首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Abstract: The chaperone activity and biophysical properties of the 19 amino acid peptide DFVIFLDVKHFSPEDLTVK, identified as the functional element in αA‐crystallin and here referred to as mini‐αA‐crystallin, were studied using light scattering and spectroscopic methods after altering its sequence and enantiomerism. The all‐d and all‐l conformers of the peptide do not show marked differences in their chaperone‐like activity against heat‐induced aggregation of alcohol dehydrogenase at 48°C and dithiothreitol‐induced aggregation of insulin. The retro peptide does not show any secondary structure and is also unable to act like a chaperone. Both all‐l and all‐d peptides lose their β‐sheet conformations, hydrophobicity and chaperone‐like activity at temperatures > 50°C. However, upon cooling, a significant portion of those properties was regained, suggesting temperature‐dependent, reversible structural alterations in the peptides under investigation. We propose that both the hydrophobicity and β‐sheet conformation of the functional element of αA‐crystallin are essential for chaperone‐like activity.  相似文献   

2.
Alzheimer's disease is most common neurodegenerative disorder and is characterized by increased production of soluble amyloid‐β oligomers, the main toxic species predominantly formed from aggregation of monomeric amyloid‐β (Aβ). Increased production of Aβ invokes a cascade of oxidative damages to neurons and eventually leads to neuronal death. This study was aimed to investigate the neuroprotective effects of a β‐sheet breaker α/β‐hybrid peptide (BSBHp) and the underlying mechanisms against Aβ40‐induced neurotoxicity in human neuroblastoma SH‐SY5Y cells. Cells were pretreated with the peptide Aβ40 to induce neurotoxicity. Assays for cell viability, cell membrane damage, cellular apoptosis, generation of reactive oxygen species (ROS), intracellular free Ca2+, and key apoptotic protein levels were performed in vitro. Our results showed that pretreatment with BSBHp significantly attenuates Aβ40‐induced toxicity by retaining cell viability, suppressing generation of ROS, Ca2+ levels, and effectively protects neuronal apoptosis by suppressing pro‐apoptotic protein Bax and up‐regulating antiapoptotic protein Bcl‐2. These results suggest that α/β‐hybrid peptide has neuroprotective effects against Aβ40‐induced oxidative stress, which might be a potential therapeutic agent for treating or preventing neurodegenerative diseases.  相似文献   

3.
Resistance to chemotherapeutic drugs has long been a considerable barrier to successful treatment of many cancers and over‐expression of glutathione S‐transferase P1‐1 is correlated to carcinogenesis and resistance of cancer cells against chemotherapeutic agents. This study throws light on the role of chalcone derivatives, a new class of glutathione S‐transferase P1‐1 inhibitors potentially to overcome glutathione S‐transferase P1‐1‐mediated chemotherapy resistance. Nineteen α‐substituted chalcone derivatives were synthesized and their in vitro inhibitory effects on glutathione S‐transferase P1‐1 were determined. We interestingly found that most of these compounds showed inhibitory effect on glutathione S‐transferase P1‐1 activity. In addition, molecular field‐based similarity analysis provides the necessary three‐dimensional molecular field properties of α, β‐unsaturated carbonyl derivatives to inhibit glutathione S‐transferase P1‐1 activity. Thus, these compounds have great potential to be developed into novel chemotherapeutic sensitizers.  相似文献   

4.
Abstract: In a previous study we designed a 20‐residue peptide able to adopt a significant population of a three‐stranded antiparallel β‐sheet in aqueous solution (de Alba et al. [1999]Protein Sci. 8, 854–865). In order to better understand the factors contributing to β‐sheet folding and stability we designed and prepared nine variants of the parent peptide by substituting residues at selected positions in its strands. The ability of these peptides to form the target motif was assessed on the basis of NMR parameters, in particular NOE data and 13Cα conformational shifts. The populations of the target β‐sheet motif were lower in the variants than in the parent peptide. Comparative analysis of the conformational behavior of the peptides showed that, as expected, strand residues with low intrinsic β‐sheet propensities greatly disfavor β‐sheet folding and that, as already found in other β‐sheet models, specific cross‐strand side chain–side chain interactions contribute to β‐sheet stability. More interestingly, the performed analysis indicated that the destabilization effect of the unfavorable strand residues depends on their location at inner or edge strands, being larger at the latter. Moreover, in all the cases examined, favorable cross‐strand side chain–side chain interactions were not strong enough to counterbalance the disfavoring effect of a poor β‐sheet‐forming residue, such as Gly.  相似文献   

