首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Two of the most common joint diseases are rheumatoid arthritis (RA) and osteoarthritis (OA). Cartilage degradation and erosions are important pathogenetic mechanisms in both joint diseases and have presently gained increasing interest. The aim of the present study was to investigate the effects of the synovial fluid environment of OA patients in comparison with synovial fluids of RA patients on human chondrocytes in vitro.

Methods

Primary human chondrocytes were incubated in synovial fluids gained from patients with OA or RA. The detection of vital cell numbers was determined by histology and by using the Casy Cell Counter System. Cytokine and chemokine secretion was determined by a multiplex suspension array.

Results

Microscopic analysis showed altered cell morphology and cell shrinkage following incubation with synovial fluid of RA patients. Detection of vital cells showed a highly significant decrease of vital chondrocyte when treated with RA synovial fluids in comparison with OA synovial fluids. An active secretion of cytokines such as vascular endothelial growth factor (VEGF) of chondrocytes treated with OA synovial fluids was observed.

Conclusions

Significantly increased levels of various cytokines in synovial fluids of RA, and surprisingly of OA, patients were shown. Activation of pro-inflammatory cytokines of human chondrocytes by synovial fluids of OA patient supports a pro-inflammatory process in the pathogenesis of OA.  相似文献   

2.

Purpose

Cordycepin, a nucleoside derivative isolated from Cordyceps, has been reported to exert anti-inflammatory, antitumor, antidiabetic and renoprotective effects. Osteoarthritis (OA) is a degenerative joint disease with an inflammatory component that drives the degradation of cartilage extracellular matrix. This study aimed to assess the effects of cordycepin on human OA chondrocytes.

Methods

In this study, human OA chondrocytes were pretreated with cordycepin at 10, 50 or 100 μM and subsequently stimulated with interleukin-1β (IL-1β) (5 ng/ml) for 24 h. Production of prostaglandin E2 (PGE2) and nitric oxide (NO) were evaluated by the Griess reaction and an enzyme-linked immunosorbent assay (ELISA). Gene expression of matrix metalloproteinase (MMP)-13, IL-6, inducible nitric oxide synthase (iNOS) and cyclo-oxygenase (COX-2) was measured by real-time polymerase chain reaction (PCR). MMP-13 and IL-6 proteins in culture medium were determined using cytokine-specific ELISA. Western immunoblotting was used to analyse the iNOS and COX-2 protein production in culture medium. Nuclear factor kappa-B (NF-κB) activity regulation was explored using Western immunoblotting.

Results

Pretreatment with cordycepin significantly inhibited the production of PGE2 and NO induced by IL-1β. Cordycepin also significantly decreased the IL-1β-stimulated gene expression and production of MMP-13, IL-6, iNOS and COX-2 in OA chondrocytes. Pretreatment with cordycepin attenuated IL-1β-induced activation of NF-κB by suppressing degradation of its inhibitory protein nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α) in the cytoplasm.

Conclusions

We show for the first time the anti-inflammatory activity of cordycepin in human OA chondrocytes. Thus, with this unique profile of actions, cordycepin may prove to be a potentially attractive and new therapeutic/preventive agent for OA.  相似文献   

3.

Background

Microfracture is a first-line treatment option for cartilage repair. In microfracture, subchondral mesenchymal cortico-spongious progenitor cells (CSP) enter the defect and form cartilage repair tissue. The aim of our study was to investigate the effects of joint disease conditions on the in vitro chondrogenesis of human CSP.

Methods

CSP were harvested from the subchondral bone marrow. CSP characterization was performed by analysis of cell surface antigen pattern and by assessing the chondrogenic, osteogenic and adipogenic differentiation potential, histologically. To assess the effect of synovial fluid (SF) on chondrogenesis of CSP, micro-masses were stimulated with SF from healthy (ND), osteoarthritis (OA) and rheumatoid arthritis donors (RA) without transforming growth factor beta 3.

