首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study presents a theoretical analysis of the role of store Ca2+ uptake on sinoatrial node (SAN) cell pacemaking. Two mechanisms have been shown to be involved in SAN pacemaking, these being: 1) the membrane oscillator model where rhythm generation is based on the interaction of voltage-dependent membrane ion channels and, 2) the store oscillator model where cyclical release of Ca2+ from intracellular Ca2+ stores depolarizes the membrane through activation of the sodium-calcium exchanger (NCX). The relative roles of these oscillators in generation and modulation of pacemaker rate have been vigorously debated and have many consequences. The main new outcomes of our study are: 1) uptake of Ca2+ by intracellular Ca2+ stores increases the maximum diastolic potential (MDP) by reducing the cytosolic Ca2+ concentration [Ca2+]c and hence decreasing the NCX current; 2) this hyperpolarization enhances recruitment of key pacemaker currents (e.g. the hyperpolarization-activated HCN current (If) and T-type Ca2+ current (IT-Ca)); 3) the resultant enhanced Ca2+ entry during the pacemaker depolarization increases [Ca2+]c causing advancement of the store Ca2+ release cycle and increased NCX current. In overview, the novel feature of our study is an investigation of the role of store Ca2+ uptake on SAN pacemaking. This occurs during the early diastolic period and causes enhanced If, IT-Ca and store release (and hence INCX) during the later diastolic period. There is thus a symbiotic interaction between the two pacemaker “clocks” over the entire diastolic period, this providing robust and highly malleable SAN pacemaking. Accounting for store Ca2+ uptake also provides insight into hitherto unexplained SAN behaviour, as we exemplify for the sinus bradycardia exhibited in catecholaminergic polymorphic ventricular tachycardia (CPVT).  相似文献   

2.
AIM:Danshen's capability to induce salivary fluid secretion and its mechanisms were studied to determine if it could improve xerostomia.METHODS:Submandibular glands were isolated from male Wistar rats under systemic anesthesia with pentobarbital sodium.The artery was cannulated and vascularly perfused at a constant rate.The excretory duct was also cannulated and the secreted saliva was weighed in a cup on an electronic balance.The weight of the accumulated saliva was measured every 3 s and the salivary flow rate was calculated.In addition,the arterio-venous difference in the partial oxygen pressure was measured as an indicator of oxygen consumption.In order to assess the mechanism involved in Dansheninduced fluid secretion,either ouabain(an inhibitor of Na+/K+ ATPase) or bumetanide(an inhibitor of NKCC1) was additionally applied during the Danshen stimulation.In order to examine the involvement of the main membrane receptors,atropine was added to block the M3 muscarinic receptors,or phentolamine was added to block the α1 adrenergic receptors.In order to examine the requirement for extracellular Ca2+,Danshen was applied during the perfusion with nominal Ca2+ free solution.RESULTS:Although Danshen induced salivary fluid secretion,88.7 ± 12.8 μL/g-min,n = 9,(the highest value around 20 min from start of DS perfusion was significantly high vs 32.5 ± 5.3 μL/g-min by carbamylcholine,P = 0.00093 by t-test) in the submandibular glands,the time course of that secretion differed from that induced by carbamylcholine.There was a latency associated with the fluid secretion induced by Danshen,followed by a gradual increasein the secretion to its highest value,which was in turn followed by a slow decline to a near zero level.The application of either ouabain or bumetanide inhibited the fluid secretion by 85% or 93%,and suppressed the oxygen consumption by 49% or 66%,respectively.These results indicated that Danshen activates Na+/K+ ATPase and NKCC1 to maintain Cl- release and K+ release for fluid secretion.Neither atropine or phentolamine inhibited the fluid secretion induced by Danshen(263% ± 63% vs 309% ± 45%,227% ± 63% vs 309% ± 45%,P = 0.899,0.626 0.05 respectively,by ANOVA).Accordingly,Danshen does not bind with M3 or α1 receptors.These characteristics suggested that the mechanism involved in DS-induced salivary fluid secretion could be different from that induced by carbamylcholine.Carbamylcholine activates the M3 receptor to release inositol trisphosphate(IP3) and quickly releases Ca2+ from the calcium stores.The elevation of [Ca2+]i induces chloride release and quick osmosis,resulting in an onset of fluid secretion.An increase in [Ca2+]i is essential for the activation of the luminal Cl- and basolateral K+ channels.The nominal removal of extracellular Ca2+ totally abolished the fluid secretion induced by Danshen(1.8 ± 0.8 μL/g-min vs 101.9 ± 17.2 μL/g-min,P = 0.00023 0.01,by t-test),suggesting the involvement of Ca2+ in the activation of these channels.Therefore,IP3-store Ca2+ release signalling may not be involved in the secretion induced by Danshen,but rather,there may be a distinct signalling process.CONCLUSION:The present findings suggest that Danshen can be used in the treatment of xerostomia,to avoid the systemic side effects associated with muscarinic drugs.  相似文献   

