首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated a novel polyepoxide crosslinker that was hypothesized to confer both material stabilization and calcification resistance when used to prepare bioprosthetic heart valves. Triglycidylamine (TGA) was synthesized via reacting epichlorhydrin and NH(3). TGA was used to crosslink porcine aortic cusps, bovine pericardium, and type I collagen. Control materials were crosslinked with glutaraldehyde (Glut). TGA-pretreated materials had shrink temperatures comparable to Glut fixation. However, TGA crosslinking conferred significantly greater collagenase resistance than Glut pretreatment, and significantly improved biomechanical compliance. Sheep aortic valve interstitial cells grown on TGA-pretreated collagen did not calcify, whereas sheep aortic valve interstitial cells grown on control substrates calcified extensively. Rat subdermal implants (porcine aortic cusps/bovine pericardium) pretreated with TGA demonstrated significantly less calcification than Glut pretreated implants. Investigations of extracellular matrix proteins associated with calcification, matrix metalloproteinases (MMPs) 2 and 9, tenascin-C, and osteopontin, revealed that MMP-9 and tenascin-C demonstrated reduced expression both in vitro and in vivo with TGA crosslinking compared to controls, whereas osteopontin and MMP-2 expression were not affected. TGA pretreatment of heterograft biomaterials results in improved stability compared to Glut, confers biomechanical properties superior to Glut crosslinking, and demonstrates significant calcification resistance.  相似文献   

2.
While glutaraldehyde crosslinking is most often used to fabricate bioprosthetic heart valves (BHV) using heterograft tissues, it predisposes BHV to calcification and dramatically stiffens the heterograft tissues. Our group previously reported the synthesis and characterization of a novel epoxy-crosslinker, triglycidylamine (TGA). TGA pretreatment of BHV tissues compared to glutaraldehyde results in both calcification resistance in subdermal implants and improved leaflet compliance. In these prior studies, optimal calcification inhibition was noted with the combined use of TGA with mercapto-aminobisphosphonate (MABP). In the present study, we investigated the hypothesis that bovine pericardium cross-linked with TGA-MABP retains these beneficial biomechanical properties in vivo using a novel mitral valve anterior leaflet (MVAL) ovine valvuloplasty model. Bovine pericardial specimens were crosslinked with either glutaraldehyde or TGA-MABP, from which 1cm2 sections were implanted in the ovine MVAL after removal of the original tissue of the same size. An array of four sonomicrometry transducers were implanted on the corners and used to compute the complete in-surface strain tensor cardiac cycle over the cardiac cycle at 0 and 4 weeks. Following explant samples were fixed in formalin for histology studies. At 4 weeks both treatment groups experienced no dimensional changes in the unloaded state, indicating no shrinkage. When fully loaded during peak systolic ejection, TGA-MABP valvuloplasty patches were significantly more compliant, which did not change at 4 weeks. In contrast, the glutaraldehyde areal strain increased significantly by 4 weeks. Estimated implant stresses for both treatment groups, based on previously measured biomechanical properties [Connolly JM, Alferiev I, Clark-Gruel JN, Eidelman N, Sacks M, Palmatory E, et al. Triglycidylamine crosslinking of porcine aortic valve cusps or bovine pericardium results in improved biocompatibility, biomechanics, and calcification resistance: chemical and biological mechanisms. Am J Pathol 2005;166(1):1-13], were 40 and 250 kPa in the circumferential and radial directions, respectively, which are comparable to predicted BHV peak stress levels. We conclude that TGA-MABP crosslinked bovine pericardium, when subjected to in vivo BHV stress levels in a blood-contacting environment, maintains stable functionality.  相似文献   

