin-stimulated) was greater than could be explained by reduced numbers of PM transporters in both NIDDM and obesity. In HDM, the number of transporters was not influenced by insulin and was similar in all subgroups. We conclude that (a) in NIDDM and obesity, both reduced numbers and impaired activity of glucose transporters contribute to cellular insulin resistance, and (b) in NIDDM, more profound cellular insulin resistance is associated primarily with a further depletion of cellular transporters.  相似文献   

11.
To assess the mechanisms of the insulin resistance in human obesity, we have determined, using a modification of the euglycemic glucose clamp technique, the shape of the in vivo insulin-glucose disposal dose-response curves in 7 control and 13 obese human subjects. Each subject had at least three euglycemic studies performed at insulin infusion rates of 15, 40, 120, 240, or 1,200 mU/M2/min. The glucose disposal rate was decreased in all obese subjects compared with controls (101 +/- 16 vs. 186 +/- 16 mg/M2/min) during the 40 mU/M2/min insulin infusion. The mean dose-response curve for the obese subjects was displaced to the right, i.e., the half-maximally effective insulin concentration was 270 +/- 27 microU/ml for the obese compared with 130 +/- 10 microU/ml for controls. In nine of the obese subjects, the dose-response curves were shifted to the right, and maximal glucose disposal rates (at a maximally effective insulin concentration) were markedly decreased, indicating both a receptor and a postreceptor defect. On the other hand, four obese patients had right-shifted dose-response curves but reached normal maximal glucose disposal rates, consistent with decreased insulin receptors as the only abnormality. When the individual data were analyzed, it was found that the lease hyperinsulinemic, least insulin-resistant patients displayed only the receptor defect, whereas those with the greatest hyperinsulinemia exhibited the largest post-receptor defect, suggesting a continuous spectrum of defects as one advances from mild to severe insulin resistance. When insulin's ability to suppress hepatic glucose output was assessed, hyperinsulinemia produced total suppresssion in all subjects. The dose-response curve for the obese subjects was shifted to the right, indicating a defect in insulin receptors. Insulin binding to isolated adipocytes obtained from the obese subjects was decreased, and a highly significant inverse linear relationship was demonstrated between insulin binding and the serum insulin concentration required for halfmaximal stimulation of glucose disposal. In conclusion: (a) decreased cellular insulin receptors contribute to the insulin resistance associated with human obesity in all subjects; (b) in the least hyperinsulinemic, insulin-resistant patients, decreased insulin receptors are the sole defect, whereas in the more hyperinsulinemic, insulin-resistant patients, the insulin resistance is the result of a combination of receptor and postreceptor abnormalities; (c) all obese patients were insensitive to insulin's suppressive effects on hepatic glucose output; this was entirely the result of decreased insulin receptors; no postreceptor defect in this insulin effect was demonstrated.  相似文献   

12.
1. The rate of oxidation of [1-14C]glucose to 14CO2 was examined in subcutaneous adipose tissue from fifteen obese non-diabetic subjects and from eleven obese maturity-onset diabetic patients. Production of 14CO2, measured in the basal state and in the presence of insulin, was significantly correlated with mean cell size in both the non-diabetic and the diabetic subjects, independent of age, relative weight and fasting plasma insulin concentration. 2. Comparison of the regressions of glucose oxidation rates on mean cell size indicated: (i) that insulin produced a significant increase in activity over the basal value in both groups, and (ii) that basal and insulin-stimulated activity were both significantly lower in diabetic than in non-diabetic adipose tissue.  相似文献   