3.
The senescent heart has decreased systolic and diastolic functions, both of which could be related to alterations in cardiac sarcoplasmic reticulum (SR) calcium (Ca2+) handling. The purpose of this study was to determine if SR protein content and rates of Ca2+ release and uptake and ATPase activity are lower in the senescent (34–36 mo) Fisher 344 × Brown-Norway F1 hybrid rat heart and if a long-term exercise training program could maintain SR function. Late middle aged (29 mo) male rats underwent 5–7 mo of treadmill training. Aging resulted in a decrease in SERCA activity and modest decrease in the rate of Ca2+ uptake but no change in Ca2+ release rate. SERCA2a content was not decreased with age but nitrotyrosine accumulation was increased and Ser16 phosphorylated phospholamban (PLN) was decreased. Ryanodine receptor content was not decreased with age but dihydropyridine receptor content was decreased in the senescent heart. Treadmill training had no significant effect on any of the SR properties or protein contents in the senescent rat heart. These results suggest that decreases in Ca2+ uptake and SERCA activity in the senescent F344BN rat heart are due to increased SERCA2a damage from nitrotyrosine accumulation and inhibition by PLN and that exercise training initiated at late middle age is unable to prevent these age-related changes in cardiac SR function.  相似文献   

4.
Glucose homeostasis is critically dependent on insulin release from pancreatic β-cells, which is strictly regulated by glucose-induced oscillations in membrane potential (Vm) and the cytosolic calcium level ([Ca2+]cyt). We propose that TRPM5, a Ca2+-activated monovalent cation channel, is a positive regulator of glucose-induced insulin release. Immunofluorescence revealed expression of TRPM5 in pancreatic islets. A Ca2+-activated nonselective cation current with TRPM5-like properties is significantly reduced in Trpm5−/− cells. Ca2+-imaging and electrophysiological analysis show that glucose-induced oscillations of Vm and [Ca2+]cyt have on average a reduced frequency in Trpm5−/− islets, specifically due to a lack of fast oscillations. As a consequence, glucose-induced insulin release from Trpm5−/− pancreatic islets is significantly reduced, resulting in an impaired glucose tolerance in Trpm5−/− mice.  相似文献   

5.
Neuronal Ca2+ signals can affect excitability and neural circuit formation. Ca2+ signals are modified by Ca2+ flux from intracellular stores as well as the extracellular milieu. However, the contribution of intracellular Ca2+ stores and their release to neuronal processes is poorly understood. Here, we show by neuron-specific siRNA depletion that activity of the recently identified store-operated channel encoded by dOrai and the endoplasmic reticulum Ca2+ store sensor encoded by dSTIM are necessary for normal flight and associated patterns of rhythmic firing of the flight motoneurons of Drosophila melanogaster. Also, dOrai overexpression in flightless mutants for the Drosophila inositol 1,4,5-trisphosphate receptor (InsP3R) can partially compensate for their loss of flight. Ca2+ measurements show that Orai gain-of-function contributes to the quanta of Ca2+-release through mutant InsP3Rs and elevates store-operated Ca2+ entry in Drosophila neurons. Our data show that replenishment of intracellular store Ca2+ in neurons is required for Drosophila flight.  相似文献   