3.
Bioprosthetic heart valves (BPHVs) derived from glutaraldehyde-crosslinked porcine aortic valves are frequently used in heart valve replacement surgeries. However, the majority of bioprostheses fail clinically because of calcification and degeneration. We have recently shown that glycosaminoglycan (GAG) loss may be in part responsible for degeneration of glutaraldehyde-crosslinked bioprostheses. In the present studies, we used a mild reaction of periodate-mediated crosslinking to stabilize glycosaminoglycans in the bioprosthetic tissue. We demonstrate the feasibility of periodate reaction by crosslinking major components of extracellular matrix of bioprosthetic heart valve tissue, namely type I collagen and hyaluronic acid (HA). Uronic acid assay of periodate-fixed HA-collagen matrices showed 48% of HA disaccharides were bound to collagen. Furthermore, we show that such reactions are also feasible to fix glycosaminoglycans present in the middle spongiosa layer of bioprosthetic heart valves. The periodate reactions were compatible with conventional glutaraldehyde crosslinking and showed adequate stabilization of extracellular matrix as demonstrated by thermal denaturation temperature and collagenase assays. Moreover, uronic acid assays of periodate-fixed BPHV cusps showed 36% reduction in the amount of unbound GAG disaccharides as compared with glutaraldehyde-crosslinked cusps. We also demonstrate that calcification of BPHV cusps was significantly reduced in the periodate-fixed group as compared with the glutaraldehyde-fixed group in 21-day rat subdermal calcification studies (periodate-fixed tissue Ca 72.01 +/- 5.97 microg/mg, glutaraldehyde-fixed tissue Ca 107.25 +/- 6.56 microg/mg). We conclude that periodate-mediated GAG fixation could reduce structural degeneration of BPHVs and may therefore increase the useful lifetime of these devices.  相似文献   

4.
Glycosaminoglycans (GAGs) are important structural and functional components in native aortic heart valves and in glutaraldehyde (Glut)-fixed bioprosthetic heart valves (BHVs). However, very little is known about the fate of GAGs within the extracellular matrix of BHVs and their contribution to BHV longevity. BHVs used in heart valve replacement surgery have limited durability due to mechanical failure and pathologic calcification. In the present study we bring evidence for the dramatic loss of GAGs from within the BHV cusp structure during storage in saline and both short- and long-term Glut fixation. In order to gain insight into role of GAGs, we compared properties of fresh and Glut-fixed porcine heart valve cusps before and after complete GAG removal. GAG removal resulted in significant morphological and functional tissue alterations, including decreases in cuspal thickness, reduction of water content and diminution of rehydration capacity. By virtue of this diminished hydration, loss of GAGs also greatly increased the "with-curvature" flexural rigidity of cuspal tissue. However, removal of GAGs did not alter calcification potential of BHV cups when implanted in the rat subdermal model. Controlling the extent of pre-implantation GAG degradation in BHVs and development of improved GAG crosslinking techniques are expected to improve the mechanical durability of future cardiovascular bioprostheses.  相似文献   

5.
Calcification is the most frequent cause of the failure of bioprosthetic heart valves fabricated from glutaraldehyde pretreated porcine aortic valves or bovine pericardium. Formulation and evaluation of controlled-release drug delivery system to inhibit bioprosthetic heart valve calcification is reviewed.  相似文献   

6.
Shah SR  Vyavahare NR 《Biomaterials》2008,29(11):1645-1653
Bioprosthetic valves are used in thousands of heart valve replacement surgeries. Existing glutaraldehyde-crosslinked bioprosthetic valves fail due to either calcification or degeneration. Glutaraldehyde crosslinking does not stabilize valvular glycosaminoglycans (GAGs). GAGs, predominantly present in the medial spongiosa layer of native heart valve cusps, play an important role in regulating physico-mechanical behavior of the native cuspal tissue during dynamic motion. The primary objective of this study was to identify the role of cuspal GAGs in valve tissue buckling. Glutaraldehyde-crosslinked cusps showed extensive buckling compared to fresh, native cusps. Removal of GAGs by treatment with GAG-degrading enzymes led to a marked increase in buckling behavior in glutaraldehyde-crosslinked cusps. We demonstrate that the retention of valvular GAGs by carbodiimide crosslinking together with chemical attachment of neomycin trisulfate (a hyaluronidase inhibitor), prior to glutaraldehyde crosslinking, reduces the extent of buckling in bioprosthetic heart valves. Furthermore, following exposure to GAG-digestive enzymes, neomycin-trisulfate-bound cusps experienced no alterations in buckling behavior. Such moderate buckling patterns mimicked that of fresh, untreated cusps subjected to similar bending curvatures. Thus, GAG stabilization may subsequently improve the durability of these bioprostheses.  相似文献   

