首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The RAD52 gene is required for much of the recombination that occurs in Saccharomyces cerevisiae. One of the two commonly utilized mutant alleles, rad52-2, increases rather than reduces mitotic recombination, yet in other respects appears to be a typical rad52 mutant allele. This raises the question as to whether RAD52 is really necessary for mitotic recombination. Analysis of a deletion/insertion allele created in vitro indicates that the null mutant phenotype is indeed a deficiency in mitotic recombination, especially in gene conversion. The data also indicate that RAD52 is required for crossing-over between at least some chromosomes. Finally, examination of the behavior of a replicating plasmid in rad52-1 strains indicates that the frequency of plasmid integration is substantially reduced from that in wild type, a conclusion consistent with a role for RAD52 in reciprocal crossing-over. Analysis of recombinants arising in rad52-2 strains suggests that this allele may result in the increased activity of a RAD52-independent recombinational pathway.  相似文献   

2.
Thepso4-1 mutant was characterized as deficient in some types of recombination, including gene conversion, crossing over, and intrachromosomal recombination. The mode of interaction betweenpso4-1 andrad51 and betweenpso4-1 andrad52 mutants indicated that thePSO4 gene belongs to theRAD52 epistasis group for strand-break repair. Moreover, the presence of thepso4-1 mutation decreased 8-MOP-photoinduced mutagenesis of therad51 andrad52 mutants. Complementation tests using heterozygous diploid strains showed that thePso4 protein might interact with theRad52 protein during repair of 8-MOP photolesions. Thepso4-1 mutant, even though defective in inter- and intea-chromosomal recombination, conserves the ability for plasmid integration of circular and linear plasmid DNA. On the other hand, similar to therad51 mutant,pso4-1 was able to incise but did not restore high-molecular-weight DNA during the repair of cross links induced by 8-MOP plus UVA. These results, together with those of previous reports, indicate that thePSO4 gene belongs to theRAD52 DNA repair group and its product participates in the DNA rejoining step of the repair of cross-link lesions, which are crucial for induced mutagenesis and recombinogenesis.  相似文献   

3.
The RAD52 group of genes in the yeast Saccharomyces cerevisiae controls the repair of DNA damage by a recombinational mechanism. Despite the growing evidence for physical and biochemical interactions between the proteins of this repair group, mutations in individual genes show very different effects on various types of recombination. The RAD59 gene encodes a protein with similarity to Rad52p which plays a role in the repair of damage caused by ionizing radiation. In the present study we have examined the role played by the Rad59 protein in mitotic ectopic recombination and analyzed the genetic interactions with other members of the repair group. We found that Rad59p plays a role in ectopic gene conversion that depends on the presence of Rad52p but is independent of the function of the RecA homologue Rad51p and of the Rad57 protein. The RAD59 gene product also participates in the RAD1-dependent pathway of recombination between direct repeats. We propose that Rad59p may act in a salvage mechanism that operates when the Rad51 filament is not functional. Received: 3 February / 22 April 1999  相似文献   

4.
DNA double-strand break (DSB) repair mediated by the Rad51 pathway of homologous recombination is conserved in eukaryotes. In yeast, Rad51 paralogs, Saccharomyces cerevisiae Rad55-Rad57 and Schizosaccharomyces pombe Rhp55-Rhp57, are mediators of Rad51 nucleoprotein formation. The recently discovered S. pombe Sfr1/Dds20 protein has been shown to interact with Rad51 and to operate in the Rad51-dependent DSB repair pathway in parallel to the paralog-mediated pathway. Here we show that Sfr1 is a nuclear protein and acts downstream of Rad50 in DSB processing. sfr1Delta is epistatic to rad18 (-) and rad60 (-), and Sfr1 is a high-copy suppressor of the replication and repair defects of a rad60 mutant. Sfr1 functions in a Cds1-independent UV damage tolerance mechanism. In contrast to mitotic recombination, meiotic recombination is significantly reduced in sfr1Delta strains. Our data indicate that Sfr1 acts in DSB repair mainly outside of S-phase, and is required for wild-type levels of meiotic recombination. We suggest that Sfr1 acts early in recombination and has a specific role in Rad51 filament assembly, distinct from that of the Rad51 paralogs.  相似文献   