6.
Alcohol-related acute pancreatitis can be mediated by a combination of alcohol and fatty acids (fatty acid ethyl esters) and is initiated by a sustained elevation of the Ca2+ concentration inside pancreatic acinar cells ([Ca2+]i), due to excessive release of Ca2+ stored inside the cells followed by Ca2+ entry from the interstitial fluid. The sustained [Ca2+]i elevation activates intracellular digestive proenzymes resulting in necrosis and inflammation. We tested the hypothesis that pharmacological blockade of store-operated or Ca2+ release-activated Ca2+ channels (CRAC) would prevent sustained elevation of [Ca2+]i and therefore protease activation and necrosis. In isolated mouse pancreatic acinar cells, CRAC channels were activated by blocking Ca2+ ATPase pumps in the endoplasmic reticulum with thapsigargin in the absence of external Ca2+. Ca2+ entry then occurred upon admission of Ca2+ to the extracellular solution. The CRAC channel blocker developed by GlaxoSmithKline, GSK-7975A, inhibited store-operated Ca2+ entry in a concentration-dependent manner within the range of 1 to 50 μM (IC50 = 3.4 μM), but had little or no effect on the physiological Ca2+ spiking evoked by acetylcholine or cholecystokinin. Palmitoleic acid ethyl ester (100 μM), an important mediator of alcohol-related pancreatitis, evoked a sustained elevation of [Ca2+]i, which was markedly reduced by CRAC blockade. Importantly, the palmitoleic acid ethyl ester-induced trypsin and protease activity as well as necrosis were almost abolished by blocking CRAC channels. There is currently no specific treatment of pancreatitis, but our data show that pharmacological CRAC blockade is highly effective against toxic [Ca2+]i elevation, necrosis, and trypsin/protease activity and therefore has potential to effectively treat pancreatitis.  相似文献   

7.
Membrane fractions enriched in sarcoplasmic reticulum (SR) were isolated from the cardiac ventricles of 10-month-old, stroke-prone spontaneously hypertensive rats (SHRSP) which had been maintained for nine months on one of four experimental diets: low protein (LP) (19% protein), standard (STD) (24% protein), high protein (HP) (32% protein), or high methionine (1.9% methionine) (MET). ATPase activities, as well as ATP-dependent Ca2+ binding and Ca2+ uptake activities, of the isolated SR were determined to examine the influence of diet on myocardial Ca2+ -pump activity. SR from all four groups exhibited similar Mg2+ ATPase activity. However, the (Ca2+ Mg2+)-ATPase activity was significantly elevated in SR from rats on the MET diet while the activity in the other groups showed no significant differences. After 15 sec of incubation. Ca2+ -uptake (presence of oxalate) in SR from the LP group was significantly less than Ca2+ -uptake in SR from each of the three other diet groups. Ca2+ binding (absence of oxalate) in the SR from the LP group was also significantly less than that from each of the three other diet groups. Kinetic analysis of SR Ca2+ -uptake over 60 sec revealed that the Bmax of the MET group was significantly higher than Bmax of the STD diet group. In addition, the Bmax of the LP group was significantly lower than Bmax of the HP and MET groups. There was no significant difference in affinity of the SR Ca2+ -uptake system among the four diet groups. These results indicate that modification of dietary protein can influence myocardial SR Ca2+ -pump function.  相似文献   