13.
To assess possible cellular mechanisms of in vitro resistance in noninsulin-dependent diabetes mellitus (NIDDM), maximum insulin-stimulated glucose transport and utilization and insulin binding were measured in adipocytes isolated from weight-matched normal glycemic subjects and patients with NIDDM. Glucose transport rate was determined by measuring the amount of [U-14C]-D-glucose taken up by incubating adipocytes at trace concentrations of glucose (300 nM), and glucose metabolism by estimating the amount of lactate, CO2, triglyceride, and total glucose carbons retained in the cells following incubating at 5.5 mM glucose. Insulin binding was measured at 50, 100, and 200 pM [mono125I-tyrosinyl A14]insulin. Both maximum insulin-stimulated glucose transport and utilization in adipocytes from diabetic subjects were 40% (P less than 0.01) and 32% (P less than 0.05) lower, respectively, than values obtained for subjects with normal glucose tolerance. In addition, the maximum capacity of glucose transport was correlated with the maximum capacity of glucose utilization (r = 0.81, P less than 0.001). Furthermore, fasting plasma glucose concentrations of diabetic subjects were negatively correlated with both maximum insulin-stimulated glucose transport (r = -0.56, P less than 0.05) and glucose utilization (r = -0.67, P less than 0.05). Since basal glucose transport in adipocytes from diabetic subjects was also 33% lower than in adipocytes from normal subjects, there was no change in the relative ability of insulin to stimulate glucose transport. However, there was a 64% decrease in the sensitivity of the glucose transport system to insulin (P less than 0.05), unrelated to concomitant changes in insulin binding. These results demonstrate that both maximal insulin-stimulated glucose transport and utilization, and the sensitivity of the glucose transport system to insulin, was decreased in adipocytes isolated from subjects with NIDDM. These in vitro defects were associated with impaired glucose metabolism in vivo, consistent with the view that the metabolic alterations observed at the cellular level may contribute to the in vivo insulin resistance of NIDDM.  相似文献   

14.
Splanchnic glucose and amino acid metabolism in obesity   总被引:5,自引:0,他引:5       下载免费PDF全文
Arterial concentrations and splanchnic exchange of glucose, lactate, pyruvate, glycerol, free fatty acids, and individual acidic and neutral amino acids were determined in obese and nonobese control subjects in the basal state and during a 45 min infusion of glucose. Glucose was administered to the controls at a rate (2 mg/kg/min; 144 +/- 4 mg/min) known to inhibit splanchnic glucose output without influencing peripheral glucose utilization. The obese subjects received glucose at two dose levels (75 and 150 mg/min) which simulated either the rise in insulin or the inhibition in splanchnic glucose production observed in the controls. In the basal state splanchnic glucose production did not differ significantly between obese and control subjects. However splanchnic uptake of lactate, glycerol, alanine, free fatty acids, and oxygen was 50-160% greater in obese subjects. Splanchnic uptake of glucose precursors could account for 33% of hepatic glucose output in the obese group as compared to 19% in controls. The increase in alanine and lactate uptake was due in part, to a 50% increase in splanchnic fractional extraction. Administration of glucose to the control subjects 144 +/- 4 mg/min) resulted in a 50-60% increment in arterial insulin and a 75% reduction in splanchnic glucose output. In the obese group, infusion of glucose at a rate of 75 mg/min resulted in an equivalent rise in arterial insulin, but was accompanied by a less than 40% inhibition in splanchnic glucose output. Glucose infusion at a rate of 150 mg/min in the obese resulted in a 75% reduction in splanchnic glucose output which was equivalent to that observed in controls, but was accompanied by a significantly greater rise (100-200%) in arterial insulin. It is concluded that in obesity (a) despite basal hyperinsulinemia, splanchnic uptake of glucose precursors is increased, the relative contribution to total glucose release attributable to gluconeogenesis being 70% higher than in controls; (b) infusion of glucose at rates causing equivalent increases in arterial insulin induces a smaller inhibition in splanchnic glucose output than in controls; (c) infusion of glucose at rates causing comparable inhibition in splanchnic glucose output is accompanied by a disproportionately greater increase in endogenous insulin than in controls. These data are compatible with hepatic resistance to insulin in obesity.  相似文献   