5.
The RAD58 (XRS4) gene of Saccharomyces cerevisiae has been previously identified as a DNA repair gene. In this communication, we show that RAD58 also encodes an essential meiotic function. The spore inviability of rad58 strains is not rescued by a spo13 mutation. The rad50 mutation suppresses spore inviability of a spo13 rad58 strain suggesting that RAD58 acts after RAD50 in meiotic recombination. The rad58-4 mutation does not prevent mitotic recombination events. Haploid rad58 cells fail to carry out G2-repair of gamma-induced lesions, whereas rad58/rad58 diploids are able to perform some diploid-specific repair of these lesions.  相似文献   

6.
The Schizosaccharomyces pombe rhp51 + , rad22 + and rhp54 + genes are homologous to RAD51, RAD52 and RAD54 respectively, which are indispensable in the recombinational repair of double-strand breaks (DSBs) in Saccharomyces cerevisiae. The rhp51Δ and rhp54Δ strains are extremely sensitive to ionizing radiation; the rad22Δ mutant turned out to be much less sensitive. Homologous recombination in these mutants was studied by targeted integration at the leu1-32 locus. These experiments revealed that rhp51Δ and rhp54Δ are equally impaired in the integration of plasmid molecules (15-fold reduction), while integration in the rad22Δ mutant is only reduced by a factor of two. Blot-analysis demonstrated that the majority of the leu+ transformants of the wild-type and rad22Δ strains have integrated one or more copies of the vector. Gene conversion events were observed in less than 10% of the transformants. Interestingly, the relative contribution of gene conversion events is much higher in a rhp51Δ and a rhp54Δ background. Meiotic recombination is hardly affected in the rad22Δ mutant. The rhp51Δ and rhp54Δ strains also show minor deficiencies in this type of recombination. The viability of spores is 46% in the rad22Δ strain and 27% in the rhp54Δ strain, as compared with wild-type cells. However, in the rhp51Δ mutant the spore viability is only 1.7%, suggesting an essential role for Rhp51 in meiosis. The function of Rhp51 and Rhp54 in damage repair and recombination resembles the role of Rad51 and Rad54 in S. cerevisiae. Compared with Rad52 from S. cerevisiae, Rad22 has a much less prominent role in the recombinational repair pathway in S. pombe. Received: 20 July 1996  相似文献   

7.
Summary Spontaneous and UV induced unequal mitotic sister chromatid recombination was examined in RAD+ and rad52-1 strains carrying the LEU2 gene inserted in the rDNA locus. The rad52-1 mutation does not affect spontaneous sister chromatid recombination but greatly reduces the frequency of UV induced sister chromatid recombination.  相似文献   

8.
Summary Mutations in the RAD50 gene of Saccharomyces cerevisiae have been shown to reduce double strand break repair, meiotic recombination, and radiation-inducible mitotic recombination. Several different point mutations (including ochre and amber alleles) have been previously examined for effects on spontaneous mitotic recombination and did not reduce the frequency of recombination. Instead, the rad50 mutations conferred a moderate hyper-rec phenotype. This paper examines a deletion/interruption allele of RAD50 that removes 998 of 1312 amino acids and adds 1.1 kb of foreign DNA. The results clearly indicate that spontaneous mitotic recombination can occur in the absence of RAD50; in fact, the frequency of recombination is elevated over the wild-type cell. One possible interpretation of these observations is that the initiating lesion in spontaneous recombination events in mitosis might not be a double strand break.  相似文献   