8.
9.
Polycystin-2 (PC2), the gene product of one of two genes mutated in dominant polycystic kidney disease, is a member of the transient receptor potential cation channel family and can function as intracellular calcium (Ca2+) release channel. We performed a yeast two-hybrid screen by using the NH2 terminus of PC2 and identified syntaxin-5 (Stx5) as a putative interacting partner. Coimmunoprecipitation studies in cell lines and kidney tissues confirmed interaction of PC2 with Stx5 in vivo. In vitro binding assays showed that the interaction between Stx5 and PC2 is direct and defined the respective interaction domains as the t-SNARE region of Stx5 and amino acids 5 to 72 of PC2. Single channel studies showed that interaction with Stx5 specifically reduces PC2 channel activity. Epithelial cells overexpressing mutant PC2 that does not bind Stx5 had increased baseline cytosolic Ca2+ levels, decreased endoplasmic reticulum (ER) Ca2+ stores, and reduced Ca2+ release from ER stores in response to vasopressin stimulation. Cells lacking PC2 altogether had reduced cytosolic Ca2+ levels. Our data suggest that PC2 in the ER plays a role in cellular Ca2+ homeostasis and that Stx5 functions to inactivate PC2 and prevent leaking of Ca2+ from ER stores. Modulation of the PC2/Stx5 interaction may be a useful target for impacting dysregulated intracellular Ca2+ signaling associated with polycystic kidney disease.  相似文献   

10.
The Ca2+-dependent facilitation (CDF) of L-type Ca2+ channels, a major mechanism for force-frequency relationship of cardiac contraction, is mediated by Ca2+/CaM-dependent kinase II (CaMKII). Recently, CaMKII was shown to be activated by methionine oxidation. We investigated whether oxidation-dependent CaMKII activation is involved in the regulation of L-type Ca2+ currents (ICa,L) by H2O2 and whether Ca2+ is required in this process. Using patch clamp, ICa,L was measured in rat ventricular myocytes. H2O2 induced an increase in ICa,L amplitude and slowed inactivation of ICa,L. This oxidation-dependent facilitation (ODF) of ICa,L was abolished by a CaMKII blocker KN-93, but not by its inactive analog KN-92, indicating that CaMKII is involved in ODF. ODF was not affected by replacement of external Ca2+ with Ba2+ or presence of EGTA in the internal solutions. However, ODF was abolished by adding BAPTA to the internal solution or by depleting sarcoplasmic reticulum (SR) Ca2+ stores using caffeine and thapsigargin. Alkaline phosphatase, β-iminoadenosine 5′-triphosphate (AMP-PNP), an autophosphorylation inhibitor autocamtide-2-related inhibitory peptide (AIP), or a catalytic domain blocker (CaM-KIINtide) did not affect ODF. In conclusion, oxidation-dependent facilitation of L-type Ca2+ channels is mediated by oxidation-dependent CaMKII activation, in which local Ca2+ increases induced by SR Ca2+ release is required.  相似文献   

11.
Dynamics of calcium-induced insulin release   总被引:1,自引:0,他引:1  
Summary Extracellular Ca2+, at concentrations exceeding 10 mmol/l, causes a dose-related stimulation of insulin release. The dynamics of Ca2+-induced insulin release are characterized by a quick onset, a progressive build-up and a later return towards basal secretory rate. The release of insulin evoked by Ca2+ is inhibited in the presence of either Mg2+ (10 mmol/l) or the organic Ca2+-antagonist verapamil (81 mol/l), both of which are known to inhibit Ca2+ entry in the B-cell. Glucose and theophylline, which are thought to affect the net uptake or intracellular distribution of Ca2+ in the B-cell, both enhance Ca2+-induced insulin release. As little as 2.7 mmol/l glucose is sufficient to augment Ca2+-induced insulin secretion. Exposure of the pancreas to somatostatin significantly retards the secretory response to Ca2+. Cytochalasin B potentiates the insulin release evoked by Ca2+ (12 mmol/l) and lowers the threshold concentration of Ca2+ required to stimulate secretion. These data suggest that high extracellular Ca2+ concentrations may sufficiently increase the amount of Ca2+ accumulated in the B-cell to eventually trigger insulin release. Agents known to cause a remodelling of Ca2+ fluxes across membrane systems in the B-cell interfere with Ca2+-induced insulin release, a process also dependent on the integrity of the cytochalasin B-sensitive microfilamentous effector system.  相似文献   

