首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Summary Leucine production rate, metabolic clearance rate and oxidation rate were measured in 10 Type 1 (insulin-dependent) diabetic patients after (1) 24 h insulin withdrawal, (2) conventional insulin therapy and (3) an overnight insulin infusion to maintain normoglycaemia, and in 10 control subjects. In the insulin-withdrawn patients, leucine concentration (259 ± 17 μmol/1), production rate (2.65 ± 0.29 p mol·min−1 kg−1) and oxidation rate (0.69 ± 0.10 μmol · min−1 · kg−1) were significantly greater (p < 0.001;p < 0.05;p < 0.005 respectively) than corresponding values in control subjects (127±6; 1.81 ± 0.12; 0.19 ± 0.02). Following conventional insulin therapy, leucine concentration (162 ± 12 μmol/1) and oxidation rate (0.43 ± 0.05 μmol · min−1 · kg−1) were lower than after insulin withdrawal but were still significantly greater than in control subjects (p<0.05;p<0.005). Although leucine concentration, production rate and metabolic clearance rate were normal after an overnight insulin infusion, leucine oxidation rate was still greater than normal (0.34 ± 0.06 μmol · min−1 kg−1;p<0.05). These results suggest that increased leucine concentration in insulin deficiency is due to elevated leucine production rate caused by increased proteolysis, and that leucine concentration is restored to normal by insulin treatment.  相似文献   

2.
Summary To determine whether long-term insulin deficiency alters insulin movement across the endothelium, plasma and lymph dynamics were assessed in dogs after alloxan (50 mg/kg; n = 8) or saline injection (n = 6). Glucose tolerance (KG) and acute insulin response were assessed by glucose injection before and 18 days after treatment. Two days later, hyperglycaemic (16.7 mmol/l) hyperinsulinaemic (60 pmol · min−1· kg−1) glucose clamps were carried out in a subset of dogs (n = 5 for each group), with simultaneous sampling of arterial blood and hindlimb lymph. Alloxan induced fasting hyperglycaemia (12.9 ± 2.3 vs 5.7 ± 0.2 mmol/l; p = 0.018 vs pre-treatment) and variable insulinopenia (62 ± 14 vs 107 ± 19 pmol/l; p = 0.079). The acute insulin response, however, was suppressed by alloxan (integrated insulin from 0–10 min: 155 ± 113 vs 2745 ± 541 pmol · l−1· 10 min−1; p = 0.0027), resulting in pronounced glucose intolerance (KG: 0.99 ± 0.19 vs 3.14 ± 0.38 min−1; p = 0.0002 vs dogs treated with saline). During clamps, steady state arterial insulin was higher in dogs treated with alloxan (688 ± 60 vs 502 ± 38 pmol/l; p = 0.023) due to a 25 % reduction in insulin clearance (p = 0.045). Lymph insulin concentrations were also raised (361 ± 15 vs 266 ± 27 pmol/l; p = 0.023), such that the lymph to arterial ratio was unchanged by alloxan (0.539 ± 0.022 vs 0.533 ± 0.033; p = 0.87). Despite higher lymph insulin, glucose uptake (Rd) was significantly diminished after injection of alloxan (45.4 ± 2.5 vs 64.3 ± 6.5 μmol · min−1· kg−1; p = 0.042). This was reflected in resistance of target tissues to the lymph insulin signal (ΔRd/Δlymph insulin: 3.389 ± 1.093 vs 11.635 ± 2.057 · 10−6· l · min−1· kg–1· pmol−1· l−1; p = 0.012) which correlated strongly with the KG (r = 0.86; p = 0.0001). In conclusion, alloxan induces insulinopenic diabetes, with glucose intolerance and insulin resistance at the target tissue level. Alloxan treatment, however, does not alter lymph insulin kinetics, indicating that insulin resistance of Type 1 (insulin-dependent) diabetes mellitus reflects direct impairment at the cellular level. [Diabetologia (1998) 41: 1327–1336] Received: 3 November 1997 and in final revised form: 2 June 1998  相似文献   

3.
Insulin resistance and coronary artery disease   总被引:5,自引:0,他引:5  
Summary The purpose of the present study was to quantitate insulin-mediated glucose disposal in normal glucose tolerant patients with angiographically documented coronary artery disease (CAD) and to define the pathways responsible for the insulin resistance. We studied 13 healthy, normal weight, normotensive subjects with angiographically documented CAD and 10 age-, weight-matched control subjects with an oral glucose tolerance test and a 2-h euglycaemic insulin (40 mU · m−2· min−1) clamp with tritiated glucose and indirect calorimetry. Lean body mass was measured with tritiated water. All CAD and control subjects had a normal oral glucose tolerance test. Fasting plasma insulin concentration (66 ± 6 vs 42 ± 6 pmol/l, p < 0.05) and area under the plasma insulin curve following glucose ingestion (498 ± 54 vs 348 ± 42 pmol · l−1· min−1, p < 0.001) were increased in CAD vs control subjects. Insulin-mediated whole body glucose disposal (27.8 ± 3.9 vs 38.3 ± 4.4 μmol · kg fat free mass (FFM)−1· min−1, p < 0.01) was significantly decreased in CAD subjects and this was entirely due to diminished non-oxidative glucose disposal (8.9 ± 2.8 vs 20.0 ± 3.3 μmol · kg FFM−1· min−1, p < 0.001). The magnitude of insulin resistance was positively correlated with the severity of CAD (r = 0.480, p < 0.05). In the CAD subjects basal and insulin-mediated rates of glucose and lipid oxidation were normal and insulin caused a normal suppression of hepatic glucose production. In conclusion, subjects with angiographically documented CAD are characterized by moderate-severe insulin resistance and hyperinsulinaemia and should be included in the metabolic and cardiovascular cluster of disorders that comprise the insulin resistance syndrome or ’syndrome X'. [Diabetologia (1996) 39: 1345–1350] Received: 6 February 1996 and in revised form: 29 May 1996  相似文献   