7.
Calcification limits the long-term durability of xenograft glutaraldehyde-crosslinked heart valves. In this study, epoxy-crosslinked porcine aortic valve tissue was evaluated after subcutaneous implantation in weanling rats. Non-crosslinked valves and valves crosslinked with glutaraldehyde or carbodiimide functioned as control. Epoxy-crosslinked valves had somewhat lower shrinkage temperatures than the crosslinked controls, and within the series also some macroscopic and microscopic differences were obvious. After 8 weeks implantation, cusps from non-crosslinked valves were not retrieved. The matching walls were more degraded than the epoxy- and control-crosslinked walls. This was observed from the higher cellular ingrowth with fibroblasts, macrophages, and giant cells. Furthermore, non-crosslinked walls showed highest numbers of lymphocytes, which were most obvious in the capsules. Epoxy- and control-crosslinked cusps and walls induced lower reactions. Calcification, measured by von Kossa-staining and by Ca-analysis, was always observed. Crosslinked cusps calcified more than walls. Of all wall samples, the non-crosslinked walls showed the highest calcification. It is concluded that epoxy-crosslinked valve tissue induced a foreign body and calcification reaction similar to the two crosslinked controls. Therefore, epoxy-crosslinking does not represent a solution for the calcification problem of heart valve bioprostheses.  相似文献   

8.
Congo red staining with microscopic examination under polarized light was performed in 30 porcine bioprosthetic cardiac valves and one autologous fascia lata valve explanted from 31 patients in order to detect the presence of amyloid. Microdeposits of amyloid were present in the sewing ring of the fascia lata valve and in 10 porcine bioprostheses, and this finding was confirmed by transmission electron microscopy in 3 porcine bioprostheses. All amyloid-laden porcine valves had been implanted for at least 33 months before removal, and all except two showed dysfunction and/or severe degeneration of cuspal tissue. Statistical analyses failed to establish any correlation between the presence of amyloid and patient-related factors. In a majority of porcine bioprostheses amyloid was permanganate-sensitive and tryptophan-positive. The pathogenesis of this new form of heart valve amyloidosis might consist in penetration of human macrophages in deteriorated bioprosthetic cusps and their interaction with blood-borne amyloid precursors.  相似文献   

9.
Khan NA  Butany J  Zhou T  Ross HJ  Rao V 《Pathology》2008,40(4):377-384
AIMS: Ventricular assist devices (VADs) are now a mainstay in the management of patients with end-stage heart failure. An important consideration in the long-term durability of these devices is the structural integrity of the prosthetic valves. Herein, we report the morphological findings in inflow and outflow explanted bioprostheses from seven such devices. METHODS: The porcine bioprostheses (n = 7; HeartMate, Novacor) were examined from inflow and outflow valve conduits. Cusp tears were assessed on gross examination. Tissues were then processed for histology and graded for pannus, thrombus, and calcification. Immunohistochemistry was performed using anti-CD68 (macrophages), CD45 (leukocytes) and CD31 (endothelial cells) antibodies to assess inflammation. RESULTS: There was no evidence of infection, host tissue growth, or calcification in either the inflow or the outflow valves in any case. A mild-to-moderate mononuclear cell 'deposit' was present on all porcine bioprostheses, largely on the non-flow surface of the valve cusps. In the case of the longest implant (HeartMate, duration 567 days), a significant mononuclear cell infiltrate was seen on the flow surface, the non-flow surface, as well as the base of the cusp tissue. Variably sized cusp tears were found in all inflow porcine bioprostheses at and beyond 3 months post-implantation, with the longest duration implant showing multiple tears. No tears were identified in the outflow valves. Histology revealed thrombus deposition in all inflow and outflow porcine valves. In addition, inflow valve cusps were characterised by the presence of longitudinally running 'cystic' spaces, which seem to increase in size with increasing implant duration. CONCLUSION: Bioprosthetic heart valves in VADs show significant changes which appear to correlate with duration post-implantation. These changes suggest that haemodynamic forces and the inflammatory reaction may play a significant role in the long-term durability of the porcine bioprostheses in these devices.  相似文献   