Results

CSP showed the typical cell surface antigen pattern known from mesenchymal stem cells and were capable of osteogenic, adipogenic and chondrogenic differentiation. In micro-masses stimulated with SF, histological staining as well as gene expression analysis of typical chondrogenic marker genes showed that SF from ND and OA induced the chondrogenic marker genes aggrecan, types II and IX collagen, cartilage oligomeric matrix protein (COMP) and link protein, compared to controls not treated with SF. In contrast, the supplementation with SF from RA donors decreased the expression of aggrecan, type II collagen, COMP and link protein, compared to CSP treated with SF from ND or OA.

Conclusion

These results suggest that in RA, SF may impair cartilage repair by subchondral mesenchymal progenitor cells in microfracture, while in OA, SF may has no negative, but a delaying effect on the cartilage matrix formation.  相似文献   

4.

Background  

Tenascin-C (TN-C) is expressed in the cartilage of osteoarthritis (OA). We examined whether TN-C was involved in cartilage repair of the diseased joints. Human articular cartilage samples were obtained from patients with OA and those with normal joints.  相似文献   

5.
6.
The objective of this study was to investigate the expression of the chemokine CXCL10 and its role in joint tissues following articular fracture. We hypothesized that CXCL10 is upregulated following articular fracture and contributes to cartilage degradation associated with post‐traumatic arthritis (PTA). To evaluate CXCL10 expression following articular fracture, gene expression was quantified in synovial tissue from knee joints of C57BL/6 mice that develop PTA following articular fracture, and MRL/MpJ mice that are protected from PTA. CXCL10 protein expression was assessed in human cartilage in normal, osteoarthritic (OA), and post‐traumatic tissue using immunohistochemistry. The effects of exogenous CXCL10, alone and in combination with IL‐1, on porcine cartilage explants were assessed by quantifying the release of catabolic mediators. Synovial tissue gene expression of CXCL10 was upregulated by joint trauma, peaking one day in C57BL/6 mice (25‐fold) versus 3 days post‐fracture in MRL/MpJ mice (15‐fold). CXCL10 protein in articular cartilage was most highly expressed following trauma compared with normal and OA tissue. In a dose dependent manner, exogenous CXCL10 significantly reduced total matrix metalloproteinase (MMP) and aggrecanase activity of culture media from cartilage explants. CXCL10 also trended toward a reduction in IL‐1α‐stimulated total MMP activity (p = 0.09) and S‐GAG (p = 0.09), but not NO release. In conclusion, CXCL10 was upregulated in synovium and chondrocytes following trauma. However, exogenous CXCL10 did not induce a catabolic response in cartilage. CXCL10 may play a role in modulating the chondrocyte response to inflammatory stimuli associated with joint injury and the progression of PTA. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1220–1227, 2018.
  相似文献   

7.

Purpose

Recent evidence suggests that angiogenesis and inflammation contribute to the development and progression of osteoarthritis (OA). The purpose of this study was to investigate vascular endothelial growth factor (VEGF) levels in plasma and synovial fluid of patients with knee OA and to determine the relationship of VEGF levels with disease severity in knee OA.

Methods

A total of 100 subjects were enrolled in this study (80 knee OA patients and 20 healthy controls). Plasma and synovial fluid VEGF levels were analysed using enzyme-linked immunosorbent assay. VEGF expressions in synovial membrane and articular cartilage samples were assessed using immunohistochemistry.

Results

VEGF level in synovial fluid of knee OA patients was tenfold higher than that in paired plasma (P < 0.001). Both plasma and synovial fluid VEGF exhibited a positive correlation with radiographic severity (r = 0.454 and r = 0.727, P < 0.001, respectively). VEGF expression was highly detectable in synovial lining cells and articular chondrocytes of knee OA patients.

Conclusions

VEGF levels in both plasma and synovial fluid were positively correlated with the severity of knee OA. Therefore, VEGF may be useful for monitoring OA severity and could play a substantial role in the development and progression of knee OA.  相似文献   

8.