4.
Summary To test whether gluconeogenesis is increased in non-insulin-dependent diabetic (NIDDM) patients we infused (post-absorptive state) healthy subjects and NIDDM patients with [6,6-2H2]glucose (150 min) and [3-13C]lactate (6 h). Liver glutamine was sampled with phenylacetate and its labelling pattern determined (mass spectrometry) after purification of the glutamine moiety of urinary phenylacetylglutamine. After correction for 13CO2 re-incorporation (control test with NaH13CO3 infusion) this pattern was used to calculate the dilution factor (F) in the hepatic oxaloacetate pool and fluxes through liver Krebs cycle. NIDDM patients had increased lactate turnover rates (16.18 ± 0.92 vs 12.14 ± 0.60 μmol · kg−1· min−1, p < 0.01) and a moderate rise in glucose production (EGP) (15.39 ± 0.87 vs 12.52 ± 0.28 μmol · kg−1· min−1, p = 0.047). Uncorrected contributions of gluconeogenesis to EGP were 31 ± 3 % (control subjects) and 17 ± 2 % (NIDDM patients). F was comparable (1.34 ± 0.02 and 1.39 ± 0.09, respectively) and the corrected percent and absolute contributions of gluconeogenesis were not increased in NIDDM (25 ± 3 % and 3.8 ± 0.5 μmol · kg−1· min−1) compared to control subjects (41 ± 3 % and 5.1 ± 0.4 μmol · kg−1· min−1). The calculated pyruvate carboxylase over pyruvate dehydrogenase activity ratio was comparable (12.1 ± 2.6 vs 11.2 ± 1.4). Lastly hepatic fatty oxidation, as estimated by the model, was not increased in NIDDM (1.8 ± 0.4 vs 1.6 ± 0.1 μmol · kg−1· min−1). In conclusion, in the patients studied we found no evidence of increased hepatic fatty oxidation, or, despite the increased lactate turnover rate, an increased gluconeogenesis. [Diabetologia (1998) 41: 212–220] Received: 4 July 1997 and in revised form: 16 September 1997  相似文献   

5.
Summary A pig model of insulin-dependent diabetes was used to examine the importance of the portal-systemic insulin gradient for whole-body metabolic control. Six pigs had jugular vein, portal vein, and carotid artery cannulae implanted before being made diabetic (150 mg kg− 1 streptozotocin). Each animal received 4 weeks of portal and 4 weeks of peripheral insulin delivery in random order. The blood glucose target range was 5–10 mmol · l− 1, and serum fructosamine and fasting and postprandial blood glucose concentrations were not different between peripheral and portal insulin infusion. Insulin requirement was not different between the 4 week infusion periods, but fasting peripheral insulin levels after peripheral delivery (124 ± 16 (mean ± SEM) pmol · l− 1) were significantly higher (p < 0.05) than in portally infused (73.8 ± 5.4 pmol · l− 1) or pre-diabetic control animals (68.4 ± 3.6 pmol · l− 1). Basal hepatic glucose output was also higher (p < 0.05) in peripherally (4.2 ± 0.4 mg · kg− 1· min− 1) than in portally infused animals (2.9 ± 0.4 mg · kg− 1· min− 1) or controls (3.0 ± 0.3 mg · kg− 1· min− 1). Clamp glucose metabolic clearance rate was, however, not different between the peripheral and portal insulin delivery routes (8.1 ± 1.0 vs 9.0 ± 0.7 ml · kg− 1· min− 1), although both were significantly lower (p < 0.05) than that measured in prediabetic control animals (11.7 ± 1.0 ml · kg− 1· min− 1). Lipid profiles and subfractions were similar in all three groups. It is concluded that the portal route of delivery is superior to the peripheral in maintaining more appropriate insulin concentrations and control of hepatic glucose output, although in the absence of euglycaemia it is still associated with significant metabolic abnormalities. [Diabetologia (1997) 40: 1125–1134] Received: 25 February 1997 and in revised form: 23 May 1997  相似文献   