10.
Calcification of bioprosthetic heart valves fabricated from glutaraldehyde-pretreated bovine pericardium has not been investigated. The objectives of this study were to characterize pericardium before and after glutaraldehyde pretreatment and to study the pathophysiology of mineralization of glutaraldehyde-preserved pericardium. Pericardial protein was approximately 90% collagen, predominantly Type I. Glutaraldehyde incorporation was complete following 24 hours' incubation (151 X 10(-9) mol/mg). Bovine pericardium pretreated in buffered 0.6% glutaraldehyde, implanted subcutaneously in young rats for 24 hours to 112 days, was analyzed chemically (calcium and phosphorus) and morphologically. Mineralization, detected at 48 hours' implantation, was initially associated with pericardial connective tissue cells and later also collagen. Mean calcium content was 114 micrograms/mg at 21 days and 199 micrograms/mg at 112 days. The morphologic features and the kinetics and degree of mineral accumulation in glutaraldehyde-pretreated bovine pericardium were strikingly similar to those previously determined for porcine aortic valve. These results predict that calcification will critically limit the late durability of clinical pericardial bioprostheses and suggest generalized mechanisms of bioprosthetic tissue mineralization which are probably dependent on modification of implant microstructure by glutaraldehyde pretreatment.  相似文献   

11.
The durability of bioprosthetic heart valves (BHV) is severely limited by tissue deterioration, manifested as calcification and mechanical damage to the extracellular matrix. Extensive research on mineralization mechanisms has led to prevention strategies, but little work has been done on understanding the mechanisms of noncalcific matrix damage. The present study tested the hypothesis that calcification-independent damage to the valvular structural matrix mediated by mechanical factors occurs in clinical implants and could contribute to porcine aortic BHV structural failure. We correlated quantitative assessment of collagen fiber orientation and structural integrity by small angle light scattering (SALS) with morphologic analysis in 14 porcine aortic valve bioprostheses removed from patients for structural deterioration following 5-20 years of function. Calcification of the explants varied from 0 (none) to 1+ (minimal) to 4+ (extensive), as assessed radiographically. SALS tests were performed over entire excised cusps using a 0.254-mm spaced grid, and the resultant structural information used to generate maps of the local collagen fiber damage that were compared with sites of calcific deposits. All 42 cusps showed clear evidence of substantial noncalcific structural damage. In 29 cusps that were calcified, structural damage was consistently spatially distinct from the calcification deposits, generally in a distribution similar to that noted in porcine BHV subjected to in vitro durability testing. Our results suggest a mechanism of noncalcific degradation dependent on cuspal mechanics that could contribute to porcine aortic BHV failure.  相似文献   

12.
Crosslinking of decellularized porcine heart valve matrix by procyanidins   总被引:3,自引:0,他引:3  
Zhai W  Chang J  Lin K  Wang J  Zhao Q  Sun X 《Biomaterials》2006,27(19):3684-3690
Heart valve diseases have a significant high mortality, and the valve replacement using glutaraldehyde crosslinked porcine heart valves is one of the main curing techniques. But its application is limited due to poor durability, calcification of the valves and immunogenic reactions. The aim of this study was to evaluate the crosslinking effect of procyanidins on porcine heart valve matrix. After crosslinking of the decellularized porcine aortic heart valves by procyanidins, the tensile strength, the in vitro enzymatic degradation resistance, procyanidins release from the crosslinked materials and the cytotoxicity of procyanidins to heart valvular interstitial cells were examined. The results showed that the tensile strength of procyanidins crosslinked valve matrix was higher than that of glutaraldehyde crosslinked valve matrix. Valve matrix crosslinked by 10 mg/ml procyanidins could be stored in D-Hanks solution for at least 45 days without any decline in ultimate tensile strength and maintained the elasticity as the fresh valves. Furthermore, procyanidins was found to release when the crosslinked tissue stored in D-Hanks solution. The release rate was high during the first 4 days and then dramatically decreased thereafter. During releasing phase, the concentration of procyanidins was no toxicity to heart valve interstitial cells. In vitro enzymatic degradation revealed that crosslinked matrix could resist the enzymatic hydrolysis, and the resistant capacity was approximately the same as glutaraldehyde crosslinked valve matrix. This study shows that procyanidins can crosslink porcine heart valves effectively without toxicity. Our results suggested that this method might be a useful approach for preparation of bioprosthetic heart valve.  相似文献   