Background and purpose

Little is known about biochemical mediators that correlate with the initiation and progression of knee osteoarthritis (OA). We therefore valuated the roles of cytokines and metalloenzymes in knee OA in relation to OA grading, age, and BMI.

Patients and methods

A multiplex ELISA-based immunoassay (Luminex technology) was used to measure biochemical mediators in the synovial fluid (SF) of 82 patients undergoing knee surgery. All patients were classified according to age, BMI, and OA grade. 24 patients had no signs of OA (knee reconstruction surgeries). The mediators that were tested for included interleukins (IL-1Ra, IL-6, IL-7, and IL-18), chemokines (CCL2 (MCP-1), CCL3 (MIP-1a), and CXCL8 (IL-8)), growth factors (HGF and VEGF), and matrix metalloproteinases (MMP-1, MMP-2, MMP-9, and MMP-13).

Results

There was a correlation between IL-7 levels in SF and age (p < 0.01). The 11 highest IL-7 levels were seen in patients who were aged between 59 and 72 but had different OA grades. In contrast, all patients who had severe OA in all 3 knee compartments (pan-OA) had only low or medium IL-7 levels. There was a negative correlation between MMP-1 levels in synovial fluid and grade of OA (p < 0.001). Correlation studies between pairs of mediators revealed two groups of mediators that are important in OA progression, dominated by MCP-1 and IL-1Ra.

Interpretation

IL-7 levels in SF are elevated in elderly people suffering from OA of different grades, but they are depressed in patients with severe 3-compartment OA, possibly due to widely impaired chondrocytes embedded in the affected cartilage tissue. The observed decrease in MMP-1 levels in SF, which is dependent on the severity of OA, may be caused by deterioration of superficial cartilage layers during progression of OA.

List of abbreviations

BMI
body mass index
CCL
chemokine (C-C motif) ligand
CXCL
chemokine (C-X-C motif) ligand
HGF
hepatocyte growth factor
ICRS
International Cartilage Repair Society
IL
interleukin
IL-1Ra
IL-1 receptor antagonist
MCP
monocyte chemoattractant protein
MIP
macrophage inflammatory protein
MMP
matrix metalloproteinase
OA
osteoarthritis
SF
synovial fluid
VEGF
vascular endothelial growth factor
Progression of knee OA is often driven by biomechanical forces (Englund 2010), whereas the etiology of OA in other joints is less affected by mechanical stress. Biochemical mediators such as cytokines, growth factors, and matrix metalloproteinases—acting individually or in networks—profoundly influence cellular responses in joint tissues, modifying both catabolic and anabolic activities involved in the pathogenesis of OA (Goldring and Goldring 2007). Ageing is the most prominent risk factor for OA, and chondrocyte senescence and aging-related changes in the matrix, such as articular surface fibrillation and proteoglycan changes, are most likely to contribute to joint ageing (Martin and Buckwalter 2002, Shane Anderson and Loeser 2010). However, despite intensive research efforts, little is known about biochemical factors whose levels may correlate with the severity of knee OA (Belo et al. 2007). Also, age-related changes in cytokine production in body fluids have not been investigated completely (Gardner and Murasko 2002).Biochemical mediators found in synovial fluid (SF) that affect the cellular functions of tissues of the knee joint include interleukins (ILs), chemokines, growth factors, and matrix metalloproteinases (MMPs). Interleukins, both pro- and anti-inflammatory, have a pivotal role in arthritic diseases and are potential targets of OA therapy. Chemokines, which are small, chemoattractant cytokines, have key roles in the accumulation of inflammatory cells at the site of inflammation. Growth factors produced by chondrocytes and subchondral bone regulate the growth of blood vessels in the joint. Some recent studies have supported the notion that inhibition of abnormal angiogenesis will provide effective therapeutic strategies for treatment of OA (Ashraf and Walsh 2008). MMPs and pro-inflammatory cytokines are involved in a collagen II-dependent feed-forward mechanism of matrix degradation in human articular cartilage (Klatt et al. 2009).To improve our understanding of the molecular and cellular processes involved in joint ageing and in the initiation and progression of OA, we wanted to determine the levels of biochemical mediators that correlate with the severity of knee OA or patient age.  相似文献   