6.
Summary The effect of simvastatin (10–20 mg/day) on kidney function, urinary albumin excretion rate and insulin sensitivity was evaluated in 18 Type 2 (non-insulin-dependent) diabetic patients with microalbuminuria and moderate hypercholesterolaemia (total cholesterol ≥5.5 mmol·l−1). In a double-blind, randomized and placebo-controlled design treatment with simvastatin (n=8) for 36 weeks significantly reduced total cholesterol (6.7±0.3 vs 5.1 mmol·l−1 (p<0.01)), LDL-cholesterol (4.4±0.3 vs 2.9±0.2 mmol·l−1 (p<0.001)) and apolipoprotein B (1.05±0.04 vs 0.77±0.02 mmol·l−1 (p<0.01)) levels as compared to placebo (n=10). Both glomerular filtration rate (mean±SEM) (simvastatin: 96.6±8.0 vs 96.0±5.7 ml·min−1·1.73 m−2, placebo: 97.1±6.7 vs 88.8±6.0 ml·min−1·1.73 m−2) (NS) and urinary albumin excretion rate (geometric mean x/÷ antilog SEM) (simvastatin: 18.4x/÷1.3vs 16.2 x/÷1.2 μg·min−1, placebo 33.1 x/÷ 1.3 vs 42.7 x/÷ 1.3 μg·min−1)(NS) were unchanged during the study. A euglycaemic hyperinsulinaemic clamp was performed at baseline and after 18 weeks in seven simvastatin-and nine placebo-treated patients. Isotopically determined basal and insulin-stimulated glucose disposal was similarly reduced before and during therapy in both the simvastatin (2.0±0.1 vs 1.9±0.1 (NS) and 3.1±0.6 vs 3.1±0.7 mg·kg−1·min−1 (NS)) and the placebo group (1.9±0.1 vs 1.8±0.1 (NS) and 4.1±0.6 vs 3.8±0.2 mg·kg−1·min−1 (NS)). No different was observed in glucose storage or glucose and lipid oxidation before and after treatment. Further, the suppression of hepatic glucose production during hyperinsulinaemia was not influenced by simvastatin (−0.7±0.8 vs −0.7±0.5 mg·kg−1·min−1 (NS)). In conclusion, despite marked improvement in the dyslipidaemia simvastatin had no impact on kidney function or urinary albumin excretion rate and did not reduce insulin resistance in these microalbuminuric and moderately hypercholesterolaemic Type 2 diabetic patients.  相似文献   

7.
Summary Insulin resistance is associated with a decreased vasodilator response to insulin. Because insulin's vasodilator effect is nitric oxide dependent, this impairment may reflect endothelial dysfunction. Troglitazone, an insulin-sensitiser, might thus improve insulin-dependent and/or endothelium-dependent vascular function in insulin resistant obese subjects. For 8 weeks, fifteen obese subjects were treated with either 400 mg troglitazone once daily or placebo, in a randomised, double-blind, cross-over design. At the end of each treatment period, we measured forearm vasodilator responses (plethysmography) to intra-arterial administered acetylcholine and sodium nitroprusside; insulin sensitivity and insulin-induced vascular and neurohumoral responses (clamp); vasoconstrictor responses to N G-monomethyl-L-arginine (L-NMMA) during hyperinsulinaemia; and ambulatory 24-h blood pressure (ABPM). Baseline data (placebo) of obese subjects were compared with those obtained in lean control subjects. Obese subjects were insulin resistant compared with leans (whole-body glucose uptake: 26.8 ± 3.0 vs. 53.9 ± 4.3 μmol · kg–1· min–1, p < 0.001). Troglitazone improved whole-body glucose uptake (to 31.9 ± 3.3 μmol · kg–1· min–1, p = 0.028), and forearm glucose uptake (from 1.09 ± 0.54 to 2.31 ± 0.69 μmol · dL–1· min–1, p = 0.006). Insulin-induced vasodilatation was blunted in obese subjects (percent increase in forearm blood flow (FBF) in lean 66.5 ± 23.0 %, vs. 10.1 ± 11.3 % in obese, p = 0.04), but did not improve during troglitazone. Vascular responses to acetylcholine, sodium nitroprusside and L-NMMA did not differ between the obese and lean group, nor between both treatment periods in the obese individuals. In conclusion, in insulin resistant obese subjects, endothelial vascular function is normal despite impaired vasodilator responses to insulin. Troglitazone improved insulin sensitivity but it had no effects on endothelium-dependent and -independent vascular responses. These data do not support an association between insulin resistance and endothelial function. [Diabetologia (1998) 41: 569–576] Received: 19 September 1997 and in revised form: 22 December 1997  相似文献   

8.
Summary In order to evaluate the role of portal insulin in the modulation of hepatic glucose production (HGP), measurements of plasma glucose and insulin concentrations and both HGP and peripheral glucose disappearance rates were made following an infusion of a dose of tolbutamide (0.74 mg · m−2· min−1) in healthy volunteers that does not result in an increase in peripheral vein insulin concentrations or metabolic clearance rate of glucose. The results showed that the infusion of such a dose of tolbutamide was associated with a significant and rapid decline in both HGP (from 9.0 ± 0.5 to 7.7 ± 0.5 μmol · kg−1· min−1 or Δ = − 13.8 ± 4.5 %; p < 0.001 compared to saline) and plasma glucose concentration (from 5.1 ± 0.2 to 4.4 ± 0.1 mmol/l or Δ = − 13.0 ± 2.1 %; p < 0.01 compared to saline). Since neither HGP nor fasting glucose fell when tolbutamide-stimulated insulin secretion was inhibited by the concurrent administration of somatostatin, it indicated that tolbutamide by itself, does not directly inhibit HGP. Finally, HGP fell by 26.3 ± 6.0 % at 10 min after a dose of tolbutamide that elevated both peripheral and portal insulin concentrations, at a time when HGP had barely increased (Δ = + 6.9 ± 5.3 %). The difference in the magnitude of the two responses was statistically significant (p < 0.03), providing further support for the view that insulin can directly inhibit HGP, independent of any change in flow of substrates from periphery to liver. [Diabetologia (1997) 40: 1300–1306] Received: 8 April 1997 and in revised form: 20 June 1997  相似文献   