13.
The natural aortic valve is a structure that has thus far eluded all attempts at duplication with synthetic materials. Real success in the replacement of the aortic valve has come about primarily through the use of biological devices, such as the porcine aortic valve xenograft. In the future, bioprostheses based more closely on the natural aortic valve may ultimately succeed where synthetic approaches have failed. Some recent advances in the design and development of bioprosthetic heart valves, such as the absence of a stent and the better preservation of the valve's natural biomechanical properties, show considerable promise in improving the long term durability of these devices. With a greater understanding of the structure/function relationship of the aortic valve at the micromechanical level, the future of bioprostheses may be even more biologically oriented than it is today.  相似文献   

14.
Stentless aortic heart valve substitutes, manufactured from biological tissues, are fixed with glutaraldehyde to cross-link collagen, reduce antigenicity, and sterilize the tissue. Despite improved cross linking, reduced antigenicity, and various anticalcification measures, the aortic wall tissue present in these prostheses tends to calcify. The aim of this study was to assess the morphology, collagen cross-link stability, and calcification potential of glutaraldehyde-preserved kangaroo aortic wall tissue as opposed to porcine aortic wall tissue. Porcine and kangaroo aortic wall tissues were fixed in 0.625% buffered glutaraldehyde. Histology and cross-link stability were examined. Calcification potential was determined in the subcutaneous rat model. Kangaroo aortic wall tissue was significantly (p < 0.01) less calcified than porcine aortic wall tissue (26.67 +/- 6.53 versus 41.959 +/- 2.75 microg/mg tissue) at 8 weeks. In conclusion, the histological differences between kangaroo and porcine aortic wall tissue correlate well with the reduced calcification potential of kangaroo aortic wall tissue. The reduced calcification potential could result in improved long-term durability of stentless kangaroo heart valves as bioprostheses.  相似文献   

15.
Bioprosthetic heart valve (BPHV) degeneration, characterized by extracellular matrix deterioration, remodeling, and calcification, is an important clinical problem accounting for thousands of surgeries annually. Here we report for the first time, in a series of in vitro accelerated fatigue studies (5-500 million cycles) with glutaraldehyde fixed porcine aortic valve bioprostheses, that the mechanical function of cardiac valve cusps caused progressive damage to the molecular structure of type I collagen as assessed by Fourier transform IR spectroscopy (FTIR). The cyclic fatigue caused a progressive loss of helicity of the bioprosthetic cuspal collagen, which was evident from FTIR spectral changes in the amide I carbonyl stretching region. Furthermore, cardiac valve fatigue in these studies also led to loss of glycosaminoglycans (GAGs) from the cuspal extracellular matrix. The GAG levels in glutaraldehyde crosslinked porcine aortic valve cusps were 65.2 +/- 8.66 microg uronic acid/10 mg of dry weight for control and 7.91 +/- 1.1 microg uronic acid/10 mg of dry weight for 10-300 million cycled cusps. Together, these molecular changes contribute to a significant gradual decrease in cuspal bending strength as documented in a biomechanical bending assay measuring three point deformation. We conclude that fatigue-induced damage to type I collagen and loss of GAGs are major contributing factors to material degeneration in bioprosthetic cardiac valve deterioration.  相似文献   

16.
Paecilomyces javanicus endocarditis of native and prosthetic aortic valve   总被引:2,自引:0,他引:2  
A 41-year-old diabetic woman developed endocarditis of the aortic valve caused by Paecilomyces javanicus six years after insertion of a porcine mitral valve heterograft. The patient died shortly after aortic valve replacement. Autopsy revealed vegetations of the aortic heterograft, valve ring abscess and ascending aortitis due to Paecilomyces. There was no involvement of the mitral valve heterograft. Lesions due to mycotic emboli were found in the kidneys, spleen, and brain. Cultures of the surgically removed aortic valve and of the kidney at autopsy produced rapid growth of P. javanicus. The gross and microscopic pathologic and cultural characteristics of this organism are described with a review of the literature. Previously reported cases of Paecilomyces endocarditis occurred only in prosthetic heart valves. This is the first known report of P. javanicus endocarditis of a native valve and its prosthetic heart valve heterograft.  相似文献   