9.
OBJECTIVE: To investigate whether matrix metalloproteinases (MMPs) and/or aggrecanase in synovial fluid can be used as biochemical markers in the diagnosis of internal derangement (ID) of the temporomandibular joint (TMJ). STUDY DESIGN: Forty-four samples of synovial fluid were obtained from 35 patients with ID and osteoarthritis (OA) and 15 normal samples from 10 asymptomatic volunteers. MMP-2, -9, and aggrecanase in the synovial fluid were examined by immunoblotting. RESULTS: The incidences of MMP-2, -9, and aggrecanase expression in the ID and OA group were significantly higher than those in the normal group (P < .05). Those with anterior disc displacement without reduction and severe OA showed significantly high expression of MMP-9 compared with other disease subgroups (P < .05). Conversely, comparatively high expression of MMP-2 and aggrecanase was shown in the early-stage OA group. However, there was no significant difference in expression of MMP-2 and aggrecanase among disease subgroups. CONCLUSIONS: These findings suggested that expression of aggrecanase could be a potential biochemical marker for articular cartilage degradation in ID of the TMJ.  相似文献   

10.

Background

Scaffold-assisted autologous chondrocyte implantation is an effective clinical procedure for cartilage repair. From the regulatory point of view, the ovine model is one of the suggested large animal models for pre-clinical studies. The aim of our study was to evaluate the in vitro re-differentiation capacity of expanded ovine chondrocytes in biomechanically characterized polyglycolic acid (PGA)/fibrin biomaterials for scaffold-assisted cartilage repair.

Methods

Ovine chondrocytes harvested from adult articular cartilage were expanded in monolayer and re-assembled three-dimensionally in PGA-fibrin scaffolds. De- and re-differentiation of ovine chondrocytes in PGA-fibrin scaffolds was assessed by histological and immuno-histochemical staining as well as by real-time gene expression analysis of typical cartilage marker molecules and the matrix-remodelling enzymes matrix metalloproteinases (MMP) -1, -2 and ?13 as well as their inhibitors. PGA scaffolds characteristics including degradation and stiffness were analysed by electron microscopy and biomechanical testing.

Results

Histological, immuno-histochemical and gene expression analysis showed that dedifferentiated chondrocytes re-differentiate in PGA-fibrin scaffolds and form a cartilaginous matrix. Re-differentiation was accompanied by the induction of type II collagen and aggrecan, while MMP expression decreased in prolonged tissue culture. Electron microscopy and biomechanical tests revealed that the non-woven PGA scaffold shows a textile structure with high tensile strength of 3.6 N/mm2 and a stiffness of up to 0.44 N/mm2, when combined with gel-like fibrin.

Conclusion

These data suggest that PGA-fibrin is suited as a mechanically stable support structure for scaffold-assisted chondrocyte grafts, initiating chondrogenic re-differentiation of expanded chondrocytes.  相似文献   

11.
12.
13.

Background

Type 1 Modic changes are characterized by edema, vascularization, and inflammation, which lead to intervertebral disc degeneration. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine closely related to the inflammatory cytokines detected in degenerative intervertebral disc tissues. However, the existence and role of MIF and its receptor CD74 in intervertebral disc degeneration have not been elucidated.

Questions/purposes

We asked whether (1) MIF and its receptor CD74 are expressed in cartilage end plates with Type 1 Modic changes, (2) MIF is associated with cartilage end plate degeneration, (3) the MIF antagonist (S, R)-3(4-hydroxyphenyl)-4, 5-dihydro-5-isoxazole acetic acid methyl ester (ISO-1) suppresses MIF-induced inflammatory cytokine release, and (4) inflammatory cytokines are released by cartilage end plate chondrocytes via CD74 by activating the CD74 antibody (CD74Ab).