9.
Aims/hypothesis. Insulin resistance for glucose metabolism is associated with hyperlipidaemia and high blood pressure. In this study we investigated the effect of primary hyperlipidaemia on basal and insulin-mediated glucose and on non-esterified fatty acid (NEFA) metabolism and mean arterial pressure in hyperlipidaemic transgenic mice overexpressing apolipoprotein C1 (APOC1). Previous studies have shown that APOC1 transgenic mice develop hyperlipidaemia primarily because of an impaired hepatic uptake of very low density lipoprotein (VLDL). Methods. Basal and hyperinsulinaemic (6 mU · kg–1· min–1), euglycaemic (7 mmol/l) clamps with 3-3H-glucose or 9,10-3H-palmitic acid infusions and in situ freeze clamped tissue collection were carried out. Results. The APOC1 mice showed increased basal plasma cholesterol, triglyceride, NEFA and decreased glucose concentrations compared with wild-type mice (7.0 ± 1.2 vs 1.6 ± 0.1, 9.1 ± 2.3 vs 0.6 ± 0.1, 1.9 ± 0.2 vs 0.9 ± 0.1 and 7.0 ± 1.0 vs 10.0 ± 1.1 mmol/l, respectively, p < 0.05). Basal whole body glucose clearance was increased twofold in APOC1 mice compared with wild-type mice (18 ± 2 vs 10 ± 1 ml · kg–1· min–1, p < 0.05). Insulin-mediated whole body glucose uptake, glycolysis (generation of 3H2O) and glucose storage increased in APOC1 mice compared with wild-type mice (339 ± 28 vs 200 ± 11; 183 ± 39 vs 128 ± 17 and 156 ± 44 vs 72 ± 17 μmol · kg–1· min–1, p < 0.05, respectively), corresponding with a twofold to threefold increase in skeletal muscle glycogenesis and de novo lipogenesis from 3-3H-glucose in skeletal muscle and adipose tissue (p < 0.05). Basal whole body NEFA clearance was decreased threefold in APOC1 mice compared with wild-type mice (98 ± 21 vs 314 ± 88 ml · kg–1· min–1, p < 0.05). Insulin-mediated whole body NEFA uptake, NEFA oxidation (generation of 3H2O) and NEFA storage were lower in APOC1 mice than in wild-type mice (15 ± 3 vs 33 ± 6; 3 ± 2 vs 11 ± 4 and 12 ± 2 vs 22 ± 4 μmol · kg–1· min–1, p < 0.05) in the face of higher plasma NEFA concentrations (1.3 ± 0.3 vs 0.5 ± 0.1 mmol/l, p < 0.05), respectively. Mean arterial pressure and heart rate were similar in APOC1 vs wild-type mice (82 ± 4 vs 85 ± 3 mm Hg and 459 ± 14 vs 484 ± 11 beats · min–1). Conclusions/interpretation. 1) Hyperlipidaemic APOC1 mice show reduced NEFA and increased glucose metabolism under both basal and insulin-mediated conditions, suggesting an intrinsic defect in NEFA metabolism. Primary hyperlipidaemia alone in APOC1 mice does not lead to insulin resistance for glucose metabolism and high blood pressure. [Diabetologia (2001) 44: 437–443] Received: 14 September 2000 and in revised form: 23 November 2000  相似文献   

10.
Summary The aim of the present study was to elucidate the pathophysiologic significance of circulating ouabain as a link between insulin resistance (IR) and hypertension (HT) in NIDDM. Euglycaemic (4.5 mmol/l) hyperinsulinaemic (360–580 pmol/l) clamping was performed using an artificial endocrine pancreas. Plasma ouabain-like immunoreactivity (OLI) was determined by radioimmunoassay using a highly specific antibody to ouabain. HT was defined as systolic blood pressure > 140 mm Hg and/or diastolic > 90 mm Hg or being treated with antihypertensive agents. The values (mean ± SEM) of glucose infusion rate (GIR) and plasma OLI were compared among the four groups classified using IR and HT as factors. Group I (IR−/HT−, n = 15):GIR 7.20 ± 0.36 mg · kg−1· min−1, OLI 130.8 ± 20.9 pmol/l, which was not different from that in eight normal control subjects (7.69 ± 0.40 mg · kg−1· min−1 and 142.6 ± 32.3 pmol/l, respectively); Group II (IR−/HT+, n = 13): 5.89 ± 0.36 mg · kg−1· min−1, 172.5 ± 35.0 pmol/l; Group III (IR+/HT−, n = 14) 1.91 ± 0.28 mg · kg−1· min−1, 576.6 ± 161.5 pmol/l (p < 0.01 vs Group I and II); Group IV (IR+/HT+, n = 15) 1.79 ± 0.22 mg · kg−1· min−1, 703.1 ± 170.1 pmol/l (p < 0.01 vs Group I and II), respectively. Six of 57 NIDDM patients studied exhibited very high (> 1500 pmol/l) plasma OLI concentrations, showed marked insulin resistance and were all hypertensive. When analysed as a whole, plasma OLI was negatively correlated with GIR (p < 0.001), but was not correlated with arterial blood pressure. These results demonstrate that plasma concentration of OLI is closely associated with the severity of IR but not with blood pressure elevation. It is, however, possible that in some fraction of NIDDM patients with insulin resistance, the elevation of blood pressure may be causally related to circulating OLI. [Diabetologia (1995) 38: 792–797] Received: 13 September 1994 and in revised form: 9 December 1994  相似文献   

