首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The accurate and rapid identification of bacteria isolated from the respiratory tract of patients with cystic fibrosis (CF) is critical in epidemiological studies, during intrahospital outbreaks, for patient treatment, and for determination of therapeutic options. While the most common organisms isolated from sputum samples are Pseudomonas aeruginosa, Staphylococcus aureus, and Haemophilus influenzae, in recent decades an increasing fraction of CF patients has been colonized by other nonfermenting (NF) gram-negative rods, such as Burkholderia cepacia complex (BCC) bacteria, Stenotrophomonas maltophilia, Ralstonia pickettii, Acinetobacter spp., and Achromobacter spp. In the present study, we developed a novel strategy for the rapid identification of NF rods based on Fourier transform infrared spectroscopy (FTIR) in combination with artificial neural networks (ANNs). A total of 15 reference strains and 169 clinical isolates of NF gram-negative bacteria recovered from sputum samples from 150 CF patients were used in this study. The clinical isolates were identified according to the guidelines for clinical microbiology practices for respiratory tract specimens from CF patients; and particularly, BCC bacteria were further identified by recA-based PCR followed by restriction fragment length polymorphism analysis with HaeIII, and their identities were confirmed by recA species-specific PCR. In addition, some strains belonging to genera different from BCC were identified by 16S rRNA gene sequencing. A standardized experimental protocol was established, and an FTIR spectral database containing more than 2,000 infrared spectra was created. The ANN identification system consisted of two hierarchical levels. The top-level network allowed the identification of P. aeruginosa, S. maltophilia, Achromobacter xylosoxidans, Acinetobacter spp., R. pickettii, and BCC bacteria with an identification success rate of 98.1%. The second-level network was developed to differentiate the four most clinically relevant species of BCC, B. cepacia, B. multivorans, B. cenocepacia, and B. stabilis (genomovars I to IV, respectively), with a correct identification rate of 93.8%. Our results demonstrate the high degree of reliability and strong potential of ANN-based FTIR spectrum analysis for the rapid identification of NF rods suitable for use in routine clinical microbiology laboratories.  相似文献   

2.
We used capillary electrophoresis-single-strand conformation polymorphism (CE-SSCP) analysis of PCR-amplified 16S rRNA gene fragments for rapid identification of Pseudomonas aeruginosa and other gram-negative nonfermenting bacilli isolated from patients with cystic fibrosis (CF). Target sequences were amplified by using forward and reverse primers labeled with various fluorescent dyes. The labeled PCR products were denatured by heating and separated by capillary gel electrophoresis with an automated DNA sequencer. Data were analyzed with GeneScan 672 software. This program made it possible to control lane-to-lane variability by standardizing the peak positions relative to internal DNA size markers. Thirty-four reference strains belonging to the genera Pseudomonas, Brevundimonas, Burkholderia, Comamonas, Ralstonia, Stenotrophomonas, and Alcaligenes were tested with primer sets spanning 16S rRNA gene regions with various degrees of polymorphism. The best results were obtained with the primer set P11P-P13P, which spans a moderately polymorphic region (Escherichia coli 16S rRNA positions 1173 to 1389 [M. N. Widjojoatmodjo, A. C. Fluit, and J. Verhoef, J. Clin. Microbiol. 32:3002-3007, 1994]). This primer set differentiated the main CF pathogens from closely related species but did not distinguish P. aeruginosa from Pseudomonas alcaligenes-Pseudomonas pseudoalcaligenes and Alcaligenes xylosoxidans from Alcaligenes denitrificans. Two hundred seven CF clinical isolates (153 of P. aeruginosa, 26 of Stenotrophomonas maltophilia, 15 of Burkholderia spp., and 13 of A. xylosoxidans) were tested with P11P-P13P. The CE-SSCP patterns obtained were identical to those for the corresponding reference strains. Fluorescence-based CE-SSCP analysis is simple to use, gives highly reproducible results, and makes it possible to analyze a large number of strains. This approach is suited for the rapid identification of the main gram-negative nonfermenting bacilli encountered in CF.  相似文献   

3.
During 1999, we used partial 16S rRNA gene sequencing for the prospective identification of atypical nonfermenting gram-negative bacilli isolated from patients attending our cystic fibrosis center. Of 1,093 isolates of nonfermenting gram-negative bacilli recovered from 148 patients, 46 (4.2%) gave problematic results with conventional phenotypic tests. These 46 isolates were genotypically identified as Pseudomonas aeruginosa (19 isolates, 12 patients), Achromobacter xylosoxidans (10 isolates, 8 patients), Stenotrophomonas maltophilia (9 isolates, 9 patients), Burkholderia cepacia genomovar I/III (3 isolates, 3 patients), Burkholderia vietnamiensis (1 isolate), Burkholderia gladioli (1 isolate), and Ralstonia mannitolilytica (3 isolates, 2 patients), a recently recognized species.  相似文献   

