首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of behavioral, electrophysiological, and molecular biochemical experiments are reviewed indicating that when animals learn hippocampus-dependent tasks, output neurons in the CA1 and CA3 hippocampal subfields show reductions in the slow, post-burst afterhyperpolarization (AHP). The slow AHP is mediated by an apamin-insensitive calcium-activated potassium current. A reduction in the slow AHP makes hippocampal neurons more excitable and facilitates NMDA receptor-mediated response and temporal summation. During normal aging and in a mouse model of Alzheimer's disease (AD), the slow AHP is increased, making neurons less excitable and making learning more difficult. The subgroup of aging animals that are able to learn demonstrates the capacity to increase neuronal excitability by reducing the size of the slow AHP. Similarly, in a mouse model of AD, mice that are able to learn normally after a genetic alteration have a normal capacity for increasing hippocampal neuron excitability by reducing their slow AHP. We suggest that reduction in the slow AHP is basic to learning in young and aging animals. Inability to modulate the slow AHP contributes to learning deficits that occur during aging and early stages of AD.  相似文献   

2.
Enhanced intrinsic neuronal excitability of hippocampal pyramidal neurons via reductions in the postburst afterhyperpolarization (AHP) has been hypothesized to be a biomarker of successful learning. This is supported by considerable evidence that pharmacologic enhancement of neuronal excitability facilitates learning. However, it has yet to be demonstrated that pharmacologic reduction of neuronal excitability restricted to the hippocampus can retard acquisition of a hippocampus-dependent task. Thus, the present study was designed to address this latter point using a small conductance potassium (SK) channel activator NS309 focally applied to the dorsal hippocampus. SK channels are important contributors to intrinsic excitability, as measured by the medium postburst AHP. NS309 increased the medium AHP and reduced excitatory postsynaptic potential width of CA1 neurons in vitro. In vivo, NS309 reduced the spontaneous firing rate of CA1 pyramidal neurons and impaired trace eyeblink conditioning in rats. Conversely, trace eyeblink conditioning reduced levels of SK2 channel mRNA and protein in the hippocampus. Therefore, the present findings indicate that modulation of SK channels is an important cellular mechanism for associative learning and further support postburst AHP reductions in hippocampal pyramidal neurons as a biomarker of successful learning.  相似文献   

3.
Metrifonate, a cholinesterase inhibitor, has been shown to enhance learning in aging rabbits and rats, and to alleviate the cognitive deficits observed in Alzheimer's disease patients. We have previously determined that bath application of metrifonate reduces the spike frequency adaptation and postburst afterhyperpolarization (AHP) in rabbit CA1 pyramidal neurons in vitro using sharp electrode current-clamp recording. The postburst AHP and accommodation observed in current clamp are the result of four slow outward potassium currents (sI(AHP), I(AHP), I(M), and I(C)) and the hyperpolarization activated mixed cation current, I(h). We recorded from visually identified CA1 hippocampal pyramidal neurons in vitro using whole cell voltage-clamp technique to better isolate and characterize which component currents of the AHP are affected by metrifonate. We observed an age-related enhancement of the slow component of the AHP tail current (sI(AHP)), but not of the fast decaying component of the AHP tail current (I(AHP), I(M), and I(C)). Bath perfusion of metrifonate reduced sI(AHP) at concentrations that cause a reduction of the AHP and accommodation in current-clamp recordings, with no apparent reduction of I(AHP), I(M), and I(C). The functional consequences of metrifonate administration are apparently mediated solely through modulation of the sI(AHP).  相似文献   

4.
Watermaze learning enhances excitability of CA1 pyramidal neurons   总被引:7,自引:0,他引:7  
The dorsal hippocampus is crucial for learning the hidden-platform location in the hippocampus-dependent, spatial watermaze task. We have previously demonstrated that the postburst afterhyperpolarization (AHP) of hippocampal pyramidal neurons is reduced after acquisition of the hippocampus-dependent, temporal trace eyeblink conditioning task. We report here that the AHP and one or more of its associated currents (IAHP and/or sIAHP) are reduced in dorsal hippocampal CA1 pyramidal neurons from rats that learned the watermaze task as compared with neurons from control rats. This reduction was a learning-induced phenomenon as the AHP of CA1 neurons from rats that failed to learn the hidden-platform location was similar to that of neurons from control rats. We propose that reduction of the AHP in pyramidal neurons in regions crucial for learning is a cellular mechanism of learning that is conserved across species and tasks.  相似文献   