Methods

We examined MIF and CD74 expression by human cartilage end plate chondrocytes and tissues with Type 1 Modic changes from eight patients using immunocytofluorescence and immunohistochemistry. MIF production by the chondrocytes was assessed by ELISA and PCR. We compared cytokine release by chondrocytes treated with MIF in the presence or absence of exogenous ISO-1 by ELISA. Cytokine release by chondrocytes after treatment with CD74Ab was determined by ELISA.

Results

MIF was expressed in degenerated human cartilage end plate tissues and chondrocytes. Lipopolysaccharide and tumor necrosis factor α (TNF-α) upregulated MIF expression and increased MIF secretion in chondrocytes in a dose-dependent manner. MIF increased the secretion of IL-6, IL-8, and prostaglandin E2 (PGE2) in a dose-dependent manner. ISO-1 reduced the secretion of IL-6, IL-8, and PGE2. CD74Ab activated CD74 and induced release of inflammatory cytokines.

Conclusions

Chondrocytes in cartilage end plate with Type 1 Modic changes express MIF and its receptor CD74. MIF might promote the inflammatory response through CD74. MIF-induced cytokine release appears to be suppressed by ISO-1, and CD74Ab could induce cytokine release.

Clinical Relevance

The MIF/CD74 pathway may represent a crucial target for treating disc degeneration since inhibiting the function of MIF with its antagonist ISO-1 can reduce MIF-induced inflammation and exert potent therapeutic effects.  相似文献   

14.
OBJECTIVE: To identify the major aggrecanase- and matrix metalloproteinase (MMP)-generated aggrecan fragments in human osteoarthritis (OA) synovial fluid and in human OA joint cartilage. METHOD: Aggrecan fragments were prepared by CsCl gradient centrifugation. Fragment distributions were compared with aggrecanase-1 (ADAMTS-4) and MMP-3 digested human aggrecan by analysis with neoepitope antibodies and an anti-G1 domain antibody, using Western immuno-blots. RESULTS: The overall fragment pattern of OA synovial fluid aggrecan was similar to the fragment pattern of cartilage aggrecan cleaved in vitro by ADAMTS-4. However, multiple glycosaminoglycan (GAG) containing aggrecanase and MMP-generated aggrecan fragments were identified in OA synovial fluid and some of these fragments were produced by the action of both types of proteinases. The synovial fluid content of large size aggrecan fragments with (374)ARGS- and (342)FFGV- N-terminals was about 107 and 40 pmoles per ml, respectively, out of a total concentration of aggrecan fragments of about 185 pmoles per ml. OA synovial fluid contained insignificant amounts of the G1-IPEN(341) fragment as compared to the G1-TEGE(373) fragment, while OA cartilage contained significant amounts of both fragments. OA cartilage contained several GAG-containing aggrecan fragments with N-terminals of G1- or (342)FFGV- but no fragments with an N-terminal of (374)ARGS-. CONCLUSIONS: The overall pattern of aggrecan fragments in human OA synovial fluid and cartilage supports an important role for aggrecanase in aggrecan degradation. However, the fragment patterns and their differential distribution between cartilage and synovial fluid are consistent with the existence of at least two proteolytic pathways for aggrecan degradation in human OA, generating both (342)FFGV- and (374)ARGS-fragments.  相似文献   

15.

Background

The objective of this study was to evaluate the extent of stromal cell-derived factor-1’s (SDF-1) involvement in the pathogenesis of idiopathic versus post-traumatic OA by comparing differences in synovial membrane morphology, SDF-1 synovial fluid (SF) concentrations, and matrix metalloproteinase-13 (MMP-13) SF concentrations.