4.
Accurate identification and antimicrobial susceptibility testing (AST) of nonfermenters from cystic fibrosis patients are essential for appropriate antimicrobial treatment. This study examined the ability of the newly designed Vitek 2 nonfermenting gram-negative card (NGNC) (new gram-negative identification card; bioMérieux, Marcy-l''Ètoile, France) to identify nonfermenting gram-negative rods from cystic fibrosis patients in comparison to reference methods and the accuracy of the new Vitek 2 version 4.02 software for AST compared to the broth microdilution method. Two hundred twenty-four strains for identification and 138 strains for AST were investigated. The Vitek 2 NGNC identified 211 (94.1%) of the nonfermenters correctly. Among morphologically atypical microorganisms, five strains were misidentified and eight strains were determined with low discrimination, requiring additional tests which raised the correct identification rate to 97.8%. Regarding AST, the overall essential agreement of Vitek 2 was 97.6%, and the overall categorical agreement was 92.9%. Minor errors were found in 5.1% of strains, and major and very major errors were found in 1.6% and 0.3% of strains, respectively. In conclusion, the Vitek NGNC appears to be a reliable method for identification of morphologically typical nonfermenters and is an improvement over the API NE system and the Vitek 2 GNC database version 4.01. However, classification in morphologically atypical nonfermenters must be interpreted with care to avoid misidentification. Moreover, the new Vitek 2 version 4.02 software showed good results for AST and is suitable for routine clinical use. More work is needed for the reliable testing of strains whose MICs are close to the breakpoints.Pseudomonas aeruginosa is the most important cause of lung infections in patients with cystic fibrosis (CF) (14). In our hospital, 50% of sputum-producing CF patients are colonized in their lower airways with P. aeruginosa or other nonfermenting bacteria. Accurate identification and antimicrobial susceptibility testing (AST) are essential for appropriate antimicrobial therapy.A variety of automated commercial systems for identification and susceptibility testing of nonfermenting bacteria are available (2, 3, 12, 19, 20). They are widely used because of the increasing volumes of clinical specimens processed by clinical laboratories and perceived cost effectiveness. The automated systems decrease the in-laboratory turnaround time and enable a faster targeted antimicrobial therapy. Unfortunately, errors in classification and AST by any test system can have serious implications for the clinical outcome of patients. The most frequently reported errors have involved the inaccurate identification of nonfermenters due to their phenotypic variations and slower growth rates and the inconsistencies between the tested broad-spectrum β-lactam antibiotics. Because of the perceived inaccuracies of AST from CF isolates, a consensus conference on CF microbiology recommended the use of the disk diffusion method for testing P. aeruginosa and other nonfermenters (13, 22).To improve the identification rate of nonfermenting gram-negative bacilli, a new colorimetric Vitek 2 card (nonfermenting gram-negative card [NGNC]) with an enlarged database was recently introduced. To advance the accuracy of the AST results, a new software (version 4.02) was developed.The aim of the present study was to evaluate the performance of the new NGNC for identification and the new software version 4.02 for AST of nonfermenters isolated from CF patients.  相似文献   

5.
Burkholderia cepacia complex (BCC) is an important nosocomial pathogen in hospitalised patients, particularly those with prior broad-spectrum antibacterial therapy. BCC causes infections that include bacteraemia, urinary tract infection, septic arthritis, peritonitis and respiratory tract infection. Due to high intrinsic resistance and being one of the most antimicrobial-resistant organisms encountered in the clinical laboratory, these infections can prove very difficult to treat and, in some cases, result in death. Patients with cystic fibrosis (CF) and those with chronic granulomatous disease are predisposed to infection by BCC bacteria. BCC survives and multiplies in aqueous hospital environments, including disinfectant agents and intravenous fluids, where it may persist for long periods. Outbreaks and pseudo-outbreaks of BCC septicaemia have been documented in intensive care units, oncology units and renal failure patients. BCC is phenotypically unremarkable, and the complex exhibits an extensive diversity of genotypes. BCC is of increasing importance for agriculture and bioremediation because of their antinematodal and antifungal properties as well as their capability to degrade a wide range of toxic compounds. It has always been a tedious task for a routine microbiological laboratory to identify the nonfermenting gram-negative bacilli, and poor laboratory proficiency in identification of this nonfermenter worldwide still prevails. In India, there are no precise reports of the prevalence of BCC infection, and in most cases, these bacteria have been ambiguously reported as nonfermenting gram-negative bacilli or simply Pseudomonas spp. The International Burkholderia cepacia Working Group is open to clinicians and scientists interested in advancing knowledge of BCC infection/colonisation in persons with CF through the collegial exchange of information and promotion of coordinated approaches to research.  相似文献   