5.
Accumulations of β-amyloid (Aβ) contribute to neurological deficits associated with Alzheimer's disease (AD). The effects of Aβ on basal neuronal excitability and learning-related AHP plasticity were examined using whole-cell recordings from hippocampal neurons in the 5XFAD mouse model of AD. A robust increase in Aβ42 (and elevated levels of Aβ38-40) in naïve 5XFAD mice was associated with decreased basal neuronal excitability, evidenced by a select increase in Ca2+-sensitive afterhyperpolarization (AHP). Moreover, trace fear deficits observed in a subset of 5XFAD weak-learner mice were associated with a greater enhancement of the AHP in neurons, as compared to age-matched 5XFAD learner and 5XFAD naïve mice. Importantly, learning-related plasticity of the AHP remained intact in a subset of 5XFAD mice that learned trace fear conditioning to a set criterion. We show that APP-PS1 mutations enhance Aβ and disrupt basal excitability via a Ca2+-dependent enhancement of the AHP, and suggest disruption to learning-related modulation of intrinsic excitability resulted, in part, from altered cholinergic modulation of the AHP in the 5XFAD mouse model of AD (170 of 170).  相似文献   

6.
In humans, mutations in the KCNQ2 or KCNQ3 potassium-channel genes are associated with an inherited epilepsy syndrome. We have studied the contribution of KCNQ/M-channels to the control of neuronal excitability by using transgenic mice that conditionally express dominant-negative KCNQ2 subunits in brain. We show that suppression of the neuronal M current in mice is associated with spontaneous seizures, behavioral hyperactivity and morphological changes in the hippocampus. Restriction of transgene expression to defined developmental periods revealed that M-channel activity is critical to the development of normal hippocampal morphology during the first postnatal weeks. Suppression of the M current after this critical period resulted in mice with signs of increased neuronal excitability and deficits in hippocampus-dependent spatial memory. M-current-deficient hippocampal CA1 pyramidal neurons showed increased excitability, reduced spike-frequency adaptation, attenuated medium afterhyperpolarization and reduced intrinsic subthreshold theta resonance. M channels are thus critical determinants of cellular and neuronal network excitability, postnatal brain development and cognitive performance.  相似文献   

7.
Pyramidal neurons in the piriform cortex from olfactory-discrimination-trained rats have reduced postburst afterhyperpolarization (AHP), for 3 days after learning, and are thus more excitable during this period. Such AHP reduction is caused by decreased conductance of one or more of the calcium-dependent potassium currents, I(AHP) and sI(AHP), that mediate the medium and slow AHPs. In this study, we examined which potassium current is reduced by learning and how the effect of noradrenalin (NE) on neuronal excitability is modified by such reduction. The small conductance (SK) channels inhibitor, apamin, that selectively blocks I(A)(HP), reduced the AHP in neurons from trained, na?ve, and pseudotrained rats to a similar extent, thus maintaining the difference in AHP amplitude between neurons from trained rats and controls. In addition, the protein expression level of the SK1, SK2, and SK3 channels was also similar in all groups. NE, which was shown to enhance I(AHP) while suppressing (S)I(AHP), reduced the AHP in neurons from controls but enhanced the AHP in neurons from trained rats. Our data show that learning-induced enhancement of neuronal excitability is not the result of reduction in the I(AHP) current. Thus it is probably mediated by reduction in conductance of the other calcium-dependent potassium current, sI(AHP). Consequently, the effect of NE on neuronal excitability is reversed. We propose that the change in the effect of NE after learning may act to counterbalance learning-induced hyperexcitability and preserve the piriform cortex ability to subserve olfactory learning.  相似文献   

8.
Hemond P  Jaffe DB 《Neuroscience》2005,135(2):413-420
In hippocampal pyramidal neurons from aged animals voltage-gated Ca2+ entry and the slow, post-burst afterhyperpolarization are enhanced. As a result, there is a decrease in neuronal excitability and, in turn, an alteration in synaptic plasticity. Restricting the caloric intake of a rodent is a well-known paradigm for increasing lifespan and ameliorating a number of neurodegenerative features of aging, including deficits in synaptic plasticity and cognition. Here we show in rat CA1 pyramidal neurons from aged animals (18-20 months old) that a restricted diet prevents the enhancement of dendritic spike-mediated Ca2+ accumulation. In contrast, no significant changes in the rates of Ca2+ recovery were observed suggesting that Ca2+ clearance mechanisms are not affected by aging or caloric restriction. Lastly, we found that caloric restriction also prevented the aging-associated increase in the slow, post-burst afterhyperpolarization. Our results suggest that caloric restriction-sensitive changes in Ca2+ accumulation and membrane excitability may in part account for the protective effects of dietary restriction on synaptic plasticity and learning deficits in aged animals.  相似文献   