12.
13.
Melastatin-related transient receptor potential channel 2 (TRPM2) is a Ca2+-permeable, nonselective cation channel that is involved in oxidative stress-induced cell death and inflammation processes. Although TRPM2 can be activated by ADP-ribose (ADPR) in vitro, it was unknown how TRPM2 is gated in vivo. Moreover, several alternative spliced isoforms of TRPM2 identified recently are insensitive to ADPR, and their gating mechanisms remain unclear. Here, we report that intracellular Ca2+ ([Ca2+]i) can activate TRPM2 as well as its spliced isoforms. We demonstrate that TRPM2 mutants with disrupted ADPR-binding sites can be activated readily by [Ca2+]i, indicating that [Ca2+]i gating of TRPM2 is independent of ADPR. The mechanism by which [Ca2+]i activates TRPM2 is via a calmodulin (CaM)-binding domain in the N terminus of TRPM2. Whereas Ca2+-mediated TRPM2 activation is independent of ADPR and ADPR-binding sites, both [Ca2+]i and the CaM-binding motif are required for ADPR-mediated TRPM2 gating. Importantly, we demonstrate that intracellular Ca2+ release activates both recombinant and endogenous TRPM2 in intact cells. Moreover, receptor activation-induced Ca2+ release is capable of activating TRPM2. These results indicate that [Ca2+]i is a key activator of TRPM2 and the only known activator of the spliced isoforms of TRPM2. Our findings suggest that [Ca2+]i-mediated activation of TRPM2 and its alternative spliced isoforms may represent a major gating mechanism in vivo, therefore conferring important physiological and pathological functions of TRPM2 and its spliced isoforms in response to elevation of [Ca2+]i.  相似文献   

14.
Calcium (Ca2+) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca2+ levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca2+ ([Ca2+]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca2+ uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca2+ uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca2+ uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca2+ influx into the mitochondria via the MCU is small relative to other cytosolic Ca2+ extrusion pathways; (ii) single MCU conductance is ∼6–7 pS (105 mM [Ca2+]), and MCU flux appears to be modulated by [Ca2+]i, suggesting Ca2+ regulation of MCU open probability (PO); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca2+ critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca2+ under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca2+]i, mitochondrial Ca2+ uptake can increase 10- to 1,000-fold and begin to shape [Ca2+]i dynamics.  相似文献   

15.
16.
Short-term synaptic facilitation plays an important role in information processing in the central nervous system. Although the crucial requirement of presynaptic Ca2+ in the expression of this plasticity has been known for decades, the molecular mechanisms underlying the plasticity remain controversial. Here, we show that presynaptic metabotropic glutamate receptors (mGluRs) bind and release Munc18-1 (also known as rbSec1/nSec1), an essential protein for synaptic transmission, in a Ca2+-dependent manner, whose actions decrease and increase synaptic vesicle release, respectively. We found that mGluR4 bound Munc18-1 with an EC50 for Ca2+ of 168 nM, close to the resting Ca2+ concentration, and that the interaction was disrupted by Ca2+-activated calmodulin (CaM) at higher concentrations of Ca2+. Consistently, the Munc18-1-interacting domain of mGluR4 suppressed both dense-core vesicle secretion from permeabilized PC12 cells and synaptic transmission in neuronal cells. Furthermore, this domain was sufficient to induce paired-pulse facilitation. Obviously, the role of mGluR4 in these processes was independent of its classical function of activation by glutamate. On the basis of these experimental data, we propose the following model: When neurons are not active, Munc18-1 is sequestered by mGluR4, and therefore the basal synaptic transmission is kept low. After the action potential, the increase in the Ca2+ level activates CaM, which in turn liberates Munc18-1 from mGluR4, causing short-term synaptic facilitation. Our findings unite and provide a new insight into receptor signaling and vesicular transport, which are pivotal activities involved in a variety of cellular processes.  相似文献   