9.
The RAD6 gene of Saccharomyces cerevisiae is required for post-replication repair of UV-damaged DNA, UV mutagenesis, and sporulation. Here, we show that the radiation sensitivity of a MAT a rad6 strain can be suppressed by the MAT2 gene carried on a multicopy plasmid. The a1-2 suppression is specific to the RAD6 pathway, as mutations in genes required for nucleotide excision repair or for recombinational repair do not show such mating-type suppression. The a1-2 suppression of the rad6 mutation requires the activity of the RAD52 group of genes, suggesting that suppression occurs by channelling of post-replication gaps present in the rad6 mutant into the RAD52 recombinational repair pathway. The a1-2 repressor could mediate this suppression via an enhancement in the expression, or the activity, of recombination genes.  相似文献   

10.
During meiotic prophase 1, homologous recombination is accompanied by dynamic chromosomal changes. The Ce-rdh-1/rad-51 gene is the only bacterial recA-like gene in the nematode C. elegans genome. Upon depletion of Ce-rdh-1/rad-51 using the RNA interference method, abnormal kinked chromosomes can be observed in mature oocytes at diakinesis, whereas synapsis between homologous chromosomes during the pachytene stage is normal. Following fertilization, Ce-rdh-1/rad-51-depleted embryos die early in embryogenesis, and their nuclei exhibit abnormal chromosome fragments and bridges. From epistasis analyses with Ce-spo-11 defective mutant and ionizing radiation, it is indicated that Ce-rdh-1/rad-51 functions after double-strand break (DSB) formation of meiotic recombination. Under the Ce-chk-2 defective condition, whose meiotic synapsis and meiotic recombination between homologous chromosomes are completely inhibited, the Ce-rdh-1/rad51 is normally expressed in the gonadal cells. Moreover, it seems that exogenous DSBs in the Ce-chk-2 defective nuclei at the pachytene stage can be repaired between sister chromatids in a Ce-rdh-1/rad-51-dependent manner. These results indicate that Ce-rdh-1/rad51 functions after both endogenous and exogenous DSB formation during meiosis, but not as pairing centers for meiotic synapsis.  相似文献   

11.
We have tested the ability of mutants of three additional genes in the excision repair pathway of Saccharomyces cerevisiae to suppress the hyper-recombination and rad52 double-mutant lethality phenotypes of the rad3-102 (formerly rem1-2) mutation. Such suppression has previously been been observed with mutant alleles of RAD1 and RAD4. We had hypothesized that the rad3-102 mutation created elevated levels of DNA lesions which could be processed by the products of the RAD1 and RAD4 genes into recombinogenic double-strand breaks requiring the RAD52 product for repair. In this report, we show that the RAD2, RAD7, and RAD10 genes are also necessary for this processing. We discuss our observations of varying levels of mitotic crossingover in Rem- rad double-mutant strains.  相似文献   

12.
Summary Three overlapping plasmids were isolated from a YEp24 library, which restore Rad+ functions to rad6-1 and rad6-3 mutants. Different subclones were made and shown to integrate by homologous recombination at the RAD6 site on chromosome VII, thus verifying the cloned DNA segments to be the RAD6 gene and not a suppressor. The gene resides in a 1.15 kb fragment, which restores Rad+ levels of resistance to U.V., MMS and -rays to both rad6-1 and rad6-3 strains. It also restores sporulation ability to rad6-1 diploids.Integrative deletion of the RAD6 gene was shown not to be completely lethal to the yeast. Our results suggest that the RAD6 gene has some cell cycle-specific function(s), probably during late S phase.  相似文献   