9.
A decrease in the excitability of CA1 pyramidal neurons contributes to the age related decrease in hippocampal function and memory decline. Decreased neuronal excitability in aged neurons can be observed as an increase in the Ca(2+)- activated K(+)- mediated post burst afterhyperpolarization (AHP). In this study, we demonstrate that the slow component of AHP (sAHP) in aged CA1 neurons (aged-sAHP) is decreased ~50% by application of the reducing agent dithiothreitol (DTT). The DTT-mediated decrease in the sAHP was age specific, such that it was observed in CA1 pyramidal neurons of aged (20-25 mo), but not young (6-9 mo) F344 rats. The effect of DTT on the aged-sAHP was blocked following depletion of intracellular Ca(2+) stores (ICS) by thapsigargin or blockade of ryanodine receptors (RyRs) by ryanodine, suggesting that the age-related increase in the sAHP was due to release of Ca(2+) from ICS through redox sensitive RyRs. The DTT-mediated decrease in the aged-sAHP was not blocked by inhibition of L-type voltage gated Ca(2+) channels (L-type VGCC), inhibition of Ser/Thr kinases, or inhibition of the large conductance BK potassium channels. The results add support to the idea that a shift in the intracellular redox state contributes to Ca(2+) dysregulation during aging.  相似文献   

10.
A loss of hippocampal neurons and synapses had been considered a hallmark of normal aging and, furthermore, to be a substrate of age-related learning and memory deficits. Recent stereological studies in humans have shown that only a relatively minor neuron loss occurs with aging and that this loss is restricted to specific brain regions, including hippocampal subregions. Here, we investigate these age-related changes in C57BL/6J mice, one of the most commonly used laboratory mouse strains. Twenty-five mice (groups at 2, 14, and 28–31 months of age) were assessed for Morris water-maze performance, and modern stereological techniques were used to estimate total neuron and synaptophysin-positive bouton number in hippocampal subregions at the light microscopic level. Results revealed that performance in the water maze was largely maintained with aging. No age-related decline was observed in number of dentate gyrus granule cells or CA1 pyramidal cells. In addition, no age-related change in number of synaptophysin-positive boutons was observed in the molecular layer of the dentate gyrus or CA1 region of hippocampus. We observed a significant correlation between dentate gyrus synaptophysin-positive bouton number and water-maze performance. These results demonstrate that C57BL/6J mice do not exhibit major age-related deficits in spatial learning or hippocampal structure, providing a baseline for further study of mouse brain aging.  相似文献   

11.
Cognitive flexibility is critical for survival and reflects the malleability of the central nervous system (CNS) in response to changing environmental demands. Normal aging results in difficulties modifying established behaviors, which may involve medial prefrontal cortex (mPFC) dysfunction. Using extinction of conditioned fear in rats to assay cognitive flexibility, we demonstrate that extinction deficits reminiscent of mPFC dysfunction first appear during middle age, in the absence of hippocampus-dependent context deficits. Emergence of aging-related extinction deficits paralleled a redistribution of neuronal excitability across two critical mPFC regions via two distinct mechanisms. First, excitability decreased in regular spiking neurons of infralimbic-mPFC (IL), a region whose activity is required for extinction. Second, excitability increased in burst spiking neurons of prelimbic-mPFC (PL), a region whose activity hinders extinction. Experiments using synaptic blockers revealed that these aging-related differences were intrinsic. Thus, changes in IL and PL intrinsic excitability may contribute to cognitive flexibility impairments observed during normal aging.  相似文献   