17.
Reduction in [Ca2+]o prolongs the AP in ventricular cardiomyocytes and the QTc interval in patients. Although this phenomenon is relevant to arrhythmogenesis in the clinical setting, its mechanisms are counterintuitive and incompletely understood. To evaluate in silico the mechanisms of APD modulation by [Ca2+]o in human cardiomyocytes. We implemented the Ten Tusscher-Noble-Noble-Panfilov model of the human ventricular myocyte and modified the formulations of the rapidly and slowly activating delayed rectifier K+ currents (IKr and IKs) and L-type Ca2+ current (ICaL) to incorporate their known sensitivity to intra- or extracellular Ca2+. Simulations were run with the original and modified models at variable [Ca2+]o in the clinically relevant 1 to 3 mM range. The original model responds with APD shortening to decrease in [Ca2+]o, i.e. opposite to the experimental observations. Incorporation of Ca2+ dependency of K+ currents cannot reproduce the inverse relation between APD and [Ca2+]o. Only when ICaL inactivation process was modified, by enhancing its dependency on Ca2+, simulations predict APD prolongation at lower [Ca2+]o. Although Ca2+-dependent ICaL inactivation is the primary mechanism, secondary changes in electrogenic Ca2+ transport (by Na+/Ca2+ exchanger and plasmalemmal Ca2+-ATPase) contribute to the reversal of APD dependency on [Ca2+]o. This theoretical investigation points to Ca2+-dependent inactivation of ICaL as a mechanism primarily responsible for the dependency of APD on [Ca2+]o. The modifications implemented here make the model more suitable to analyze repolarization mechanisms when Ca2+ levels are altered.  相似文献   

18.
Sudden cardiac death remains one of the most prevalent modes of death and is mainly caused by ventricular fibrillation (VF) in the setting of acute ischemia resulting from coronary thrombi. Animal experiments have shown that platelet activation may increase susceptibility of ischemic myocardium to VF, but the mechanism is unknown. In the present study, we evaluated the effects of activated blood platelet products (ABPPs) on electrophysiological properties and intracellular Ca2+ (Ca2+i) homeostasis. Platelets were collected from healthy volunteers. After activation, their secreted ABPPs were added to superfusion solutions. Rabbit ventricular myocytes were freshly isolated, and membrane potentials and Ca2+i were recorded using patch-clamp methodology and indo-1 fluorescence measurements, respectively. ABPPs prolonged action potential duration and induced early and delayed afterdepolarizations. ABPPs increased L-type Ca2+ current (ICa,L) density, but left densities of sodium current, inward rectifier K+ current, transient outward K+ current, and rapid component of the delayed rectifier K+ current unchanged. ABPPs did not affect kinetics or (in)activation properties of membrane currents. ABPPs increased systolic Ca2+i, Ca2+i transient amplitude, and sarcoplasmic reticulum Ca2+ content. ABPPs did not affect the Na+− Ca2+ exchange current (INCX) in Ca2+-buffered conditions. Products secreted from activated human platelets induce changes in ICa,L and Ca2+i, which result in action potential prolongation and the occurrence of early and delayed afterdepolarizations in rabbit myocytes. These changes may trigger and support reentrant arrhythmias in ischemia models of coronary thrombosis.  相似文献   

19.
Platelet Ca2+ homeostasis is controlled by a multi-Ca2+ATPase system including two PMCA (plasma membrane Ca2+ATPase) and seven SERCA (sarco/endoplasmic reticulum Ca2+ATPase) isoforms. Previous studies have shown similar platelet Ca2+ abnormalities in diabetic and hypertensive patients, including an increase in intracellular [Ca2+]I, a possible modulation of PMCA activity and increased PMCA tyrosine phosphorylation. Very recently, we found that platelets from diabetic patients also exhibited increased PMCA4b expression. In the present study we looked for further similarities between diabetic and hypertensive patients. We first confirmed a decrease in Ca2+ATPase activity (mean 55?+?7%) in mixed platelet membranes isolated from 10 patients with hypertension compared with those from 10 healthy controls. In addition, the decreased Ca2+ATPase activity correlated with the DBP of the different patients, as expected for PMCA activity. Second, we performed a pilot study of six hypertensives to examine their expressions of PMCA and SERCA mRNA and proteins. Like the diabetic patients, 100% of hypertensives were found to present a major increase in PMCA4b expression (mean value of 218?±?21%). We thus determined that platelets from diabetic and hypertensive patients showed similar increased PMCA4b isoform. Since increased PMCA4b expression was recently found to be associated with a perturbation of megakaryocytopoiesis, these findings may also point to an abnormality in platelet maturation in hypertension.  相似文献   