15.
We have tested the hypothesis that in vitro exposure of insulin-resistant adipocytes with insulin results in improved insulin action. A primary culture system of adipocytes from obese subjects with or without non-insulin-dependent diabetes mellitus (NIDDM) and nonobese control subjects has been developed. The adipocytes when cultured in serum-free medium do not lose their original characteristics in regard to insulin binding and glucose transport. The adipocytes from three groups were incubated with insulin (0, 10(-10) M, and 10(-7) M) for 24 h at 37 degrees C, receptor-bound insulin was dissociated, and basal and insulin (1 X 10(-11)-10(-7) M)-stimulated glucose transport and 125I-insulin binding were determined. The 24-h insulin exposure of adipocytes from control subjects decreased basal and insulin-stimulated glucose transport. The effects of 1 X 10(-7) M insulin were more pronounced than 1 X 10(-10) M insulin. Similarly, insulin exposure decreased insulin sensitivity and responsiveness of cultured adipocytes from obese and NIDDM patients. The insulin-induced reduction in insulin sensitivity and responsiveness for glucose transport in three groups were due to alterations at insulin binding and postbinding levels. In conclusion, insulin induces insulin resistance in control adipocytes and further worsens the insulin resistance of adipocytes from obese and NIDDM subjects. For insulin to improve the insulin resistance of adipocytes from NIDDM patients, either more prolonged in vitro insulin exposure and/or other hormonal factors might be required.  相似文献   

16.
Stromal vascular cells were isolated from adipose tissue obtained from three different anatomical locations: epididymal (EPI), retroperitoneal (RP), and dorsal subcutaneous (SC), and allowed to differentiate in primary tissue culture. Cell number, protein concentration, glycerophosphate dehydrogenase, and lipoprotein lipase activity were similar in cells obtained from the EPI, RP, and SC regions, as were total insulin binding and the affinity of insulin for its receptor. However, both maximal insulin receptor tyrosine kinase activity and insulin-stimulated phosphorylation of the insulin receptor were significantly lower (P less than 0.05) in cells cultured from the SC region. In addition, newly differentiated adipocytes from the SC region were less sensitive to the ability of insulin to stimulate glucose uptake, and maximal insulin-stimulated glucose uptake by these cells was also significantly lower (P less than 0.05) when compared to cells obtained from the two other regions. Since these studies were performed on adipocyte precursor cells, allowed to differentiate to a similar degree in primary culture, the observed differences in insulin receptor phosphorylating activity, as well as the ability of insulin to stimulate glucose uptake appear to be intrinsic to adipose tissue from the three sites.  相似文献   

17.
Several authors have reported a reduced thermic effect of food in obese subjects. The hyperinsulinemic-euglycemic clamp technique has been used to measure one component of the thermic effect of food, insulin and insulin-mediated glucose disposal. We used this technique to measure the thermic responses to insulin and glucose infusions in 120 glucose-tolerant Pima Indians, a population with a high prevalence of obesity. During high-dose insulin infusions (400 mU/m2 per min) the measured increase in energy expenditure (MEE), 150 +/- 6 cal/min, was greater than the predicted increase in energy expenditure (PEE), 72 +/- 2 cal/min, for glucose storage as glycogen. During low-dose insulin infusions (40 mU/m2 per min) the mean MEE, 6 +/- 5 cal/min, was not significantly different from zero and was not greater than the mean PEE, 9 +/- 1 cal/min. These data were in contrast to results obtained from Caucasians by others and suggested a markedly reduced thermic effect of low-dose insulin and glucose infusions in Pima Indians. We also studied 23 glucose-tolerant male Caucasians and compared their results with the results from male Indians matched for glucose storage rates and obesity. The results showed that the thermic response to insulin and glucose infusions was similar in the two racial groups during high-dose insulin infusions but was markedly reduced in the Indians compared with the Caucasians during low-dose insulin infusions.  相似文献   