5.
In our previous experiments, we found β‐catenin was highly expressed in the tumor area with high invasive ability and poor prognosis. In this study, we have examined the mechanism by which ERα regulates β‐catenin expression as well as the metastasis ability of hepatocellular cancer HA22T cells. To identify whether the anticancer effect of estrogen and ERα is mediated through suppression of β‐catenin expression, we co‐transfected pCMV‐β‐catenin and ERα into HA22T cells, and determined the cell motility by wound healing, invasion, and migration assays. Results showed that estrogen and/or ERα inhibited β‐catenin gene expression and repressed HA22T cell motility demonstrated that similar data was observed in cells expressing the ERα stable clone. Moreover, we examined the protein‐protein interaction between ERα and β‐catenin by immunostain, co‐immunoprecipitation, and Western blotting. E2 enhanced the binding of ERα with β‐catenin and then triggered β‐catenin to bind with E3 ligase (βTrCP) to promote β‐catenin degradation. Finally by employing systematic ChIP studies, we showed ERα can interact directly with the β‐catenin promoter region following E2 treatment. All our results reveal that estrogen and ERα blocked metastatic function of HA22T cells by modulating GSK3β and βTrCP expression and further enhanced β‐catenin degradation and suppressed its downstream target genes. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 519–529, 2017.  相似文献   

6.
Alzheimer's disease is a neurodegenerative disorder associated with amyloid‐β (Aβ) fibrillation. N‐Methylated amyloid‐β peptides are potent inhibitors of amyloid‐β fibrillation. We investigated the inhibitory effect of N‐Methylated Aβ30–40 peptides on Aβ1–40 fibrillation. N‐Methylated Aβ30–40 peptides affected the fibrillation, and this effect was dependent on the concentration of N‐Methylated peptide and the number and position of N‐Methylated groups. N‐Methylated Aβ30–40 peptides were co‐aggregated with Aβ1–40. Spectroscopic technique was adopted to investigate an origin of the observed dependence. Suppression of thioflavin T (ThT) fluorescence count was correlated with the dissociation constant Kd of monomer–dimer equilibrium of each N‐Methylated Aβ30–40 peptide. Monomeric N‐Methylated peptides decreased ThT fluorescence count during Aβ1–40 fibrillation. Secondary structure content was not largely different between Aβ1–40 fibrils and co‐aggregates. These results suggested that N‐Methylated Aβ30–40 peptides disrupted the regular β‐sheet structure of Aβ1–40 fibrils and affected the ThT fluorescence count. The monomer–dimer equilibrium of N‐Methylated peptides was (partly) responsible for the observed dependence of their inhibitory effect on the concentration of N‐Methylated peptide and the number and position of N‐Methylated groups. Our study provides a hint to design new N‐Methylated inhibitor peptides of fibrillation.  相似文献   

7.
8.
Abstract: Alzheimer's disease, Huntington's disease and prion diseases are part of a growing list of diseases associated with formation of β‐sheet containing fibrils. In a previous publication, we demonstrated that the self‐association of the Alzheimer's β‐amyloid (Aβ) peptide is inhibited by peptides homologous to the central core domain of Aβ, but containing N‐methyl amino acids at alternate positions. When these inhibitor peptides are arrayed in an extended, β‐strand conformation, the alternating position of N‐methyl amino acids gives the peptide two distinct faces, one exhibiting a normal pattern of peptide backbone hydrogen bonds, but the other face having limited hydrogen‐bonding capabilities due to the replacement of the amide protons by N‐methyl groups. Here, we demonstrate, through two‐dimensional NMR and circular dichroic spectroscopy, that a pentapeptide with two N‐methyl amino acids, Aβ16–20m or Ac‐K(Me)LV(Me)FF‐NH2, does indeed have the intended structure of an extended β‐strand. This structure is remarkably stable to changes in solvent conditions and resists denaturation by heating, changes in pH (from 2.5 to 10.5), and addition of denaturants such as urea and guanindine‐HCl. We also show that this peptide, despite its hydrophobic composition, is highly water soluble, to concentrations > 30 mm , in contrast to the nonmethylated congener, Aβ16–20 (Ac‐KLVFF‐NH2). The striking water solubility, in combination with the hydrophobic composition of the peptide, suggested that the peptide might be able to pass spontaneously through cell membranes and model phospholipid bilayers such as unilamellar vesicles. Thus, we also demonstrate that this peptide is indeed able to pass spontaneously through both synthetic phospholipid bilayer vesicles and cell membranes. Characterization of the biophysical properties of the Aβ16–20m peptide may facilitate the application of this strategy to other systems as diverse as the HIV protease and chemokines, in which there is dimerization through β‐strand domains.  相似文献   