20.
Increases in cytosolic Ca2+ concentration regulate diverse cellular activities and are usually evoked by opening of Ca2+ channels in intracellular Ca2+ stores and the plasma membrane (PM). For the many signals that evoke formation of inositol 1,4,5-trisphosphate (IP3), IP3 receptors coordinate the contributions of these two Ca2+ sources by mediating Ca2+ release from the endoplasmic reticulum (ER). Loss of Ca2+ from the ER then activates store-operated Ca2+ entry (SOCE) by causing dimers of STIM1 to cluster and unfurl cytosolic domains that interact with the PM Ca2+ channel, Orai1, causing its pore to open. The relative concentrations of STIM1 and Orai1 are important, but most analyses of their interactions use overexpressed proteins that perturb the stoichiometry. We tagged endogenous STIM1 with EGFP using CRISPR/Cas9. SOCE evoked by loss of ER Ca2+ was unaffected by the tag. Step-photobleaching analysis of cells with empty Ca2+ stores revealed an average of 14.5 STIM1 molecules within each sub-PM punctum. The fluorescence intensity distributions of immunostained Orai1 puncta were minimally affected by store depletion, and similar for Orai1 colocalized with STIM1 puncta or remote from them. We conclude that each native SOCE complex is likely to include only a few STIM1 dimers associated with a single Orai1 channel. Our results, demonstrating that STIM1 does not assemble clusters of interacting Orai channels, suggest mechanisms for digital regulation of SOCE by local depletion of the ER.