18.
OBJECTIVE: To determine whether insulin resistance and secretion differ in obese premenopausal African-American women with and without glucose intolerance. RESEARCH DESIGN AND METHODS: A total of 63 women underwent oral glucose tolerance tests (OGTTs). A total of 48 women underwent frequently sampled intravenous glucose tolerance tests (FSIGTs). Insulin resistance was determined from the insulin sensitivity index (S(I)) from the FSIGT. Insulin secretion during the OGTT was determined by (I(30 min) - I(0 min))/(G(30 min) - G(0 min)) and during the FSIGT by the acute insulin response to glucose (AIRg). The disposition index, the product of AIRg and S(I), was used to determine whether AIRg was adequate to compensate for insulin resistance. Statistical analyses included one-way analysis of variance with Bonferroni corrections for multiple comparisons and regression analyses. RESULTS: The women were divided into three groups: nonobese glucose tolerant (n = 32), obese glucose tolerant (n = 17), and obese glucose intolerant (n = 14). The BMI of the three groups were 24.8 +/- 2.3, 37.8 +/- 5.5, and 42.0 +/- 7.6 kg/m(2) (mean +/- SD), respectively (P < 0.0001). The ages of the three groups were 34.9 +/- 8.4, 32.1 +/- 5.0, and 41.1 +/- 6.3 years (P = 0.011). S(I) was higher in the nonobese women than in the obese glucose-tolerant women (3.99 +/- 1.44 vs. 2.66 +/- 2.14 l x mU(-1) x min(-1), P = 0.03). S(I) was similar in the obese glucose-intolerant and obese glucose-tolerant women (2.12 +/- 1.27 vs. 2.66 +/- 2.14 l x mU(-1) x min(-1), P = 0.9). OGTT showed that insulin secretion was lower in the glucose-intolerant than the obese glucose-tolerant women (1.73 +/- 1.38 vs. 3.62 +/- 2.11, P = 0.005). FSIGT showed that AIRg was not significantly lower in glucose-intolerant than in obese glucose-tolerant women (807 +/- 665 vs. 1,253 +/- 655 mU x l(-1) x min, P = 0.078). The disposition index was lower in glucose-intolerant than in obese glucose-tolerant women (1,324 +/- 1,061 vs. 2,656 +/- 1,415, P = 0.014). CONCLUSIONS: Obese premenopausal African-American women with and without glucose intolerance have a similar degree of insulin resistance but differ in insulin secretion.  相似文献   

19.
Obesity is characterized by decreased rates of skeletal muscle insulin-mediated glucose uptake (IMGU). Since IMGU equals the product of the arteriovenous glucose difference (AVGd) across muscle and blood flow into muscle, reduced blood flow and/or tissue activity (AVGd) can lead to decreased IMGU. To examine this issue, we studied six lean (weight 68 +/- 3 kg, mean +/- SEM) and six obese (94 +/- 3 kg) men. The insulin dose-response curves for whole body and leg IMGU were constructed using the euglycemic clamp and leg balance techniques over a large range of serum insulin concentrations. In lean and obese subjects, whole body IMGU, AVGd, blood flow, and leg IMGU increased in a dose dependent fashion and maximal rates of all parameters were reduced in obese subjects compared to lean subjects. The dose-response curves for whole body IMGU, leg IMGU, and AVGd were right-shifted in obese subjects with an ED50 two- to threefold higher than that of lean subjects for each parameter. Leg blood flow increased approximately twofold from basal 2.7 +/- 0.2 to 4.4 +/- 0.2 dl/min in lean, P less than 0.01, and from 2.5 +/- 0.3 to 4.4 +/- 0.4 dl/min in obese subjects, P less than 0.01. The ED50 for insulin's effect to increase leg blood flow was about fourfold higher for obese (957 pmol/liter) than lean subjects (266 pmol/liter), P less than 0.01. Therefore, decreased insulin sensitivity in human obesity is not only due to lower glucose extraction in insulin-sensitive tissues but also to lower blood flow to these tissues. Thus, in vivo insulin resistance can be due to a defect in insulin action at the tissue level and/or a defect in insulin's hemodynamic action to increase blood flow to insulin sensitive tissues.  相似文献   

20.
We have developed an in vitro muscle preparation suitable for metabolic studies with human muscle tissue and have investigated the effects of obesity and non-insulin-dependent diabetes mellitus (NIDDM) on glucose transport. Transport of 3-O-methylglucose and 2-deoxyglucose was stimulated approximately twofold by insulin in muscle from normal nonobese subjects and stimulation occurred in the normal physiological range of insulin concentrations. In contrast to insulin stimulation of 3-O-methylglucose and 2-deoxyglucose transport in muscle from normal, nonobese subjects, tissue from morbidly obese subjects, with or without NIDDM, were not responsive to insulin. Maximal 3-O-methylglucose transport was lower in muscle of obese than nonobese subjects. Morbidly obese patients, with or without NIDDM, have a severe state of insulin resistance in glucose transport. The novel in vitro human skeletal muscle preparation herein described should be useful in investigating the mechanism of this insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号