9.
The use of peptides as drugs in pharmaceutical applications is hindered by their susceptibility to proteolysis and therefore low bioavailability. β‐Peptides that contain an additional methylene group in the backbone, are gaining recognition from a pharmaceutical stand point as they are considerably more resilient to proteolysis and metabolism. Recently, we reported two new classes of β ‐peptides, β 3‐ and β2‐peptides derived from l ‐aspartic acid and l ‐diaminopropionic acid, respectively. Here, we report the proteolytic stability of these β‐peptidic compounds and a mixed α /β‐peptide against three enzymes (pronase, trypsin and elastase), as well as, human serum. The stability of these peptides was compared to an α‐peptide. Peptides containing β‐linkages were resistant to all conditions. The mixed α /β‐peptide, however, exhibited proteolysis in the presence of trypsin and pronase but not elastase. The rate of degradation of the mixed α /β‐peptide was slower than that would be expected for an α‐peptide. In addition, these β‐peptides were not toxic to HeLa and COS‐1 cell lines as observed by MTT cytotoxicity assay. These results expand the scope of mixed α /β‐peptides containing β‐amino acids or small β‐peptide fragments as therapeutic peptides.  相似文献   

10.
Abstract: During the manufacture of a proprietary peptide drug substance a new impurity appeared unexpectedly. Investigation of its chemical structure established the impurity as a β‐Ala insertion mutant of the mother peptide. The source of the β‐Ala was identified as contamination of the Fmoc‐Ala‐OH raw material with Fmoc‐β‐Ala‐Ala‐OH. Further studies also demonstrated the presence of β‐Ala in other Fmoc‐amino acids, particularly in Fmoc‐Arg(Pbf)‐OH. In this case, it was due to the presence of both Fmoc‐β‐Ala‐OH and Fmoc‐β‐Ala‐Arg(Pbf)‐OH. It is concluded that β‐Ala contamination of Fmoc‐amino acid derivatives is a general and hitherto unrecognized problem to suppliers of Fmoc‐amino acid derivatives. The β‐Ala is often present as Fmoc‐β‐Ala‐OH and/or as a dipeptide, Fmoc‐β‐Ala‐amino acid‐OH. In collaboration with the suppliers, new specifications were introduced, recognizing the presence of β‐Ala‐related impurities in the raw materials and limiting them to acceptable levels. The implementation of these measures has essentially eliminated β‐Ala contamination as a problem in the manufacture of the drug substance.  相似文献   

11.
Abstract: A homologous series of nonapeptides and their acetylated versions were successfully prepared using solid‐phase synthetic techniques. Each nonapeptide was rich in α,α‐dialkylated amino acids [one 4‐aminopiperidine‐4‐carboxylic acid (Api) and six α‐aminoisobutyric acid (Aib) residues] and also included lysines or lysine analogs (two residues). The incorporation of the protected dipeptide 9‐fluorenylmethyloxycarbonyl (Fmoc)‐Aib‐Aib‐OH improved the purity and overall yields of these de novo designed peptides. The helix preference of each nonapeptide was investigated in six different solvent environments, and each peptide's antimicrobial activity and cytotoxicity were studied. The 310‐helical, amphipathic design of these peptides was born out most prominently in the N‐terminally acetylated peptides. Most of the peptides exhibited modest activity against Escherichia coli and no activity against Staphylococcus aureus. The nonacetylated peptides (concentrations ≤100 μm ) and the acetylated peptides (concentrations ≤200 μm ) did not exhibit any significant cytotoxicity with normal (nonactivated) murine macrophages.  相似文献   