11.
Aims/hypothesis. The provision of stable, reproducible basal insulin is crucial to diabetes management. This study in dogs examined the metabolic effects and interstitial fluid (ISF) profiles of fatty acid acylated insulin, LysB29-tetradecanoyl, des-(B30) human insulin (NN304). Methods. Euglycaemic clamps were carried out under inhalant anaesthesia during equimolar intravenous infusions (3.6 pmol · min–1· kg–1 for 480 min) of human insulin or NN304 (n = 8 per group). Results. Steady-state total NN304 (albumin-bound and unbound) was considerably higher in plasma compared with human insulin (1895 ± 127 vs 181 ± 10 pmol/l, p < 0.001) and increased in interstitial fluid (163 ± 14 vs 106 ± 9 pmol/l, p < 0.01). The halftime for appearance of NN304 in interstitial fluid was slower than human insulin (92 vs 29 min, p < 0.001). Yet, equivalency of action was shown for glucose turnover; steady-state glucose uptake (Rd) of 7.28 ± 0.55 and 6.76 ± 0.24 mg · min–1· kg–1 and endogenous glucose production of 0.11 ± 0.12 and 0.22 ± 0.03 mg · min–1· kg–1 (p > 0.40; NN304 and human insulin, respectively). Similar to interstitial fluid, half times for Rd and endogenous glucose production were delayed during NN304 infusion (162 vs 46 min and 80 vs 31 min, respectively; p < 0.01 vs human insulin). Conclusion/interpretation. Firstly equivalency of steady-state action is found at equimolar physiologic infusions of human insulin and NN304. Secondly NN304 binding to plasma albumin results in slower NN304 appearance in the interstitial compartment compared with human insulin. Thirdly the delay in appearance of NN304 in interstitial fluid may not in itself be a source of the protracted action of this insulin analogue. The protracted effect is due primarily to albumin binding of the insulin analogue NN304. [Diabetologia (1999) 42: 1254–1263] Received: 16 March 1999 and in revised form: 11 May 1999  相似文献   

12.
A. Mari 《Diabetologia》1998,41(9):1029-1039
Summary A new modelling analysis was developed to assess insulin sensitivity with a tracer-modified intravenous glucose tolerance test (IVGTT). IVGTTs were performed in 5 normal (NGT) and 7 non-insulin-dependent diabetic (NIDDM) subjects. A 300 mg/kg glucose bolus containing [6,6-2H2]glucose was given at time 0. After 20 min, insulin was infused for 5 min (NGT, 0.03; NIDDM, 0.05 U/kg). Concentrations of tracer, glucose, insulin and C-peptide were measured for 240 min. A circulatory model for glucose kinetics was used. Glucose clearance was assumed to depend linearly on plasma insulin concentration delayed. Model parameters were: basal glucose clearance (Clb), glucose clearance at 600 pmol/l insulin concentration (Cl600), basal glucose production (Pb), basal insulin sensitivity index (BSI = Clb/basal insulin concentration); incremental insulin sensitivity index (ISI = slope of the relationship between insulin concentration and glucose clearance). Insulin secretion was calculated by deconvolution of C-peptide data. Indices of basal pancreatic sensitivity (PSIb) and first (PSI1) and second-phase (PSI2) sensitivity were calculated by normalizing insulin secretion to the prevailing glucose levels. Diabetic subjects were found to be insulin resistant (BSI: 2.3 ± 0.6 vs 0.76 ± 0.18 ml · min–1· m–2· pmol/l–1, p < 0.02; ISI: 0.40 ± 0.06 vs 0.13 ± 0.05 ml · min–1· m–2· pmol/l–1, p < 0.02; Cl600: 333 ± 47 vs 137 ± 26 ml · min–1· m–2, p < 0.01; NGT vs NIDDM). Pb was not elevated in NIDDM (588 ± 169 vs 606 ± 123 μmol · min–1· m–2, NGT vs NIDDM). Hepatic insulin resistance was however present as basal glucose and insulin were higher. PSI1 was impaired in NIDDM (67 ± 15 vs 12 ± 7 pmol · min–1· m–2· mmol/l–1, p < 0.02; NGT vs NIDDM). In NGT and in a subset of NIDDM subjects (n = 4), PSIb was inversely correlated with BSI (r = 0.95, p < 0.0001, log transformation). This suggests the existence of a compensatory mechanism that increases pancreatic sensitivity in the presence of insulin resistance, which is normal in some NIDDM subjects and impaired in others. In conclusion, using a simple test the present analysis provides a rich set of parameters characterizing glucose metabolism and insulin secretion, agrees with the literature, and provides some new information on the relationship between insulin sensitivity and secretion. [Diabetologia (1998) 41: 1029–1039] Received: 17 September 1997 and in final revised form: 28 April 1998  相似文献   