12.
Effects of age on immunohistochemical changes in the mouse hippocampus   总被引:9,自引:0,他引:9  
We investigated the age-related changes in neuronal cell death and synaptophysin of the hippocampal CA1 sector in mice using immunohistochemistry. Microtubule-associated protein 2a, b (MAP2) and synaptophysin immunoreactivity was measured in 2-, 8-, 18-, 42- and 59-week-old mice. MAP2 immunoreactivity was unchanged in the hippocampal CA1 sector up to 42 weeks after birth. In 59-week-old mice, however, a significant decrease in MAP2 immunoreactivity was observed in the hippocampal CA1 sector. Total number of synaptophysin-positive boutons was also unchanged in the hippocampal CA1 sector up to 42 weeks of birth. In 59-week-old mice, however, a significant increase in synaptophysin-positive boutons was observed in the hippocampal CA1 sector. These results demonstrate that dendrites and axons in the hippocampal CA1 neurons are particularly susceptible to ageing processes. In contrast, a marked increase in synaptophysin-positive boutons was found in the hippocampal CA1 sector of aged mice. These findings suggest that increase in synaptophysin-positive boutons may play a role in the maintenance of the structural components in the hippocampal CA1 sector of aged mice although most postsynaptic CA1 pyramidal neurons are generated. Thus, our findings provide further valuable information on age-related neurodegeneration and deficits in hippocampus-dependent memory and synaptic plasticity.  相似文献   

13.
The aging hippocampus: a multi-level analysis in the rat   总被引:5,自引:0,他引:5  
In the current experiment we conducted a multi-level analysis of age-related characteristics in the hippocampus of young adult (3 months), middle-aged (12 months), and old (24 months) Fisher 344xBrown Norway hybrid (FBNF1) rats. We examined the relationships between aging, hippocampus, and memory using a combination of behavioral, non-invasive magnetic resonance imaging and spectroscopy, and postmortem neuroanatomical measures in the same rats. Aging was associated with functional deficits on hippocampus-dependent memory tasks, accompanied by structural alterations observed both in vivo (magnetic resonance imaging-hippocampal volume) and postmortem (dentate gyrus neuronal density and neurogenesis). Neuronal metabolic integrity, assessed by levels of N-acetylaspartate with magnetic resonance spectroscopy, was however, preserved. Further, our results suggest that neurogenesis (doublecortin) seems to be related to both performance deficits on hippocampus-dependent tasks and hippocampal volume reduction. The observed pattern of age-related alterations closely resembles that previously reported in humans and suggests FBNF1 rats to be a useful model of normal human aging.  相似文献   

14.
The slow Ca2+-activated K+ current (sI(AHP)) plays a critical role in regulating neuronal excitability, but its modulation during abnormal bursting activity, as in epilepsy, is unknown. Because synaptic transmission is enhanced during epilepsy, we investigated the synaptically mediated regulation of the sI(AHP) and its control of neuronal excitability during epileptiform activity induced by 4-aminopyridine (4AP) or 4AP+Mg2+-free treatment in rat hippocampal slices. We used electrophysiological and photometric Ca2+ techniques to analyze the sI(AHP) modifications that parallel epileptiform activity. Epileptiform activity was characterized by slow, repetitive, spontaneous depolarizations and action potential bursts and was associated with increased frequency and amplitude of spontaneous excitatory postsynaptic currents and a reduced sI(AHP.) The metabotropic glutamate receptor (mGluR) antagonist (S)-alpha-methyl-4-carboxyphenylglycine did not modify synaptic activity enhancement but did prevent sI(AHP) inhibition and epileptiform discharges. The mGluR-dependent regulation of the sI(AHP) was not caused by modulated intracellular Ca2+ signaling. Histamine, isoproterenol, and (+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid reduced the sI(AHP) but did not increase synaptic activity and failed to evoke epileptiform activity. We conclude that 4AP or 4AP+Mg-free-induced enhancement of synaptic activity reduced the sI(AHP) via activation of postsynaptic group I/II mGluRs. The increased excitability caused by the lack of negative feedback provided by the sI(AHP) contributes to epileptiform activity, which requires the cooperative action of increased synaptic activity.  相似文献   