6.
The new VITEK 2 system (bioMérieux) was evaluated at two independent sites with the identification card for gram-negative bacilli (ID-GNB card). Of the 845 strains tested, which represented 70 different taxa belonging to either the family Enterobacteriaceae or the nonenteric bacilli, 716 (84.7%) were correctly identified at the species level. Thirty-two (3.8%) additional strains were identified to the species level after the performance of simple, rapid manual tests (oxidase, hemolysis, indole reaction, motility, and pigmentation). For 80 (9.5%) strains, these additional tests did not lead to an identification at the species level but the correct species identification was given among the organisms listed. Only 7 (0.8%) strains were misidentified, and 10 (1.2%) were not identified. Mistakes were randomly distributed over different taxa. Due to the new, more sensitive fluorescence-based technology of the VITEK 2 system, final results were available after 3 h. Since our evaluation was mainly a stress test, it is predicted that the VITEK 2 system in conjunction with the ID-GNB card would perform well under conditions of a routine clinical laboratory in identifying members of the family Enterobacteriaceae and selected species of nonenteric bacteria. This system is a promising, highly automated new tool for the rapid identification of gram-negative bacilli from human clinical specimens.  相似文献   

7.
We used partial 16S rRNA gene (16S DNA) sequencing for the prospective identification of nonfermenting Gram-negative bacilli recovered from patients attending our cystic fibrosis center (h?pital Necker-Enfants malades), which gave problematic results with conventional phenotypic tests. During 1999, we recovered 1093 isolates of nonfermenting Gram-negative bacilli from 702 sputum sampled from 148 patients. Forty-six of these isolates (27 patients) were not identified satisfactorily in routine laboratory tests. These isolates were identified by 16S DNA sequencing as Pseudomonas aeruginosa (19 isolates, 12 patients), Achromobacter xylosoxidans (10 isolates, 8 patients), Stenotrophomonas maltophilia (9 isolates, 9 patients), Burkholderia cepacia genomovar I/III (3 isolates, 3 patients), Burkholderia vietnamiensis (1 isolate), Burkholderia gladioli (1 isolate) and Ralstonia mannitolilytica (3 isolates, 2 patients). Fifteen isolates (33%) were resistant to all antibiotics in routine testing. Sixteen isolates (39%) resistant to colistin were recovered on B. cepacia-selective medium: 2 P. aeruginosa, 3 A. xylosoxidans, 3 S. maltophilia and the 8 Burkholderia--Ralstonia isolates. The API 20NE system gave no identification for 35 isolates and misidentified 11 isolates (2 P. aeruginosa, 2 A. xylosoxidans and 1 S. maltophilia classified as B. cepacia ). Control measures and/or treatment were clearly improved as a result of 16S DNA sequencing in three of these cases. This study confirms the weakness of phenotypic methods for identification of atypical nonfermenting Gram-negative bacilli recovered from cystic fibrosis patients. The genotypic methods, such as 16S DNA sequencing which allows identification of strains in routine practice, appears to have a small, but significant impact on the clinical management of CF patients.  相似文献   

8.
Over a period of 26 months, we have evaluated in a prospective fashion the use of 16S rRNA gene sequencing as a means of identifying clinically relevant isolates of nonfermenting gram-negative bacilli (non-Pseudomonas aeruginosa) in the microbiology laboratory. The study was designed to compare phenotypic with molecular identification. Results of molecular analyses were compared with two commercially available identification systems (API 20 NE, VITEK 2 fluorescent card; bioMérieux, Marcy l'Etoile, France). By 16S rRNA gene sequence analyses, 92% of the isolates were assigned to species level and 8% to genus level. Using API 20 NE, 54% of the isolates were assigned to species and 7% to genus level, and 39% of the isolates could not be discriminated at any taxonomic level. The respective numbers for VITEK 2 were 53%, 1%, and 46%, respectively. Fifteen percent and 43% of the isolates corresponded to species not included in the API 20 NE and VITEK 2 databases, respectively. We conclude that 16S rRNA gene sequencing is an effective means for the identification of clinically relevant nonfermenting gram-negative bacilli. Based on our experience, we propose an algorithm for proper identification of nonfermenting gram-negative bacilli in the diagnostic laboratory.  相似文献   