13.
Acute blockade by endothelin-1 of haemodynamic insulin action in rats   总被引:2,自引:0,他引:2  
Aims/hypothesis Plasma levels of endothelin-1 are frequently elevated in patients with hypertension, obesity and type 2 diabetes. We hypothesise that this vasoconstrictor may prevent full perfusion of muscle, thereby limiting delivery of insulin and glucose and contributing to insulin resistance. Materials and methods The acute effects of endothelin-1 on insulin-mediated haemodynamic and metabolic effects were examined in rats in vivo. Endothelin-1 (50 pmol min−1 kg−1 for 2.5 h) was infused alone, or 30 min prior to a hyperinsulinaemic-euglycaemic insulin clamp (10 mU min−1 kg−1 for 2 h). Insulin clamps (10 or 15 mU min−1 kg−1) were performed after 30 min of saline infusion. Results Endothelin-1 infusion alone increased plasma endothelin-1 11-fold (p < 0.05) and blood pressure by 20% (p < 0.05). Endothelin-1 alone had no effect on femoral blood flow, capillary recruitment or glucose uptake, but endothelin-1 with 10 mU min−1 kg−1 insulin caused a decrease in insulin clearance from 0.35 ± 0.6 to 0.19 ± 0.02 ml/min (p = 0.02), resulting in significantly higher plasma insulin levels (10 mU min−1 kg−1 insulin: 2,120 ± 190 pmol/l; endothelin-1 + 10 mU min−1 kg−1 insulin: 4,740 ± 910 pmol/l), equivalent to 15 mU min−1 kg−1 insulin alone (4,920 ± 190 pmol/l). The stimulatory effects of equivalent doses of insulin on femoral blood flow, capillary recruitment and glucose uptake were blocked by endothelin-1. Conclusions/interpretation Endothelin-1 blocks insulin’s haemodynamic effects, particularly capillary recruitment, and is associated with decreased muscle glucose uptake and glucose infusion rate. These findings suggest that elevated endothelin-1 levels may contribute to insulin resistance of muscle by increasing vascular resistance and limiting insulin and glucose delivery.  相似文献   

14.
Aims/hypothesis Insulin resistance may be associated with ectopic fat accumulation potentially determined by reduced lipid oxidation. In patients with type 1 diabetes peripheral insulin resistance is associated with higher intramyocellular lipid content. We assessed whether these patients are also characterised by intrahepatic fat accumulation and abnormal fat oxidation. Methods Nineteen patients with type 1 diabetes (6 women, 13 men, age 35±7 years, BMI 23±3 kg/m2, HbA1c 8.7±1.4%) and 19 healthy matched individuals were studied by (1) euglycaemic–hyperinsulinaemic clamp combined with [6,6−2H2]glucose infusion to assess whole–body glucose metabolism; (2) indirect calorimetry to assess glucose and lipid oxidation; and (3) localised 1H−magnetic resonance spectroscopy of the liver to assess intrahepatic fat content. Results Patients with type 1 diabetes showed a reduced insulin−stimulated metabolic clearance rate of glucose (4.3±1.3 ml kg−1 min−1) in comparison with normal subjects (6.0±1.6 ml kg−1 min−1; p<0.001). Endogenous glucose production was higher in diabetic patients (p=0.001) and its suppression was impaired during insulin administration (66±30 vs 92±8%; p=0.047) in comparison with normal subjects. Plasma glucagon concentrations were not different between groups. The estimated hepatic insulin concentration was lower in diabetic patients than in normal subjects (p<0.05), as was the intrahepatic fat content (1.5±0.7% and 2.2±1.0% respectively; p<0.03), the latter in association with a reduced respiratory quotient (0.74±0.05 vs 0.84±0.06; p=0.01) and increased fasting lipid oxidation (1.5±0.5 vs 0.8±0.4 mg kg−1 min−1; p<0.01). Conclusions/interpretation In patients with type 1 diabetes, insulin resistance was not associated with increased intrahepatic fat accumulation. In fact, diabetic patients had reduced intrahepatic fat content, which was associated with increased fasting lipid oxidation. The unbalanced hepatic glucagon and insulin concentrations affecting patients with type 1 diabetes may be involved in this abnormality of intrahepatic lipid metabolism.  相似文献   

15.
Aims/hypothesis. Our aim was to determine whether an alteration in splanchnic glucose metabolism could contribute to postprandial hyperglycaemia in people with Type I (insulin-dependent) diabetes mellitus. Methods. Splanchnic glucose extraction, hepatic glycogen synthesis and endogenous glucose production were compared in 8 Type I diabetic patients and in 11 control subjects. Endogenous hormone secretion was inhibited with somatostatin while insulin ( ∼ 550 pmol/l) and glucagon ( ∼ 130 ng/l) concentrations were matched with exogenous hormone infusions. Glucose containing [3-3H] glucose was infused into the duodenum at a rate of 20 μmol · kg-1· min-1. Plasma glucose concentrations were maintained at about 8.5 mmol/l in both groups by means of a separate variable intravenous glucose infusion. Results. Initial splanchnic glucose uptake, calculated by subtracting the systemic rate of appearance of [3-3H] glucose from the rate of infusion of [3-3H] glucose into the duodenum, did not differ in the diabetic and non-diabetic patients (4.1 ± 0.8 vs 3.0 ± 1.0 μmol/kg/min). In addition, hepatic glycogen synthesis, measured using the acetaminophen glucuronide method did not differ (10.7 ± 2.4 vs 10.1 ± 2.7 μmol · kg-1· min-1). On the other hand, suppression of endogenous glucose production, measured by an intravenous infusion of [6,6-2H2] glucose, was greater (p < 0.05) in the diabetic than in the non-diabetic subjects (1.7 ± 1.6 vs 5.8 ± 1.9 μmol · kg-1· min-1). Conclusion/interpretation. When glucose, insulin and glucagon concentrations are matched in individuals with relatively good chronic glycaemic control, Type I diabetes does not alter initial splanchnic glucose uptake of enterally delivered glucose or hepatic glycogen synthesis. Alterations in splanchnic glucose metabolism are not likely to contribute to postprandial hyperglycaemia in people with well controlled Type I diabetes. [Diabetologia (2001) 44: 729–737] Received: 10 November 2000 and in revised form: 22 January 2001  相似文献   