Methods

Thirty-six 3-month-old Hartley guinea pigs were obtained and divided into 6 groups. Upon sacrifice, India Ink staining was used to evaluate gross morphology, Safranin O/Fast green staining was used to assess cartilage damage, H/E staining was employed to visualize the synovium, and SF samples were obtained for biochemical analyses. Sandwich ELISA was used to quantify the SF concentrations of SDF-1 and MMP-13.

Results

12 month-old, idiopathic OA guinea pigs and 5.5 month-old ACLT animals had comparable cartilage damage when evaluated by the Modified Mankin Score. SDF-1 and MMP-13 concentrations were not statistically different between the two groups. The synovial membrane of the 5.5 month ACLT group had severe synovitis compared to the idiopathic OA group.

Conclusion

In this study, it was found that synovial inflammation, independent of cartilage morphology, SDF-1 concentration, and MMP-13 concentration, was markedly different between idiopathic and post-traumatic OA. These results highlight the differing morphological and biochemical profiles of post-traumatic versus idiopathic osteoarthritis and calls for a more thorough examination of the sole of the synovial membrane in the pathogenesis of post-traumatic osteoarthritis.
  相似文献   

16.
17.
18.
19.

Background

New tissue-engineering technology was developed to create a cartilage-like tissue in a three-dimensional culture using atelocollagen gel. The minimum 2-year followup outcome of transplanting autologous chondrocytes cultured in atelocollagen gel for the treatment of full-thickness defects of cartilage in knees was reported from the single institution. The present multicenter study was conducted to determine clinical and arthroscopic outcomes in patients who underwent atelocollagen-associated autologous chondrocyte implantation for the repair of chondral defects of the knees.

Methods

At six medical institutes in Japan, we prospectively evaluated the clinical and arthroscopic outcomes of transplanting autologous chondrocytes cultured in atelocollagen gel for the treatment of full-thickness defects of cartilage in 27 patients (27 knees) with cartilage lesions on a femoral condyle or on a patellar facet over 24 months.

Results

The Lysholm score significantly increased from 60.0 ± 13.7 points to 89.8 ± 9.5 points (P = 0.001). Concerning the ICRS grade for arthroscopic appearance, 6 knees (24%) were assessed as grade I (normal) and 17 knees (68%) as grade II (nearly normal). There were few adverse features, except for detachment of the graft in two cases.

Conclusions

We concluded that transplanting chondrocytes in a newly formed matrix of atelocollagen gel can promote restoration of the articular cartilage of the knee.  相似文献   

20.

Purpose

Osteoarthritis (OA) is an age-related joint disease that is characterised by the degeneration of articular chondrocytes. Ginsenosides, the most important pharmacological ingredients of ginseng, have been proven to provide effective therapy for neurodegenerative diseases and can inhibit cell apoptosis. We investigated whether ginsenoside Rb1 can modulate inflammation and apoptosis in human chondrocytes.

Methods

Chondrocytes were isolated from OA patients undergoing total knee replacement surgery. Apoptosis was assessed by TUNEL (terminal deoxyribonucleotide transferasemediated dUTP nick end-labelling)-positive staining. Levels of PGE2 and NO2- were detected by ELISA. Gene expression levels were measured for type II collagen (Col2A1), aggrecan, MMP-13, COX-2, iNOS, caspase-3, and PARP.

Results

The results showed that TUNEL-positive staining chondrocytes were decreased by Rb1 compared with IL-1β. Both 10 or 100 μg/ml Rb1 inhibited the effect of IL-1β on chondrocytes by decreasing levels of PGE2, NO2-, MMP-13, COX-2, iNOS, caspase-3 and PARP and increasing aggrecan and Col2A1 gene expression levels, to block IL-1β-induced cell inflammation and apoptosis.

Conclusions

The results suggest that Rb1 possesses potential anti-inflammatory and anti-apoptotic properties in human chondrocytes, possibly by binding to oestrogen receptors to exert its pharmacological effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号