12.
13.
1. It is known that the α4‐subunit is likely to occur in the brain predominantly in α4β3δ receptors at extrasynaptic sites. Recent studies have revealed that the α1‐, α4‐, γ2‐ and δ‐subunits may colocalize extrasynaptically in dentate granule cells of the hippocampus. In the present study, we characterized a series of recombinant GABAA receptors containing human (H) and rat (R) α14‐, β23‐ and γ2S/δ‐subunits in Xenopus oocytes using the two‐electrode voltage‐clamp technique. 2. Both Hα1β3δ and Hα4β3γ2S receptors were sensitive to activation by GABA and pentobarbital. Contrary to earlier findings that the α4β3δ combination was more sensitive to agonist action than the α4β3γ2S receptor, we observed extremely small GABA‐ and pentobarbital‐activated currents at the wild‐type Hα4β3δ receptor. However, GABA and pentobarbital activated the wild‐type Rα4β3δ receptor with high potency (EC50 = 0.5 ± 0.7 and 294 ± 5 μmol/L, respectively). 3. Substituting the Hα4 subunit with Rα4 conferred a significant increase in activation on the GABA and pentobarbital site in terms of reduced EC50 and increased Imax. When the Hα4 subunit was combined with the Rβ3 and Rδ subunit in a heteropentameric form, the amplitude of GABA‐ and pentobarbital‐activated currents increased significantly compared with the wild‐type Hα4β3δ receptor. 4. Thus, the results indicate that the Rα4β3δ, Hα1β3δ and Hα4β3γ2S combinations may contribute to functions of extrasynaptic GABAA receptors. The presence of the Rα4 subunit at recombinant GABAA receptors containing the δ‐subunit is a strong determinant of agonist action. The recombinant Hα4β3δ receptor is a less sensitive subunit composition in terms of agonist activation.  相似文献   

14.
After more than 80 years of development, β‐lactam drugs have become the most widely used high‐efficiency, low‐toxic broad‐spectrum antibacterial drugs. However, with the widespread use and even abuse of those drugs, the resistance of major pathogens to β‐lactam drugs has increased over years, which has become a thorny problem to the public health. A common mechanism of the resistance to β‐lactams is the producing of β‐lactamases, which can hydrolyze the β‐lactam ring and inactivate these drugs. Metallo‐β‐lactamases (MBLs) are one kind of β‐lactamases that require metal ions for their catalytic activities. Although it is a well‐known strategy to recover the efficacy of β‐lactams by the combination of β‐lactamase inhibitors, there are still no MBL inhibitors that can be used in clinical practice. Therefore, it is urgent to develop MBL inhibitors. This review outlines the currently discovered MBL inhibitors with an emphasis on various strategies and approaches taken to discover MBL inhibitors, which may lead to diverse classes of inhibitors. Recent progress, particularly new screening methods, and the rational design of potent MBL inhibitors are discussed.  相似文献   

15.
Abstract: The characterization of a four‐stranded β‐sheet structure in a designed 26‐residue peptide Beta‐4 is described. The sequence of Beta‐4 (Arg‐Gly‐Thr‐Ile‐Lys‐Dpro‐Gly‐Ile‐Thr‐Phe‐Ala‐DPro‐Ala‐Thr‐Val‐Leu‐Phe‐Ala‐Val‐DPro‐Gly‐Lys‐Thr‐Leu‐Tyr‐Arg) was chosen such that three strategically positioned DPro‐Xxx segments nucleate type II′β‐turns, which facilitate hairpin extension. A four‐stranded β‐sheet structure is determined in methanol from 500 MHz 1H NMR data using a total of 100 observed NOEs, 11 dihedral restraints obtained from vicinal JCαH‐NH values and 10 hydrogen bonding constraints obtained from H/D exchange data. The observed NOEs provide strong evidence for a stable four‐stranded sheet and a nonpolar cluster involving Ile8, Phe10, Val15 and Phe17. Circular dichroism studies in water–methanol mixtures provide evidence for melting of the β‐sheet structure at high water concentrations. NMR analysis establishes that the four‐stranded sheet in Beta‐4 is appreciably populated in 50% (v/v) aqueous methanol. In water, the peptide structure is disorganized, although the three β‐turn nuclei appear to be maintained.  相似文献   

16.
Objectives α2‐Adrenergic and μ‐opioid receptors belong to the rhodopsin family of G‐protein coupled receptors and mediate antinociceptive effects via similar signal transduction pathways. Previous studies have revealed direct functional interactions between both receptor systems including synergistic and additive effects. To evaluate underlying mechanisms, we have studied whether morphine and fentanyl interacted with α2‐adrenoceptor‐subtypes in mice lacking one individual α2‐adrenoceptor‐subtype (α2‐adrenoceptor knockout). Methods Opioid interaction with α2‐adrenoceptors was investigated by quantitative receptor autoradiography in brain slices of α2A‐, α2B‐ or α2C‐adrenoceptor deficient mice. Displacement of the radiolabelled α2‐adrenoceptor agonist [125I]paraiodoclonidine from α2‐adrenoceptors in different brain regions by increasing concentrations of morphine, fentanyl and naloxone was analysed. The binding affinity of both opioids to α2‐adrenoceptor subtypes in different brain regions was quantified. Key findings Morphine but not fentanyl or naloxone provoked dose‐dependent displacement of [125I]paraiodoclonidine from all α2‐adrenoceptor subtypes in the brain regions analysed. Binding affinity was highest in cortex, medulla oblongata and pons of α2A‐adrenoceptor knockout mice. Conclusions Our results indicated that morphine interacted with α2‐adrenoceptors showing higher affinity for the α2B and α2C than for the α2A subtype. In contrast, fentanyl and naloxone did not show any relevant affinity to α2‐adrenoceptors. This effect may have an impact on the pharmacological actions of morphine.  相似文献   