15.
The advantages of using isolated cells have led us to develop short-term cultures of hippocampal pyramidal cells, which retain many of the properties of cells in acute preparations and in particular the ability to generate afterhyperpolarizations after a train of action potentials. Using perforated-patch recordings, both medium and slow afterhyperpolarization currents (mI(AHP) and sI(AHP), respectively) could be obtained from pyramidal cells that were cultured for 8-15 days. The sI(AHP) demonstrated the kinetics and pharmacologic characteristics reported for pyramidal cells in slices. In addition to confirming the insensitivity to 100 nM apamin and 1 mM TEA, we have shown that the sI(AHP) is also insensitive to 100 nM charybdotoxin but is inhibited by 100 microM D-tubocurarine. Concentrations of nifedipine (10 microM) and nimodipine (3 microM) that maximally inhibit L-type calcium channels reduced the sI(AHP) by 30 and 50%, respectively. However, higher concentrations of nimodipine (10 microM) abolished the sI(AHP), which can be partially explained by an effect on action potentials. Both nifedipine and nimodipine at maximal concentrations were found to reduce the HVA calcium current in freshly dissociated neurons to the same extent. The N-type calcium channel inhibitor, omega-conotoxin GVIA (100 nM), irreversibly inhibited the sI(AHP) by 37%. Together, omega-conotoxin (100 nM) and nifedipine (10 microM) inhibited the sI(AHP) by 70%. 10 microM ryanodine also reduced the sI(AHP) by 30%, suggesting a role for calcium-induced calcium release. It is concluded that activation of the sI(AHP) in cultured hippocampal pyramidal cells is mediated by a rise in intracellular calcium involving multiple pathways and not just entry via L-type calcium channels.  相似文献   

16.
Dysregulation of intracellular calcium homeostasis has been linked to neuropathological symptoms observed in aging and age-related disease. Alterations in the distribution and relative frequency of calcium-binding proteins (CaBPs), which are important in regulating intracellular calcium levels, may contribute to disruption of calcium homeostasis. Here we examined the laminar distribution of three CaBPs in rat perirhinal cortex (PR) as a function of aging. Calbindin-D28k (CB), parvalbumin (PV), and calretinin (CR) were compared in adult (4 mo.), middle-aged (13 mo.) and aged (26 mo.) rats. Results show an aging-related and layer-specific decrease in the number of CB-immunoreactive (-ir) neurons, beginning in middle-aged animals. Dual labeling suggests that the age-related decrease in CB reflects a decrease in neurons that are not immunoreactive for the inhibitory neurotransmitter GABA. In contrast, no aging-related differences in PV- or CR-immunoreactivity were observed. These data suggest that selective alterations in CB-ir neurons may contribute to aging-related learning and memory deficits in tasks that depend upon PR circuitry.  相似文献   

17.
1. Cellular properties were studied before and after bath application of the dihydropyridine L-type calcium channel antagonist nimodipine in aging and young rabbit hippocampal CA1 pyramidal cells in vitro. Various concentrations of nimodipine, ranging from 10 nM to 10 microM, were tested to investigate age- and concentration-dependent effects on cellular excitability. Drug studies were performed on a population of neurons at similar holding potentials to equate voltage-dependent effects. The properties studied under current-clamp conditions included steady-state current-voltage relations (I-V), the amplitude and integrated area of the postburst afterhyperpolarization (AHP), accommodation to a prolonged depolarizing current pulse (spike frequency adaptation), and single action-potential waveform characteristics following synaptic activation. 2. Numerous aging-related differences in cellular properties were noted. Aging hippocampal CA1 neurons exhibited significantly larger postburst AHPs (both the amplitude and the integrated area were enhanced). Aging CA1 neurons also exhibited more hyperpolarized resting membrane potentials with a concomitant decrease in input resistance. When cells were grouped to equate resting potentials, no differences in input resistance were noted, but the AHPs were still significantly larger in aging neurons. Aging CA1 neurons also fired fewer action potentials during a prolonged depolarizing current injection than young CA1 neurons. 3. Nimodipine decreased both the peak amplitude and the integrated area of the AHP in an age- and concentration-dependent manner. At concentrations as low as 100 nM, nimodipine significantly reduced the AHP in aging CA1 neurons. In young CA1 neurons, nimodipine decreased the AHP only at 10 microM. No effects on input resistance or action-potential characteristics were seen. 4. Nimodipine increased excitability in an age- and concentration-dependent manner by decreasing spike frequency accommodation (increasing the number of action potentials during prolonged depolarizing current injection). In aging CA1 neurons, this effect was significant at concentrations as low as 10 nM. In young CA1 neurons, nimodipine decreased accommodation only at higher concentrations (> or = 1.0 microM). 5. We conclude that aging CA1 neurons were less excitable than young neurons. In aging hippocampus, nimodipine restores excitability, as measured by size of the AHP and degree of accommodation, to levels closely resembling those of young adult CA1 neurons. These actions of nimodipine on aging CA1 hippocampal neurons may partly underlie the drug's notable ability to improve associative learning in aging rabbits and other mammals. Reversal of inhibitory postsynaptic potentials (IPSPs) by chloride ion and/or current injections into six motoneurons revealed the presence of inhibition during the period between phrenic bursts during fictive vomiting and also during the final phase of expulsion when phrenic discharge ceased by abdominal discharge continued. 3. Fictive coughing, evoked by repetitive electrical stimulation of superior laryngeal nerve afferents, was characterized by a large phrenic discharge followed immediately by a large abdominal nerve discharge. During fictive coughing, phrenic motoneurons retained their ramplike depolarizations throughout phrenic discharge; however, the amplitude of depolarization was greater than during inspiration. During the subsequent abdominal nerve discharge, the phrenic membrane potential usually underwent an initial rapid, transient hyperpolarization followed by a gradual repolarization associated with increased synaptic noise.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
In rodent hippocampal pyramidal neurons, repetitive discharges are followed by a slow afterhyperpolarization (sAHP) as a result of activation of a Ca2+-dependent K+ current. The sAHP is sensitive to activation of several G-protein coupled neurotransmitter receptors and downstream signal cascades. Modulations of the sAHP have been shown to be closely associated with synaptic plasticity, learning, and aging processes. However, it is presently unclear whether the sAHP generation is involved in hippocampal network activities. We explored this issue using an in vitro (thick-slice) model of mouse hippocampal sharp waves. Our data show that the sAHP occurs in CA3 pyramidal neurons following each sharp wave event and sAHP suppression is associated with a large increase in occurrence frequency of spontaneous sharp waves. Considering that sharp waves are important for hippocampal-cortical communication and memory processes, we postulate that the sAHP serves as an intrinsic regulatory mechanism of sharp waves and plays a significant role in hippocampus-dependent cognitive functions.  相似文献   