9.
Burkholderia cepacia has recently been recognized as an important pathogen in chronic lung disease in patients with cystic fibrosis (CF). Because of the social, psychological, and medical implications of the isolation of B. cepacia from CF patients, accurate identification of this organism is essential. We compared the accuracies of four commercial systems developed for the identification of nonfermenting, gram-negative bacilli with that of conventional biochemical testing for 150 nonfermenters including 58 isolates of B. cepacia recovered from respiratory secretions from CF patients. The accuracies of the four systems for identifying all nonfermenters ranged from 57 to 80%, with the RapID NF Plus system being most accurate. The accuracies of these systems for identifying B. cepacia ranged from 43 to 86%, with the Remel system being most accurate. Depending on the commercial system, from two to seven isolates were misidentified as B. cepacia. The relatively poor performance of the commercial systems requires that identification of certain nonfermenters be confirmed by conventional biochemical testing. These organisms include B. cepacia, Burkholderia sp. other than B. cepacia, and infrequently encountered environmental species (Pseudomonas and Flavobacterium species). In addition, conventional biochemical testing should be done if a commercial system fails to assign an identification to an organism. Confirmatory testing should preferably be performed by a reference laboratory with experience in working organisms isolated from CF patients.  相似文献   

10.
The new Vitek 2 GN card (bioMérieux, Marcy-l'Etoile, France) was developed for better identification of fermenting and nonfermenting bacilli. This new card allows the identification of 159 taxa. A total of 426 isolates (331 fermenting and 95 nonfermenting gram-negative bacilli) belonging to 70 taxa covered by the database were evaluated. All isolates were identified in parallel with the ID 32 GN, the API 20E, and the API 20NE methods. The system correctly identified 97.4% (n=415) of the strains. Only 2.1% (n=9) needed additional testing. One strain (0.25%) was misidentified (Klebsiella pneumoniae subsp. pneumoniae), and another one (0.25%) was not identified (Morganella morganii subsp. morganii). The new GN card gives more accurate identifications overall for gram-negative bacilli when compared to the systems described in other similar studies. This study was presented in part at the 104th General Meeting of the American Society for Microbiology, New Orleans, Louisiana, 2004, Abstract C-180.  相似文献   

11.
Patients with cystic fibrosis (CF) are susceptible to chronic respiratory infections with a number of bacterial pathogens. Among them, the Burkholderia cepacia complex (Bcc) bacteria, consisting of nine related species, have emerged as problematic CF pathogens due to their antibiotic resistance, incidence of nosocomial infection, and person-to-person transmission. Bcc organisms present the clinical microbiologist with a diagnostic dilemma due to the lack of phenotypic biochemical or growth-related characterization tests that reliably distinguish among these organisms. The complex taxonomy of the Bcc species colonizing the CF respiratory tract makes accurate identification problematic. Despite the clinical implications of Bcc identification, a clinical laboratory differentiation of species within the Bcc is lacking. Additionally, no commercial assays are available to further identify the Bcc species. In the current study, secretory proteins present in the cultured supernatants of Burkholderia cenocepacia and Burkholderia multivorans were analyzed by two-dimensional gel electrophoresis (2-DE), followed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). To assess differential expression, protein spots of B. cenocepacia and B. multivorans that were unique or displayed different intensities were chosen for MALDI-TOF MS analysis. In total, 341 protein spots were detected, of which 23 were unique to each species, demonstrating that potential diagnostic candidates between these two members of the Bcc exist.The Burkholderia cepacia complex (Bcc) consists of nine genetically distinct but phenotypically similar Gram-negative bacilli distinguished by their role as important agents of pulmonary disease in cystic fibrosis (CF) patients (12, 16). Associated with increased morbidity and mortality, Bcc bacteria make eradication very difficult due to their ability to establish infection and maintain chronic colonization in the CF lung (6, 9, 18, 22). Furthermore, these organisms are capable of person-to-person spread, presenting the threat of nosocomial acquired infection. Highly variable and unpredictable, clinical outcomes of Bcc infection range from asymptomatic carriage to bacteremic disease and death (12). This variation is speculated to be the result of genomovar heterogeneity and differential expression of a virulence factor(s) during Bcc infection. Although all species of the Bcc have been recovered from CF patients, Burkholderia cenocepacia and Burkholderia multivorans are the most prevalent, accounting for 85% of pulmonary infections (16).Establishing accurate methods of Bcc identification is paramount for the implementation of infection control measures and appropriate treatment of infected and/or exposed CF patients. Furthermore, species identification within the Bcc is vital not only for surgical and clinical management of CF patients but also for the elucidation of the group''s epidemiology. Bcc organisms present clinical microbiologists with a diagnostic dilemma due to the lack of phenotypic biochemical or growth-related characterization tests that can reliably distinguish among these organisms. While commercially available multitest kits have been utilized in clinical laboratories for Bcc identification, previous studies have shown these kits to be unreliable (8, 15, 19, 25). Misidentification rates of the Bcc among United States CF treatment centers (11% were false positive, and 36% were false negative) suggest the need for improved diagnostics (15). Currently, accurate identification of the Bcc and species within the complex require molecular typing techniques limited to special reference laboratories. These expensive and technically challenging assays further delay the appropriate turnaround time necessary for proper patient management. These inherent limitations have resulted in the need for alternative methods of Bcc species identification.In both CF patients and murine models of pulmonary infection, different species (B. cenocepacia and B. multivorans) within the Bcc exhibit unique patterns of virulence (2, 3). Proteomic analyses of the Bcc species B. cenocepacia, Burkholderia vietnamiensis, B. multivorans, and Burkholderia ambifaria have revealed differential expression of secretory proteins (2). These differences may account for the various degrees of pathogenicity exhibited by Bcc species. Thus, species-specific secretory proteins would be ideal biomarkers for diagnostic assays and targets for vaccines and therapeutic agents. Elucidation of these unique proteins can be achieved through characterization and comparative analysis of Bcc species secretomes. In the current study, secretory proteins present in the cultured supernatants of B. cenocepacia and B. multivorans were analyzed by two-dimensional gel electrophoresis (2-DE), followed by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). To assess differential expression, protein spots of B. cenocepacia and B. multivorans that were unique or displayed different intensities were chosen for MALDI-TOF MS analysis.  相似文献   