17.
1 It has been suggested that cholestasis accompanied with changes in autonomic balance and hyporesponsiveness in muscarinic and adrenergic receptors of some organs, e.g. cardiovascular system. Increased plasma levels of epinephrine and norepinephrine has been shown during cholestasis suggesting augmented activity of sympathetic nervous system. In this study we evaluate both α1 and α2 responsiveness in isolated rat vas deferens, as a tissue with rich adrenergic innervations. 2 Epididymal and prostatic halves of vas deferens responsiveness have been studied to phenylephrine and clonidine respectively in three groups of un‐operated, sham‐operated (sham), and bile duct‐ligated (BDL) rats. 3 Our results indicate that in vas deferens of BDL animals, the concentration‐response curve of both phenylephrine and clonidine shifted to rightward compared to control group, while the position of concentration‐response curve of sham group did not change significantly (P > 0.05). EC50 of phenylephrine and IC50 of clonidine were increased showing a decreased responsiveness of tissue to phenylephrine (P < 0.05) and clonidine (P < 0.001) in BDL rats. 4 In this study, both subtype of α‐adrenoceptors (α1 and α2) has been studied in cholestatic rat vas deference. Our results showed that cholestasis induce hyporesponsiveness to phenylephrine and clonidine. These results are consistent with previous reports, suggesting the hyporesponsiveness of α1‐adrenoceptors in pulmonary artery and papillary muscle and mesenteric beds. Our conclusion is that the cholestasis induces hyporesponsiveness to phenylephrine and clonidine in epididymal (α1‐adrenoceptors) and prostatic (α2‐adrenoceptors) halves of rat vas deferens respectively. Although the logical explanation to this hyporesponsiveness is the down regulation but it has been suggested that it is not because of down regulation.  相似文献   

18.
Although it is recognized that α1‐adrenoceptors are coupled to diverse intracellular signalling pathways, its primary transduction mechanisms are evoked by activating phospholipase C in the cell membrane through Gαq/11, resulting in production of inositol 1,4,5‐trisphosphate and diacylglycerol. However, there have been few studies that indicate directly the involvement of Gαq/11 proteins in this signalling pathway in the central nervous system. In the current study, we tried to pharmacologically characterize (?)‐adrenaline‐stimulated [35S]GTPγS binding to Gαq/11 in rat brain membranes. Functional activation of Gαq/11 coupled to α1‐adrenoceptor was investigated by using [35S]GTPγS binding/immunoprecipitation assay in the membranes prepared from rat cerebral cortex, hippocampus, and striatum. The specific [35S]GTPγS binding to Gαq/11 was stimulated by (?)‐adrenaline in a concentration‐dependent and saturable manner in rat cerebral cortical membranes. In hippocampal or striatal membranes, the stimulatory effects of (?)‐adrenaline were scarce. The effect of (?)‐adrenaline was potently inhibited by prazosin, a potent and selective α1‐adrenoceptor antagonist, but not by yohimbine, a selective α2‐adrenoceptor antagonist. The response was mimicked by cirazoline, but not by R(?)‐phenylephrine. Although oxymetazoline also stimulated the specific [35S]GTPγS binding to Gαq/11 as an apparent “super‐agonist”, detailed pharmacological characterization revealed that its agonistic properties in this experimental system were derived from off‐target effects on 5‐HT2A receptors, but not via α1‐adrenoceptors. In conclusion, functional coupling of α1‐adrenoceptors to Gαq/11 proteins are detectable in rat brain membranes by means of [35S]GTPγS binding/immunoprecipitation assay. It is necessary to interpret the experimental data with caution when oxymetazoline is included as an agonist at α1‐adrenoceptors.  相似文献   

