首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Angiogenesis is a common feature observed in advanced atherosclerotic lesions. We hypothesized that oxidized phospholipids (OxPLs), which accumulate in atherosclerotic vessels can stimulate angiogenesis. We found that oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (OxPAPC) stimulated the formation of sprouts from endothelial cell spheroids and promoted growth of capillaries into Matrigel plugs in mice. OxPLs stimulated expression of vascular endothelial growth factor (VEGF) in vivo and in several normal and tumor cell types in vitro. In addition, OxPAPC upregulated cyclooxygenase (COX)-2 and interleukin (IL)-8. COX-2 inhibitors, as well as blocking antibodies to IL-8 suppressed activation of sprouting by OxPAPC. We conclude that OxPAPC stimulates angiogenesis via autocrine mechanisms involving VEGF, IL-8, and COX-2-generated prostanoids. Our data suggest that accumulation of OxPLs may contribute to increased growth of blood capillaries in advanced lesions, thus leading to progression and destabilization of atherosclerotic plaques.  相似文献   

6.
7.

Rationale

Macrophage cholesterol homeostasis maintenance is the result of a balance between influx, endogenous synthesis, esterification/hydrolysis and efflux. Excessive accumulation of cholesterol leads to foam cell formation, which is the major pathology of atherosclerosis. Previous studies have shown that miR-27 (miR-27a and miR-27b) may play a key role in the progression of atherosclerosis.

Objective

We set out to investigate the molecular mechanisms of miR-27a/b in intracellular cholesterol homeostasis.

Methods and results

In the present study, our results have shown that the miR-27 family is highly conserved during evolution, present in mammals and directly targets the 3′ UTR of ABCA1, LPL, and ACAT1. apoA1, ABCG1 and SR-B1 lacking miR-27 bind sites should not be influenced by miR-27 directly. miR-27a and miR-27b directly regulated the expression of endogenous ABCA1 in different cells. Treatment with miR-27a and miR-27b mimics reduced apoA1-mediated cholesterol efflux by 33.08% and 44.61% in THP-1 cells, respectively. miR-27a/b also regulated HDL-mediated cholesterol efflux in THP-1 macrophages and affected the expression of apoA1 in HepG2 cells. However, miR-27a/b had no effect on total cellular cholesterol accumulation, but regulated the levels of cellular free cholesterol and cholesterol ester. We further found that miR-27a/b regulated the expression of LPL and CD36, and then affected the ability of THP-1 macrophages to uptake Dil-oxLDL. Finally, we identified that miR-27a/b regulated cholesterol ester formation by targeting ACAT1 in THP-1 macrophages.

Conclusion

These findings indicate that miR-27a/b affects the efflux, influx, esterification and hydrolysis of cellular cholesterol by regulating the expression of ABCA1, apoA1, LPL, CD36 and ACAT1.  相似文献   

8.

Background

Recent studies have suggested that the microRNAs miR-133a and miR-423-5p may serve as useful biomarkers in patients with left ventricular (LV) heart failure or with LV remodeling after myocardial infarction (MI). These results were however obtained in small series of patients and control subjects were used as reference groups. Whether these microRNAs may be indicators of the degree of LV remodeling after MI is unknown.

Methods

246 patients with a first anterior Q-wave MI were included. Serial echocardiographic studies were performed at hospital discharge, 3 months, and 1 year after MI and analyzed at a core laboratory. We investigated the temporal profile (baseline, 1, 3 and 12 months) of circulating miR-133a and miR-423-5p and their relations with cardiac biomarkers (B-type natriuretic peptide, C-reactive protein, and cardiac troponin I) and LV remodeling during the 1 year follow-up.

Results

There were time-dependent changes in the levels of circulating miR-133a and miR-423-5p with significant increase of miR-133a at 12 months compared to 3 months and significant increase of miR-423-5p at 1, 3, and 12 months compared to baseline. However, miR-133a and miR-423-5p were not associated with indices of LV function and LV remodeling serially assessed during a 1 year period after an acute anterior MI, nor with B-type natriuretic peptide.

Conclusions

Circulating levels of miR-133a and miR-423-5p are not useful biomarkers of LV remodeling after MI.  相似文献   

9.
10.

Background

Myocardial fibrosis plays a pivotal role in the development of heart failure. Hydrogen sulfide (H2S) is an endogenous gasotransmitter with potent cardioprotective properties; however, whether H2S is involved in fibrotic process remains unknown. This study aimed to explore the role of H2S in the process of cardiac fibrosis and the underlying mechanisms.