16.
Aims/hypothesis This study was designed to investigate the effect of short-term ACE inhibitor treatment on insulin sensitivity and to examine possible underlying metabolic and haemodynamic effects in obese insulin-resistant subjects.Methods A randomised, double-blind placebo-controlled trial was performed in 18 obese insulin-resistant men (age, 53 ± 2 years; BMI, 32.6 ± 0.8 kg/m2; homeostasis model assessment of insulin resistance, 5.6 ± 0.5; systolic blood pressure [SBP], 140.8 ± 3.2; diastolic blood pressure [DBP], 88.8 ± 1.6 mmHg), who were free of any medication. The aim was to examine the effects of 2 weeks of ACE inhibitor treatment (ramipril, 5 mg/day) on insulin sensitivity, forearm blood flow, substrate fluxes across the forearm, whole-body substrate oxidation and intramuscular triacylglycerol (IMTG) content.Results Ramipril treatment decreased ACE activity compared with placebo (−22.0 ± 1.7 vs 0.2 ± 1.1 U/l, respectively, p < 0.001), resulting in a significantly reduced blood pressure (SBP, −10.8 ± 2.1 vs −2.7 ± 2.0 mmHg, respectively, p = 0.01; DBP, −10.1 ± 1.3 vs −4.2 ± 2.1 mmHg, respectively, p = 0.03). Ramipril treatment had no effect on whole-body insulin-mediated glucose disposal (before: 17.9 ± 2.0, after: 19.1 ± 2.4 μmol kg body weight−1 min−1, p = 0.44), insulin-mediated glucose uptake across the forearm (before: 1.82 ± 0.39, after: 1.92 ± 0.29 μmol 100 ml forearm tissue−1 min−1, p = 0.81) and IMTG content (before: 45.4 ± 18.8, after: 48.8 ± 27.5 μmol/mg dry muscle, p = 0.92). Furthermore, the increase in carbohydrate oxidation (p < 0.001) and forearm blood flow (p < 0.01), and the decrease in fat oxidation (p < 0.001) during insulin stimulation were not significantly different between treatments.Conclusions/interpretation Short-term ramipril treatment adequately reduced ACE activity and blood pressure, but had no significant effects on insulin sensitivity, forearm blood flow, substrate fluxes across the forearm, whole-body substrate oxidation and IMTG content in obese insulin-resistant subjects.  相似文献   

17.
Summary The aim of this study was to determine the effects of late pregnancy on the ability of insulin to suppress maternal hepatic glucose production in the rat. Unlike in most previous studies, suppression of hepatic glucose production was measured at levels of glycaemia above the relatively hypoglycaemic basal pregnant level. Glucose kinetics were measured using steady-state tracer methodology in chronically catheterised, conscious virgin control and pregnant rats, firstly, during basal and low-dose hyperinsulinaemic euglycaemic clamp conditions and secondly, during a three-step glucose infusion protocol (glucose infusion rates of 0, 60 and 150 μmol · kg−1· min−1). During the clamps, plasma glucose levels were not different (6.1 ± 0.4 vs 6.5 ± 0.3 mmol/l, pregnant vs virgin; N. S.), but plasma insulin levels were higher in the pregnant rats (242 ± 30 vs 154 ± 18 pmol/l, pregnant vs virgin; p < 0.05) most probably due to stimulated endogenous insulin release in this group. Hepatic glucose production was suppressed from basal levels by 41 % in virgin and 90 % in pregnant rats. During the glucose infusion studies, at matched insulin levels (147 ± 10 vs 152 ± 14 pmol/l), but at plasma glucose levels which were much lower in the pregnant rats (5.5 ± 0.2 vs 8.4 ± 0.6 mmol/l, pregnant vs virgin; p < 0.0001), hepatic glucose production was shown to be suppressed by a similar degree in both groups (41 ± 5 vs 51 ± 5 % from basal, pregnant vs virgin; N. S.). Both the plasma insulin and percentage suppression of hepatic glucose production dose responses to plasma glucose were markedly shifted to the left indicating that the plasma glucose set point is lowered in pregnancy. In conclusion, suppression of hepatic glucose production by insulin is not impaired and the set point for plasma glucose homeostasis is lowered during late pregnancy in the rat. [Diabetologia (1996) 39: 785–792] Received: 2 October 1995 and in final revised form: 1 February 1996  相似文献   