12.
Burkholderia is an important bacterial genus with a complex taxonomy that contains species of both ecological and pathogenic importance, including nine closely related species collectively termed the Burkholderia cepacia complex (BCC). In order to more thoroughly investigate the virulence of this bacterial complex of microorganisms, alternative infection models would be useful. To this end, we have adapted and developed the use of the Galleria mellonella wax moth larvae as a host for examining BCC infections. The experimental conditions affecting the BCC killing of the “wax worm” were optimized. BCC virulence levels were determined using 50% lethal doses, and differences were observed between both species and strains of the BCC. The BCC pathogenicity trends obtained compare favorably with results acquired using other published alternative infection models, as well as mammalian infection models. In addition, BCC killing activity was determined by directly measuring relative bacterial loads in three different BCC strains, thus demonstrating innate differences in BCC strain virulence. Finally, genetically mutated BCC strains were compared to a wild-type BCC strain in order to show concomitant reduction of BCC virulence and increased wax worm survival. For experimentation examining the virulent properties of the BCC, the wax worm has proven to be a useful alternative infection model.  相似文献   

13.
Background: The Burkholderia cepacia complex (BCC) and Stenotrophomonas maltophilia are closely related groups of non-fermenting gram-negative bacilli (NFGNBs) having a similar spectrum of infections ranging from superficial to deep-seated and disseminated infections. Identification of these lysine decarboxylase-positive NFGNBs lags behind in most Indian laboratories. A simplified identification scheme was devised for these two pathogens that allowed us to isolate them with an increasing frequency at our tertiary care institute. Materials and Methods: A simple five-tube conventional biochemical identification of these bacteria has been standardized. In the beginning, some of the isolates were confirmed from the International B. cepacia Working group, Belgium. Molecular identification and typing using recA polymerase chain reaction-restriction fragment length polymorphism was also standardized for BCC. For short-term preservation of BCC, an innovative method of preserving the bacteria in Robertson’s cooked medium tubes kept in a domestic refrigerator was developed. Results: Thirty-nine isolates of BCC isolates were obtained from various specimens (30 from blood cultures) and 22 S. maltophilia (13 blood cultures and 9 respiratory isolates) were isolated during the year 2007 alone. Conclusions: BCC and S. maltophilia can be identified with relative ease using a small battery of biochemical reactions. Use of simplified methods will allow greater recognition of their pathogenic potential and correct antimicrobials should be advised in other clinical laboratories and hospitals.  相似文献   

14.
Nonfermenting Gram-negative bacilli (NF-GNB) are ubiquitous environmental opportunistic bacteria frequently misidentified by conventional phenotypic methods. The aim of this study was to determine the distribution of NF-GNB species by 16?S rRNA gene sequencing (used as reference method) and to compare performances of biochemical tests and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). From nine French hospitals, 188 NF-GNB isolates (except P. aeruginosa and A. baumannii) were prospectively collected from 187 clinical samples between December 2008 and May 2009. By using the genotypic approach, 173 (92%) and 188 (100%) isolates were identified to the species and genus level, respectively. They covered 35 species and 20 genera, with a predominance of Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Pseudomonas putida group bacteria. Of the 173 species-level identified strains, concordant identification to the species-level was obtained for 75.1%, 83% and 88.9% of isolates with API 20 NE strip, the VITEK-2 (ID-GN card) system and MALDI-TOF-MS, respectively. By excluding S. maltophilia isolates accurately identified by the three methods, genus-level identification was much higher for MALDI-TOF-MS (92.9%), compared with API 20 NE and VITEK-2 (76.2% and 80.8%, respectively). In conclusion, MALDI-TOF-MS represents a rapid, inexpensive, and accurate tool for routine identification of NF-GNB in human clinical samples.  相似文献   