13.
We have created an isogenic series of yeast strains that carry genetic systems to monitor different types of recombination and mutation [B. Liefshitz, A. Parket, R. Maya, M. Kupiec, The role of DNA repair genes in recombination between repeated sequences in yeast, Genetics 140 (1995) 1199–1211.]. In the present study we characterize the effect of mutations in genes of the `error-prone' or postreplicative repair group on recombination and mutation. We show that rad5 and rad18 strains have elevated levels of spontaneous recombination, both of ectopic gene conversion and of recombination between direct repeats. The increase in recombination levels is similar in both mutants and in the rad5 rad18 double mutant, suggesting that the RAD5 and RAD18 gene products act together with respect to spontaneous recombination. In contrast, RAD5 and RAD18 play alternative roles in mutagenic repair: mutations in each of these genes elevate spontaneous forward mutation at the CAN1 locus, but when both genes are deleted, a low level of spontaneous mutagenesis is seen. The RAD5/RAD18 pathway of mutagenic repair is dependent on the REV3-encoded translesion polymerase. We analyze the interactions between the RAD5 and RAD18 gene products and other repair genes. The high recombination levels seen in rad5 and rad18 mutants is dependent on the RAD1, RAD51, RAD52, and RAD57 genes. The Srs2 helicase plays an important role in creating the recombinogenic substrate(s) processed by the RAD5 and RAD18 gene products.  相似文献   

14.
Summary Defects in the RAD52 gene of the yeast Saccharomyces cerevisiae reduce the levels of the NUC2 endo-exonuclease by approximately 90% compared to the levels in wild-type strains. To examine the potential role of this nuclease in the induction of mitochondrial petite mutations, congenic RAD52 and rad52-1 haploids were subjected to treatment with ethidium bromide, a well-known inducer of these mutations. The rad52 strain showed a much higher resistance to ethidium bromide-induced petite formation than the corresponding wild-type strain. Two approaches were taken to confirm that this finding reflected the nuclease deficiency, and not some other effect attributable to the rad52-1 mutation. First, a multicopy plasmid (YEp213-10) carrying NUC2 was transformed into a RAD52 strain. This resulted in an increased fraction of spontaneous petite mutations relative to that seen for the same strain without the plasmid and sensitized the strain carrying the plasmid to peptite induction by ethidium bromide treatment. Second, a strain having a nuc2 allele that encodes a temperaturesensitive nuclease was treated with ethidium bromide at the restrictive and permissive temperatures. Petite induction was reduced under restrictive conditions. Enzyme assays revealed that the RAD52 (YEp213-10) strain had the highest level of antibody-precipitable NUC2 endo-exonuclease whereas the nuc2 and rad52 mutants had the lowest levels. Furthermore, addition of ethidium bromide to the reaction mixture stimulated the activity of the nuclease on double-stranded DNA. Peptite induction by antifolate-mediated thymine nucleotide depletion was also inhibited by inactivation of RAD52 indicating that the effect of reduced NUC2 endo-exonuclease was not restricted to ethidium bromide treatment. Taken collectively, these results indicate that the NUC2 gene product functions in the production of mitochondrial petite mutations.  相似文献   

15.
We show that the Saccharomyces cerevisiae recombination protein Rad52 and the single-strand DNA-binding protein RPA assemble into cytologically detectable subnuclear complexes (foci) during meiotic recombination. Immunostaining shows extensive colocalization of Rad52 and RPA and more limited colocalization of Rad52 with the strand exchange protein Rad51. Rad52 and RPA foci are distinct from those formed by Rad51, and its meiosis-specific relative Dmc1, in that they are also detected in meiosis during replication. In addition, RPA foci are observed during mitotic S phase. Double-strand breaks (DSBs) promote formation of RPA, Rad52, and Rad51 foci. Mutants that lack Spo11, a protein required for DSB formation, are defective in focus formation, and this defect is suppressed by ionizing radiation in a dose-dependent manner. DSBs are not sufficient for the appearance of Rad51 foci; Rad52, Rad55, and Rad57 are also required supporting a model in which these three proteins promote meiotic recombination by promoting the assembly of strand exchange complexes.  相似文献   

16.
We have characterized two rad52 mutations that are cold-sensitive for growth on MMS agar. The mutations change residues 61 and 69, respectively, in the 504 amino-acid open reading frame. Neither mutation has a profound effect on mitotic crossing-over or on gene conversion. One has a severe deficiency in sporulation at all temperatures, while the other has a partial deficiency and reduced spore viability. Both mutants are retarded in growth on MMS agar by a high-copy plasmid expressing RAD51. Received: 18 April / 14 May 1997  相似文献   