In generating the cytosolic Ca2+ signals that regulate cellular activities, cells call upon two sources of Ca2+: the extracellular space, accessed through Ca2+ channels in the plasma membrane (PM), and Ca2+ sequestered within intracellular stores, primarily within the endoplasmic reticulum (ER). In animal cells, the many receptors that stimulate formation of inositol 1,4,5-trisphosphate (IP3) provide coordinated access to both Ca2+ sources (1). IP3 stimulates the opening of IP3 receptors (IP3R), which are large Ca2+-permeable channels expressed mostly within ER membranes. IP3 thereby triggers Ca2+ release from the ER (2, 3). The link to extracellular Ca2+ is provided by store-operated Ca2+ entry (SOCE), which is activated by loss of Ca2+ from the ER. The reduction in ER free-Ca2+ concentration causes Ca2+ to dissociate from the luminal Ca2+-binding sites of stromal interaction molecule 1 (STIM1), a dimeric protein embedded in ER membranes. This loss of Ca2+ causes STIM1 to unfurl cytosolic domains that interact with the PM Ca2+ channel, Orai1, causing its pore to open and Ca2+ to flow into the cell through the SOCE pathway (Fig. 1A) (4, 5). Available evidence suggests that STIM1 must bind to the C-terminal tail of each of the six subunits of an Orai1 channel for optimal activity, with lesser occupancies reducing activity and modifying channel properties (610). The interactions between STIM1 and Orai1 occur at membrane contact sites (MCS), where the two membranes are organized to provide a gap of about 10–30 nm, across which the two proteins directly interact (1113). Orai channels are unusual in having no structural semblance to other ion channels and in having their opening controlled by direct interactions between proteins in different membranes (Fig. 1A). Competing models suggest that dimeric STIM1 binds either to a pair of C-terminal tails within a single channel (6 STIM1 molecules per hexameric Orai1 channel) (Fig. 1 B, a), or that each dimer interacts with only a single C-terminal tail leaving the remaining STIM1 subunit free to cross-link with a different Orai1 channel (12 STIM1 molecules around a single Orai1 channel) (Fig. 1 B, b) (see references in ref. 14). The latter arrangement has been proposed to allow assembly of close-packed Orai1 clusters (Fig. 1 B, c) and to explain the variable stoichiometry of Orai1 to STIM1 at MCS (14).Open in a separate windowFig. 1.SOCE is unaffected by tagging of endogenous STIM1. (A) SOCE is activated when loss of Ca2+ from the ER, usually mediated by IP3Rs, causes Ca2+ to dissociate from the EF hands of dimeric STIM1. This causes STIM1 to unfurl its cytosolic domain, unmasking the C-terminal polybasic tail (PBT) and CRAC (Ca2+-release-activated channel)-activation domain (CAD) Association of the PBT with PM phosphoinositides causes STIM1 to accumulate at MCS, where the CAD captures the C-terminal tail of Orai1. Binding of STIM1 to each of the six subunits of Orai1 opens the Ca2+ channel, allowing SOCE to occur (9). (B) Orai1 is a hexamer, comprising three pairs of dimers (33). Dimeric STIM1 may activate Orai1 by binding as three dimers (B, a), or as six dimers (B, b) with the residual STIM1 subunit free to interact with another Orai1 channel (B, c) (14). (C) Structure of the edited STIM1-EGFP. (D) TIRF images of STIM1-EGFP HeLa cells treated with STIM1 or nonsilencing (NS) shRNA before emptying of Ca2+ stores. (Scale bar, 10 µm.) (E) Summary results (individual values, mean ± SD, n = 3 independent experiments, each with ∼30 cells analyzed) show whole-cell fluorescence intensities from TIRF images of STIM1-EGFP HeLa cells treated with the indicated shRNA. Results from WT cells are also shown (n = 4). ****P < 0.0001, ANOVA with Bonferroni test, relative to WT cells. (F) In-gel fluorescence of lysates from WT or STIM1-EGFP HeLa cells (protein loadings in μg). The STIM1-EGFP band (arrow) and molecular mass markers (kDa) are shown. Similar results were obtained in four independent analyses. (G) WB for STIM1 and β-actin for WT and STIM1-EGFP HeLa cells. Protein loadings (μg) and molecular mass markers (kDa) are shown. Arrows show positions of native and EGFP-tagged STIM1. (H) Summary results (individual values, mean ± SD, n = 9) show expression of STIM1-EGFP relative to all STIM1 in STIM1-EGFP HeLa cells (red), and total STIM1 expression in WT and edited cells (black). (I) Effects of histamine in Ca2+-free HBS on the peak increase in [Ca2+]c (Δ[Ca2+]c) in populations of WT and STIM1-EGFP HeLa cells. Mean ± SEM from four experiments, each with six determinations. (J) Effects of CPA in Ca2+-free HBS on the peak increase in [Ca2+]c (Δ[Ca2+]c) in populations of WT and STIM1-EGFP HeLa cells. Mean ± SEM from four experiments, each with six determinations. (K) Populations of cells were treated (5 min) with CPA in Ca2+-free HBS to evoke graded depletion of ER Ca2+ stores before addition of extracellular Ca2+ (final free [Ca2+] ∼10 mM). Results (mean ± SEM, n = 6, each with six determinations) show the amplitude of the SOCE in WT and STIM1-EGFP HeLa cells. See also SI Appendix, Figs. S1 and S2.Opening of most ion channels is regulated by changes in membrane potential or by binding of soluble stimuli, where the relationship between stimulus intensity and response is readily amenable to experimental analysis. The unusual behavior of SOCE, where direct interactions between proteins embedded in different membranes control channel opening (Fig. 1A), makes it more difficult to define stimulus–response relationships and highlights the need to understand the amounts of STIM1 and Orai1 within the MCS where the interactions occur. When STIM1 or Orai1 are overexpressed their behaviors are perturbed, yet most analyses of their interactions have involved overexpression of the proteins. These difficulties motivated the present study, which was designed to determine the number of native STIM1 molecules associated with each SOCE signaling complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号