15.
Since nonfermenting, Gram negative bacilli recovered from patients with cystic fibrosis could be misidentified with phenotypic procedures, we used partial 16S ribosomal RNA gene (16S gene) sequencing to identify these "Pseudomonas-like" isolates. 473 isolates were recovered from 66 patients in 2003. Sequencing was used to identify 29 (from 24 patients) of the 473 isolates, showing unclear results with routine tests. PCR with specific primers was carried out to amplify a 995 bp fragment, which was then sequenced. The sequences were analyzed with GenBank database for species assignment. Phenotypic and genotypic results were concordant for 20/29 isolates (10 Pseudomonas aeruginosa, 5 Burkholderia cepacia, 3 Stenotrophomonas maltophilia, 2 Achromobacter xylosoxidans). However, 3 of the 5 B. cepacia isolates were then identified as Burkholderia multivorans with a PCR-RFLP procedure. Phenotypic misidentification was observed for 9/29 isolates: 4 A. xylosoxidans, 1 P. aeruginosa, 1 Bordetella petrii, 1 Bordetella bronchiseptica, 1 Ralstonia respiraculi and 1 Ralstonia mannitolilytica. Partial 16S gene sequencing improved the identification of "Pseudomonas-like" isolates from cystic fibrosis patients, but the accuracy to distinguish between genomovars of the B. cepacia complex was inadequate.  相似文献   

16.
In the past decade, potential pathogens, including Alcaligenes species, have been increasingly recovered from cystic fibrosis (CF) patients. Accurate identification of multiply antibiotic-resistant gram-negative bacilli is critical to understanding the epidemiology and clinical implications of emerging pathogens in CF. We examined the frequency of correct identification of Alcaligenes spp. by microbiology laboratories affiliated with American CF patient care centers. Selective media, an exotoxin A probe for Pseudomonas aeruginosa, and a commercial identification assay, API 20 NE, were used for identification. The activity of antimicrobial agents against these clinical isolates was determined. A total of 106 strains from 78 patients from 49 CF centers in 22 states were studied. Most (89%) were correctly identified by the referring laboratories as Alcaligenes xylosoxidans. However, 12 (11%) strains were misidentified; these were found to be P. aeruginosa (n = 10), Stenotrophomonas maltophilia (n = 1), and Burkholderia cepacia (n = 1). Minocycline, imipenem, meropenem, piperacillin, and piperacillin-tazobactam were the most active since 51, 59, 51, 50, and 55% of strains, respectively, were inhibited. High concentrations of colistin (100 and 200 microg/ml) inhibited 92% of strains. Chloramphenicol paired with minocycline and ciprofloxacin paired with either imipenem or meropenem were the most active combinations and inhibited 40 and 32%, respectively, of strains. Selective media and biochemical identification proved to be useful strategies for distinguishing A. xylosoxidans from other CF pathogens. Standards for processing CF specimens should be developed, and the optimal method for antimicrobial susceptibility testing of A. xylosoxidans should be determined.  相似文献   