17.
Bioprosthetic heart valves (BHVs) derived from glutaraldehyde crosslinked porcine aortic valves are frequently used in heart valve replacement surgeries. However, BHVs have limited durability and fail either due to degeneration or calcification. Glycosaminoglycans (GAGs), one of the integral components of heart valve cuspal tissue, are not stabilized by conventional glutaraldehyde crosslinking. Previously we have shown that valvular GAGs could be chemically fixed with GAG-targeted chemistry. However, chemically stabilized GAGs were only partially stable to enzymatic degradation. In the present study an enzyme inhibitor was incorporated in the cusps to effectively prevent enzymatic degradation. Thus, neomycin trisulfate, a known hyaluronidase inhibitor, was incorporated in cusps via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/NHS) chemistry followed by glutaraldehyde crosslinking (NEG). Controls included cusps crosslinked with either EDC/NHS followed by glutaraldehyde (ENG) or only with glutaraldehyde (GLUT). NEG group showed improved resistance to in vitro enzymatic degradation as compared to GLUT and ENG groups. All groups showed similar collagen stability, measured as a thermal denaturation temperature by differential scanning calorimetry (DSC). The cusps were implanted subdermally in rats to study in vivo degradation of GAGs. NEG group preserved significantly more GAGs than ENG and GLUT. NEG and ENG groups showed reduced calcification than GLUT.  相似文献   

18.
Bovine pericardial and porcine valve materials stabilized by dye-mediated photooxidation have shown potential for bioprosthetic valve use. Previously, in vitro and in vivo stability of these materials was demonstrated through enzymatic, chemical, extraction, rat subcutaneous, and functional challenges. Here, we examine the stability of photooxidized porcine aortic valves through amino acid, crosslink, and hydrothermal isometric tension analysis. Photooxidation reduced intact histidine residues from 17.0 to 0 residues per 1000, indicating the photooxidative alteration of this amino acid. Diphenyl borinic acid-derivitized hydrolyzates of proteins were separated by high-performance liquid chromatography, which identified several amino acid crosslinks that appeared with photooxidation that were absent in untreated controls. Thermal relaxation analysis indicated a significantly higher (p < 0.0002) thermal stability for photooxidized porcine cusps than that of untreated controls, with mean relaxation times for untreated cusps of 14,000 +/- 4650 versus 22,900 +/- 2480 s for photooxidized cusps. In summary, porcine aortic valve tissue treated by dye-mediated photooxidation contains new chemical species and exhibits properties consistent with intermolecular crosslink formation, which explain the increased biostability of this material and its potential for use in bioprosthetic devices.  相似文献   

19.
Studies were done on the structural changes that develop in Ionescu-Shiley valves that are used as replacement heart valves for 4 to 8 years. These changes were compared with those found in similarly used porcine aortic valve (PAV) bioprostheses. A variety of morphologic differences were observed between bovine pericardial valve (BPV) and PAV bioprostheses after orthotopic implantation including: primary tissue failure associated with the use of an alignment suture, thickening of valve leaflet, leaflet tissue delamination, leaflet calcification, and dystrophic alterations of collagen. These findings indicate that valve design criteria directly influence the durability of pericardial valves. However, other factors unique to pericardial tissue also affect the durability and performance of BPVs. These factors include the inability of pericardial tissue to accommodate dynamic stresses; the extensive insudation of plasma proteins and lipids; and the inability to reduce leaflet calcification using agents that effectively mitigate calcification in PAV bioprostheses.  相似文献   

20.
BACKGROUND: The Medtronic Freestyle valve is fixed in glutaraldehyde at zero pressure on the cusps and treated with alpha-amino oleic acid. This valve reportedly has excellent clinical and hemodynamic results, but little has been reported about its long-term pathology. METHODS AND RESULTS: Nine Freestyle valves explanted between 2003 and 2005 were reviewed to assess the reasons for bioprosthesis failure (six implanted at our institution). All valves were examined in detail, using histochemistry and immunohistochemistry to identify the cellular response. One Freestyle valve, explanted for mitral valve endocarditis on the fifth postoperative day, was excluded from analysis. Average implant duration was 52.8+/-35.5 months. Four valves were explanted for infective endocarditis, three for aortic insufficiency, two for aortic stenosis with cusp calcification seen in five valves, pannus and thrombus in all valves and a chronic inflammatory reaction involving the xenograft arterial wall seen in eight of nine valves. This was associated with significant damage to the porcine aortic wall in seven cases, and cusp myocardial shelf damage in six cases. CONCLUSIONS: In this series of valves, we found (1) infective endocarditis; (2) pannus, thrombus, and calcification; and (3) unusual and significant inflammatory reaction and aortic tissue damage, which could by itself lead to aortic incompetence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号