19.
Abstract: Rs‐AFPs are antifungal proteins, isolated from radish (Raphanus sativus) seed or leaves, which consist of 50 or 51 amino acids and belong to the plant defensin family of proteins. Four highly homologous Rs‐AFPs have been isolated (Rs‐AFP1–4). The structure of Rs‐AFP1 consists of three β‐strands and an α‐helix, and is stabilized by four cystine bridges. Small peptides deduced from the native sequence, still having biological activity, are not only important tools to study structure?function relationships, but may also constitute a commercially interesting target. In an earlier study, we showed that the antifungal activity of Rs‐AFP2 is concentrated mainly in the β2?β3 loop. In this study, we synthesized linear 19‐mer peptides, spanning the entire β2?β3 loop, that were found to be almost as potent as Rs‐AFP2. Cysteines, highly conserved in the native protein, are essential for maintaining the secondary structure of the protein. Surprisingly, in the 19‐mer loop peptides, cysteines can be replaced by α‐aminobutyric acid, which even improves the antifungal potency of the peptides. Analogous cyclic 19‐mer peptides, forced to adopt a hairpin structure by the introduction of one or two non‐native disulfide bridges, were also found to possess high antifungal activity. The synthetic 19‐mer peptides, like Rs‐AFP2 itself, cause increased Ca2+ influx in pregerminated fungal hyphae.  相似文献   

20.
Isoeugenodilol, derived from isoeugenol, was investigated under in vivo and in vitro conditions. Isoeugenodilol (0.1, 0.5, 1.0, and 3.0 mg kg–1, i.v.) produced dose‐dependent hypotensive and bradycardia responses in pentobarbital‐anesthetized Wistar rats. Isoeugenodilol (0.5 mg kg–1, i.v.) also markedly inhibited both the tachycardia effects induced by (‐) isoproterenol and arterial pressor responses induced by phenylephrine. A single oral administration of isoeugenodilol at doses of 10, 30, and 100 mg kg–1 dose‐dependently reduced blood pressure, with a decrease in heart rate in conscious spontaneously hypertensive rats (SHRs). In the isolated Wistar rat right atria, left atria, and guinea pig tracheal strips, isoeugenodilol competitively antagonized the (‐) isoproterenol‐induced positive chronotropic effects, inotropic effects, and tracheal relaxation effects in a concentration‐dependent manner. The parallel shift to the right of the concentration–response curve of (‐) isoproterenol suggested that isoeugenodilol was a β12‐adrenoceptor competitive antagonist. The apparent pA2 values were 7.33 ± 0.12 in the right atria, 7.80 ± 0.09 in the left atria, and 7.26 ± 0.11 in the trachea, indicating that isoeugenodilol was a nonselective β‐adrenoceptor blocker. In thoracic aorta experiments, isoeugenodilol also produced a competitive antagonism of norepinephrine‐induced contraction with a pA2 value of 7.47 ± 0.45. In isolated atria of reserpinized rats, cumulative additions of isoeugenodilol and propranolol produced significantly cardiodepressant responses at high concentrations (10–5 M) and were without intrinsic sympathomimetic activity (ISA). In isolated rat thoracic aorta, isoeugenodilol more potently relaxed the contractions induced by norepinephrine (3 × 10–6 M) than those by high K+ (75 mM). The vasorelaxant effects of isoeugenodilol on norepinephrine‐induced contractions were attenuated by pretreatment with tetraethylammonium (TEA) and glibenclamide, implying the involvement of K+ channel opening. In addition, isoeugenodilol inhibited norepinephrine‐induced biphasic contraction; it affected the fast phase significantly more than the slow phase. Furthermore, the binding characteristics of isoeugenodilol and various β‐adrenoceptor antagonists were evaluated in [3H]CGP‐12177 binding to rat ventricle and lung tissues and [3H]prazosin binding to brain membranes. The ranking order of inhibition for [3H]CGP‐12177 binding on β‐adrenoceptor was propranolol > labetalol > isoeugenodilol, and that for [3H]prazosin binding to α‐adrenoceptors was isoeugenodilol > labetalol. Furthermore, isoeugenodilol inhibited lipid peroxidation induced by Fe2+ and ascorbic acid with IC50 of 0.74 ± 0.03 mM, indicating that it possesses the antioxidant activity inherent in isoeugenol. In conclusion, isoeugenodilol was found to be a new generation α/β‐adrenoceptor antagonist with vasorelaxant activity by inhibiting Ca2+ channel, receptor‐mediated Ca2+ mobilization and by K+ channel opening, and to have additional potentially antioxidant effects. Drug Dev. Res. 51:29–42, 2000. © 2000 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号