17.
Forty-four of 48 Burkholderia cepacia complex strains cultured from Danish cystic fibrosis patients were Burkholderia multivorans, a distribution of species that has not been reported before. Although cases of cross infections were demonstrated, no major epidemic clone was found. The species distribution may represent the sporadic acquisition of bacteria from the environment.Burkholderia cepacia and related bacteria have emerged as significant pathogens in cystic fibrosis (CF) patients due to the risk of cepacia syndrome (a fatal necrotizing pneumonia with bacteremia), the organism''s innate multiresistance to antibiotics, and the transmissibility of bacterial strains between patients by social contact (10, 15). The genus Burkholderia encompasses more than 50 validly published species that can be divided into four groups (21). Strains colonizing the respiratory tract of CF patients are predominantly members of the B. cepacia complex (BCC), with 17 formally named species (23). Chronic infections typically involve a single strain, although strain displacements have been demonstrated (24).Most or all species of the BCC can colonize the lower airways of CF patients, although some of them are infrequently demonstrated. Studies from North America, Europe, and Australasia have shown that Burkholderia cenocepacia is the dominant species being recovered from 46 to 90% of colonized patients (4, 6, 13, 17, 19, 20). Different situations have been described in Lisbon, where contamination of saline solutions used in inhalant therapy by CF patients has resulted in a predominance of B. cepacia (5), and in France, where a small excess of B. multivorans (52%) over B. cenocepacia (45%) has been reported (3).Danish CF patients are treated in two centers, and respiratory cultures are routinely performed at the monthly visit to the outpatient clinic. Four hundred thirty-one patients were alive by 1 January 2007, and 24 (5.6%) were chronically infected with BCC species. A chronic infection was defined as the isolation of BCC bacteria from more than half of sputum cultures for more than 6 months (modified “Leeds criteria” for chronic Pseudomonas aeruginosa infection [14]), and/or the development of ≥2 precipitins measured by crossed immunoelectrophoresis (18). A total of 52 Danish CF patients are known to have been intermittently (n = 11) or chronically (n = 41) infected with BCC bacteria (Fig. (Fig.1).1). Intermittently colonized patients may be underrepresented in data from before the routine use of colistin-containing selective agar plates (9), and some of the recent BCC acquisitions may be reclassified as chronic infections with time. In retrospect, the first Danish patient was chronically infected with BCC in the late 1970s (18), but few cases were identified until 1990. The increased rate of BCC colonization after 1990 may be secondary to the widespread use of inhaled colistin for P. aeruginosa infection, which was introduced in the 1980s (11). Since 1993, the rate has stabilized at around three new cases per year (43 BCC acquisitions during 14 years) (Fig. (Fig.1).1). In the same time period, 174 Danish patients have been diagnosed with CF (on average, 12.4 ± 4.4 [mean ± standard deviation] new patients per year; range, 6 to 22).Open in a separate windowFIG. 1.Cumulative numbers of Danish CF patients experiencing a first-time isolation of BCC bacteria, separated by status (open bars, chronic infections; gray bars, intermittent colonizations).BCC isolates from 9 intermittently colonized and 39 chronically infected patients were available for characterization. One isolate per patient, cultured between 1994 and 2006, was included in the study. Allocation to species within the BCC was performed by partial atpD and recA sequencing (1); occasional isolates with no PCR product from either amplification were subjected to partial sequencing of fur (16). Two independent sequence-based identifications were thus obtained for all BCC isolates. Only three species were identified in Danish patients, and B. multivorans accounted for more than 90% of the isolates (Table (Table1).1). Pulsed-field gel electrophoresis (PFGE) genotypes were assessed after digestion with Xba and SpeI and interpreted as described previously (22). Thirty-eight BCC genotypes were disclosed by both enzymes, and five of the genotypes were identified in more than one patient (two to four patients). Some of these small clusters were epidemiologically related and probably reflect cases of cross infections. Two pairs of siblings each carried the same strain, and one additional patient harbored the same genotype as the two siblings treated in that CF center. Between 1994 and 2003, chronic infections with BCC of a single genotype were established in 4 patients treated in one center. A fourth cluster was composed of patients treated at both of the two Danish CF centers; a possible epidemiological relationship between these three patients was unknown. No patient-to-patient transmission could have occurred in the fifth cluster, where the same genotype was intermittently detected in two patients in 1994 and 1999, respectively, and established a chronic infection in a third patient in 2005. All BCC genotypes identified in more than one patient were B. multivorans.

TABLE 1.

Specific identification of 48 BCC strains isolated from Danish CF patients
SpeciesNo. of strains from patients in whom colonization was:
Total (%)
IntermittentChronic
B. multivorans83644 (92)
B. cenocepacia123 (6)
B. anthina011 (2)
Open in a separate windowThe marked preponderance of B. multivorans in Danish CF patients was unexpected. Although frequently identified in samples from this group of patients, the species is considered second to B. cenocepacia as the major Burkholderia pathogen in CF patients. The unusual species distribution could not be attributed to cross infections. Genotyping of strains clearly indicated that most isolates were unique and that suspected cases of person-to-person transmission beyond siblings were restricted to a few cases. A pathogenic role of P. aeruginosa was suspected at the Copenhagen CF center by 1974, and segregation policies with respect to this bacterium were effective by 1981 (12). It is possible that the early attention to Gram-negative nonfermenters, with a focus on hygienic precautions and segregation, may be responsible for the limited spread of BCC bacteria among Danish CF patients.The transmission of microorganisms between patients can be documented and to some degree controlled, while sporadic acquisition of BCC from the environment is less amenable to control. The demonstration of identical genotypes in intermittently colonized patients separated by a time span of 5 years is conspicuous; the acquisition of the same genotype by these patients may have involved a common but unidentified source. Instances of isolation and typing of BCC from the proximate environment of CF patients are sparse, but indistinguishable environmental and clinical strains have been reported (2). The prevalence of chronic BCC infections in Denmark (5.6%) is higher than in neighboring countries (7). Exposure to BCC may vary with climate, place of residence, and occupation. Little scientific evidence is available to suggest restrictions in the patient''s contacts with soil, crops, or nature, and consensus guidelines have not been issued.Given the limited number of cross infections among Danish CF patients, the species distribution must reflect the sporadic acquisition of BCC bacteria from the environment. The marked contrast to reports from other CF centers could result from exposure to different pools of environmental bacteria determined by local physical conditions. However, the predominance of B. cenocepacia in many clinics may also be explained by the introduction of epidemic clones of this species, which has spread widely within and between clinics. Since the introduction of segregation policies in the United Kingdom, a shift toward B. multivorans has been observed (8). A similar change in the relative frequencies of infecting species has been reported for strains being referred to the North American B. cepacia Repository at the University of Michigan, Ann Arbor (19).  相似文献   