18.
Summary There are important differences between the short- and long-term effects of adrenaline on determinants of glucose tolerance. To assess this metabolic adaptation at tissue level, the present study examined the effect of acute and prolonged in vivo elevation of adrenaline on glycogen metabolism and glycolysis in skeletal muscle. Adrenaline (50 ng · kg−1 · min−1) was infused for 2 h or 74 h and the results compared with 1 h 0.9% NaCl infusion in six trained dogs. Muscle glycogen content was reduced by long-term adrenaline (161 ± 17 vs NaCl 250 ± 24 μmol/g dry weight;p < 0.05) but not short-term adrenaline (233 ± 21) indicating a sustained effect of adrenaline on glycogen metabolism. Acutely, glycogen synthase I was reduced (short-term adrenaline 12 ± 6 vs NaC122 ± 7μmol glycosyl units · g−1 · min−1;p < 0.05) but returned to normal with prolonged adrenaline infusion (20 ± 5). In contrast, Km for glycogen phosphorylasea was not changed acutely (short-term adrenaline 31 ± 6 vs NaCl 27 ± 7 mmol/1 inorganic phosphate) but was reduced during long-term infusion (19 ± 4;p < 0.05 vs short-term adrenaline). Thus, with short- and long-term adrenaline infusion, there were different enzyme changes, although likely to promote glycogenolysis in both cases. In the glycolytic pathway the substrates glucose 6-phosphate and fructose 6-phosphate did not change significantly and hexokinase was not inhibited. Acutely, phosphofructokinase had reduced Vmax (short-term adrenaline 34 ± 6 vs NaCl 44 ± 5 U/g; p < 0.05) but was still above the maximal operating rate in vivo. With prolonged adrenaline infusion, the Km for phosphofructokinase was reduced (long-term adrenaline 0.32 ± 0.03 vs NaCl 0.44 ± 0.07 mmol/l fructose 6-phosphate;p < 0.05). In this situation of relatively low glycolytic flux, the sustained glycogenolytic effect of prolonged adrenaline infusion mediated by increased glycogen phosphorylase a ctivity occurs without a significant accumulation of hexose monophosphates or impairment of glycolysis.  相似文献   

19.
Summary The aim of the present study was to measure whole body glucose uptake (M) and oxidation rate by euglycaemic hyperinsulinaemic clamp and indirect calorimetry in 7 morbidly obese subjects (BMI > 40 kg/m2) at three time points: before bilio-pancreatic diversion (BPD) surgery (Ob); 3 months after surgery (POI); and after reaching stable body weight, at least 2 years after surgery (POII). A group of 7 control subjects (C), matched groupwise for sex, age and BMI with POII patients, was also studied. The M value at POI was significantly higher than at Ob (49.12 ± 8.57 vs 18.14 ± 8.57 μmol · kg−1· min−1). No statistical difference was observed between the POII and C groups. Similarly, glucose oxidation rate was significantly increased at POI with respect to Ob (24.2 ± 7.23 vs 9.42 ± 3.91 μmol · kg−1· min−1) and was not significantly different between POII and C. Basal levels of non-esterified fatty acids (NEFA) decreased significantly both from Ob to POI and from POI to POII (1517.1 ± 223.9 vs 1039.6 ± 283.4 vs 616.0 ± 77.6 μmol · l−1). The same applied to basal plasma triglycerides (2.07 ± 0.77 vs 1.36 ± 0.49 vs 0.80 ± 0.19 g · l−1). Weight decreased mainly in the late postoperative period (POI to POII 124.28 ± 11.22 to 69.71 ± 11.78, 83 % of total decrement), rather than in the early postoperative period (Ob to POI 135.25 ± 14.99 to 124.28 ± 11.22 kg, 17 % of total decrement). We also report the clinical case of a young woman of normal weight, who underwent BPD for chylomicronaemia (secondary to familial lipoprotein lipase deficiency), whose M value, plasma insulin and blood glucose levels were normalized upon normalization of serum NEFA and triglyceride levels as determined by the therapeutic lipid malabsorption. In conclusion, in obese diabetic patients lipid malabsorption induced by BPD causes a definite enhancement of insulin sensitivity and glucose tolerance. This improvement in metabolism is noticeable before the surgery has major effects on body weight. These observations suggest that lowered plasma lipids, rather than weight loss per se, are the cause of the reversibility of insulin resistance. [Diabetologia (1997) 40: 599–605] Received: 31 July 1996 and in revised form: 30 December 1996  相似文献   

20.
Summary Insulin increases limb blood flow in a time- and dose-dependent manner. This effect can be blocked by inhibiting nitric oxide synthesis. These data raise the possibility that insulin resistance is associated with endothelial dysfunction. To examine whether endothelial function and insulin sensitivity are interrelated we quantitated in vivo insulin-stimulated rates of whole body and forearm glucose uptake at a physiological insulin concentration (euglycaemic hyperinsulinaemic clamp, 1 mU · kg–1· min–1 insulin infusion for 2 h) and on another occasion, in vivo endothelial function (blood flow response to intrabrachial infusions of sodium nitroprusside, acetylcholine, and N-monomethyl-l-arginine) in 30 normal male subjects. Subjects were divided into an insulin-resistant (IR) and an insulin-sensitive (IS) group based on the median rate of whole body glucose uptake (31 ± 2 vs 48 ± 1 μmol · kg–1· min–1, p < 0.001). The IR and IS groups were matched for age, but the IR group had a slightly higher body mass index, percentage of body fat and blood pressure compared to the IS group. The IR group also had diminished insulin-stimulated glucose extraction (p < 0.05) compared to the IS group, while basal and insulin-stimulated forearm blood flow rates were identical. There was no difference between the IR and IS groups in the forearm blood flow response to endothelium-dependent (acetylcholine and N-monomethyl-l-arginine) or -independent (sodium nitroprusside) vasoactive drugs. In conclusion, the ability of insulin to stimulate glucose uptake at physiological insulin concentrations and endothelium-dependent vasodilatation are distinct phenomena and do not necessarily coexist. [Diabetologia (1996) 39: 1477–1482] Received: 31 May 1996 and in revised form: 10 July 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号