19.
Hippocampal neurobiological mechanisms of age-related memory dysfunction   总被引:9,自引:0,他引:9  
Studies are reviewed which indicate that hippocampal frequency potentiation (the growth of neural responses during repetitive synaptic stimulation) is impaired in aged rats, and that this impairment may be important in learning and memory deficits found in these aged animals. Intracellular recording and ultrastructural studies suggest that both hippocampal frequency potentiation and the age deficit in such potentiation are synaptic processes (probably presynaptic), and that the deficit may be due to an age-related increase in calcium influx during depolarization. The latter could in some way result from alterations in the function of a Ca-mediated inactivation of Ca current mechanism recently found in hippocampal neurons. Since major hippocampal changes occur with aging in both rodents and humans, it seems possible that these data are also relevant to human brain aging. Consequently, it is suggested that Alzheimer's disease results from an acceleration of normal age-related neuronal calcium conductance changes by some unknown process (e.g., viruses, aluminum, genetic factors, etc.), leading to a rapid deterioration of brain structure.  相似文献   

20.
Environmental enrichment (EE) is a well-established paradigm for studying naturally occurring changes in synaptic efficacy in the hippocampus that underlie experience-induced modulation of learning and memory in rodents. Earlier research on the effects of EE on hippocampal plasticity focused on long-term potentiation (LTP). Whereas many of these studies investigated changes in synaptic weight, little is known about potential contributions of neuronal excitability to EE-induced plasticity. Here, using whole-cell recordings in hippocampal slices, we address this gap by analyzing the impact of EE on both synaptic plasticity and intrinsic excitability of hippocampal CA1 pyramidal neurons. Consistent with earlier reports, EE increased contextual fear memory and dendritic spine density on CA1 cells. Furthermore, EE facilitated LTP at Schaffer collateral inputs to CA1 pyramidal neurons. Analysis of the underlying causes for enhanced LTP shows EE to increase the frequency but not amplitude of miniature excitatory postsynaptic currents. However, presynaptic release probability, assayed using paired-pulse ratios and use-dependent block of N-methyl-d-aspartate receptor currents, was not affected. Furthermore, CA1 neurons fired more action potentials (APs) in response to somatic depolarization, as well as during the induction of LTP. EE also reduced spiking threshold and after-hyperpolarization amplitude. Strikingly, this EE-induced increase in excitability caused the same-sized excitatory postsynaptic potential to fire more APs. Together, these findings suggest that EE may enhance the capacity for plasticity in CA1 neurons, not only by strengthening synapses but also by enhancing their efficacy to fire spikes-and the two combine to act as an effective substrate for amplifying LTP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号