18.
Infections caused by extended-spectrum beta-lactamase (ESBL)- and ampC beta-lactamase-producing gram-negative bacteria complicate therapy and limit treatment options. Several different panels for ESBL detection with automated systems exist. In addition, a chromogenic agar medium is available for ESBL screening. We compared two automated identification and susceptibility testing systems with regard to their effectiveness in detecting ESBL production in Enterobacteriaceae: the BD Phoenix system (BD Diagnostic Systems, Sparks, MD) and the Vitek 2 system (bioMerieux, Marcy l'Etoile, France). We tested 114 strains using the Etest as the standard, various available panels for both automated systems (for BD Phoenix, the NMIC/ID-50 and NMIC/ID-70 GN Combo panels for combined identification and susceptibility testing of gram-negative bacilli, and for Vitek 2, the ID-GNB panel for identification of gram-negative bacilli and the AST-N020, AST-N041, and AST-N062 panels for susceptibility testing), and a chromogenic agar medium (bioMérieux, Marcy l'Etoile, France). PCR for common ESBL gene families (encoding TEM, SHV, OXA, and CTX-M) and for chromosomal or plasmid-mediated ampC beta-lactamase genes was conducted to complete the study design. For the tested specimens overall, the chromID ESBL agar showed the highest sensitivity (95.8%) but the lowest specificity (10.5%) compared to the sensitivity and specificity of the Etest (chosen as reference by the authors) for the detection of ESBL-producing strains. The BD Phoenix system showed sensitivities of 77.1% and 84.2% and specificities of 61.5% and 75.0%, respectively, for the NMIC/ID-50 andNMIC/ID-70 panels. The sensitivity of the Vitek 2 system ranged from 78.8% (AST-N020) to 80.6% (AST-N062) and up to 84.2% (AST-N041). The specificities of the respective panels were 50.0% (AST-N041 and AST-N062) and 55.6% (AST-N020). In conclusion, the sensitivities and specificities of ESBL detection by the different methods differ depending on the microorganisms under study.  相似文献   

19.
Burkholderia multivorans is a prominent B. cepacia complex (BCC) species causing infection in people with cystic fibrosis. Despite infection control measures being introduced to reduce the spread of BCC there is a continued emergence of infections by B. multivorans. Our objective was to analyze a global collection of B. multivorans isolates, comparing those from environmental and clinical sources with those from reported outbreaks. Multilocus sequence typing (MLST) was performed on 107 B. multivorans isolates to provide a detailed analysis of the global population biology of this species. MLST resolved 64 B. multivorans sequence types. Twelve of these were globally distributed and associated with human infection; two of these (ST-21 and ST-375) were also composed of environmental isolates. These global lineages included strains previously linked to large outbreaks (e.g., French epidemic clone ST-16). Though few environmental isolates of B. multivorans were available for analysis, of six strains identified, three were identical to strains recovered from cystic fibrosis (CF) infection. Although the ability of B. multivorans to cause CF outbreaks is known, our report here concerning the existence of globally distributed B. multivorans CF strains is a new observation for this emerging B. cepacia complex pathogen and suggests that certain strain types may be better adapted to human infection than others. Common transmission-associated risk factors were not obviously linked to the globally distributed strains; however, the overlap in strains recovered from water environments, industrial products, and human infection suggests that environmental sources may be an important reservoir for infection with B. multivorans.  相似文献   

20.
We describe the recovery and identification of a bacterium that represents a new species of the genus Cupriavidus from cultures of respiratory tract specimens from two patients with cystic fibrosis (CF). The elucidation of the role of this species in CF lung disease will require an evaluation of a greater number of cases.Persons with cystic fibrosis (CF) have chronic airway infection with gram-negative bacterial species that are usually not pathogenic for healthy persons. In addition to Pseudomonas aeruginosa, which infects the majority of CF patients, several other species, including Stenotrophomonas maltophilia and Achromobacter xylosoxidans, as well as a variety of Ralstonia, Cupriavidus, and Pandoraea species, also cause infection in CF (1, 8). However, the precise role these species play in contributing to lung disease in CF is unclear. Obstacles to better elucidating the potential role of these species in CF are their rapidly evolving taxonomy and the difficulty with their proper identification in culture. Here, we describe the recovery and identification of a novel Cupriavidus species from respiratory specimens from two CF patients, one living in Germany and the other residing in the United States.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号