17.
Summary Extracts of S. cerevisiae cells can catalyze homologous recombination between plasmids in vitro. Extracts prepared from rad50, rad52 or rad54 disruption mutants all have reduced recombinational activity compared to wild-type. The rad52 and rad54 extracts are more impaired in the recombination of plasmids containing double-strand breaks than of intact plasmids, whereas rad50 extracts are deficient equally for both types of substrate. The nuclease RhoNuc (previously designated yNucR), encoded by the RNC1 (previously designated NUC2) gene and regulated by the RAD52 gene, is not required for recombination when one substrate is single-stranded but is essential for the majority of recombination events when both substrates are double-stranded. Furthermore, elimination of this nuclease restores recombination in rad52 extracts to levels comparable to those in wild-type extracts.  相似文献   

18.
Summary The UV sensitive mutantrad2-44 ofSchizosaccharomyces pomhe increases mitotic gene conversion and crossover rates about 10-fold but has little or no effect on meiotic recombination. As inrad2+, recombination events on different chromosomes are coincidental inrad2-44, indicating that mitotic recombination takes place in a subpopulation of competent cells. However, the coefficient of coincidence is smaller in the mutant, whereas recombination rates among the competent cells are the same as inrad2+. This suggests thatrad2-44 increases mitotic recombination by enhancing the fraction of competent cells. The rate limiting factor in spontaneous mitotic recombination inS. pomhe appears to be the size of the subpopulation of recombinationally competent cells.  相似文献   

19.
Summary The RAD50 gene in yeast is required for recombination-repair (i.e., the double strand break repair pathway) in mitosis, and for meiotic recombination and sporulation. Both of these processes are complex and seem likely to require a relatively large number of gene products. In order to help define other genes required for recombination and repair processes in yeast, we have isolated extragenic revertants of rad50-4 which restore the ability to grow in the presence of MMS. Evidence from segregation indicates the extragenic revertants fall into at least five loci. Two of them reduce sporulation and spore viability at high temperature; another mutation confers a spontaneous hyperrec phenotype on mitotic cells. Thus, at least three revertants are candidates for mutations which affect recombination functions.  相似文献   

20.
In vertebrate cells, the five RAD51 paralogs (XRCC2/3 and RAD51B/C/D) enhance the efficiency of homologous recombination repair (HRR). Stalling and breakage of DNA replication forks is a common event, especially in the large genomes of higher eukaryotes. When cells are exposed to agents that arrest DNA replication, such as hydroxyurea or aphidicolin, fork breakage can lead to chromosomal aberrations and cell killing. We assessed the contribution of the HRR protein RAD51D in resistance to killing by replication‐associated DSBs. In response to hydroxyurea, the isogenic rad51d null CHO mutant fails to show any indication of HRR initiation, as assessed by induction RAD51 foci, as expected. Surprisingly, these cells have normal resistance to killing by replication inhibition from either hydroxyurea or aphidicolin, but show the expected sensitivity to camptothecin, which also generates replication‐dependent DSBs. In contrast, we confirm that the V79 xrcc2 mutant does show increased sensitivity to hydroxyurea under some conditions, which was correlated to its attenuated RAD51 focus response. In response to the PARP1 inhibitor KU58684, rad51d cells, like other HRR mutants, show exquisite sensitivity (>1000‐fold), which is also associated with defective RAD51 focus formation. Thus, rad51d cells are broadly deficient in RAD51 focus formation in response to various agents, but this defect is not invariably associated with increased sensitivity. Our results indicate that RAD51 paralogs do not contribute equally to cellular resistance of inhibitors of DNAreplication, and that the RAD51 foci associated with replication inhibition may not be a reliable indicator of cellular resistance to such agents. Environ. Mol. Mutagen. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号