Methods

Myocardial infarction (MI) was established in rats by ligation of coronary artery. Activation of rat neonatal cardiac fibroblasts was induced by angiotensin II (Ang II). Fibrotic responses in ischemic myocardium and in Ang II-stimulated cardiac fibroblasts were examined. The effects of sodium hydrosulfide (NaHS, an exogenous H2S donor) on NADPH oxidase 4 (Nox4), reactive oxygen species (ROS) production, extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation, heme oxygenase-1 (HO-1), and cystathionine γ-lyase (CSE) were tested to elucidate the protective mechanisms of H2S on fibrotic response.

Results

NaHS treatment inhibited Ang II-induced expression of α-smooth muscle actin, connective tissue growth factor (CTGF), and type I collagen and upregulated expression of HO-1 in cardiac fibroblasts. Ang II-induced Nox4 expression in cardiac fibroblasts was quenched by NaHS and this was associated with a decreased ROS production and reduced ERK1/2 phosphorylation and CTGF expression. In vivo studies using MI model indicated that NaHS administration attenuated Nox4 expression and fibrotic response. Moreover, NaHS therapy also prevented cardiac inflammatory response accompanied by increases in HO-1 and CSE expression.

Conclusions

The beneficial effect of H2S, at least in part, was associated with a decrease of Nox4-ROS-ERK1/2 signaling axis and an increase in HO-1 expression.  相似文献   

11.

Background

Biodegradable polymers have been applied as bulk or coating materials for coronary artery stents. The degradation of polymers, however, could induce endothelial dysfunction and aggravate neointimal formation. Here we use polymeric microparticles to simulate and demonstrate the effects of degraded stent materials on phagocytic activity, cell death and dysfunction of macrophages and endothelial cells.

Methods

Microparticles made of low molecular weight polyesters were incubated with human macrophages and coronary artery endothelial cells (ECs). Microparticle-induced phagocytosis, cytotoxicity, apoptosis, cytokine release and surface marker expression were determined by immunostaining or ELISA. Elastase expression was analyzed by ELISA and the elastase-mediated polymer degradation was assessed by mass spectrometry.

Results

We demonstrated that poly(D,L-lactic acid) (PLLA) and polycaprolactone (PCL) microparticles induced cytotoxicity in macrophages and ECs, partially through cell apoptosis. The particle treatment alleviated EC phagocytosis, as opposed to macrophages, but enhanced the expression of vascular cell adhesion molecule (VCAM)-1 along with decreased nitric oxide production, indicating that ECs were activated and lost their capacity to maintain homeostasis. The activation of both cell types induced the release of elastase or elastase-like protease, which further accelerated polymer degradation.

Conclusions

This study revealed that low molecule weight PLLA and PCL microparticles increased cytotoxicity and dysregulated endothelial cell function, which in turn enhanced elastase release and polymer degradation. These indicate that polymer or polymer-coated stents impose a risk of endothelial dysfunction after deployment which can potentially lead to delayed endothelialization, neointimal hyperplasia and late thrombosis.  相似文献   

12.
Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC), which has been shown to accumulate in atherosclerotic lesions and other sites of chronic inflammation, activates endothelial cells (EC) to bind monocytes by activation of endothelial beta1 integrin and subsequent deposition of fibronectin on the apical surface. Our previous studies suggest this function of OxPAPC is mediated via a Gs protein-coupled receptor (GPCR). PEIPC (1-palmitoyl-2-epoxyisoprostane E2-sn-glycero-3-phosphorylcholine) is the most active lipid in OxPAPC that activates this pathway. We screened a number of candidate GPCRs for their interaction with OxPAPC and PEIPC, using a reporter gene assay; we identified prostaglandin E2 receptor EP2 and prostaglandin D2 receptor DP as responsive to OxPAPC. We focused on EP2, which is expressed in ECs, monocytes, and macrophages. OxPAPC component PEIPC, but not POVPC, activated EP2 with an EC50 of 108.6 nmol/L. OxPAPC and PEIPC were also able to compete with PGE2 for binding to EP2 in a ligand-binding assay. The EP2 specific agonist butaprost was shown to mimic the effect of OxPAPC on the activation of beta1 integrin and the stimulation of monocyte binding to endothelial cells. Butaprost also mimicked the effect of OxPAPC on the regulation of tumor necrosis factor-alpha and interleukin-10 in monocyte-derived cells. EP2 antagonist AH6809 blocked the activation of EP2 by OxPAPC in HEK293 cells and blocked the interleukin-10 response to PEIPC in monocytic THP-1 cells. These results suggest that EP2 functions as a receptor for OxPAPC and PEIPC, either as the phospholipid ester or the released fatty acid, in both endothelial cells and macrophages.  相似文献   

13.

Background

A large body of evidence showed that arsenic trioxide (As2O3), a front-line drug for the treatment of acute promyelocytic leukemia, induced abnormal cardiac QT prolongation, which hampers its clinical use. The molecular mechanisms for this cardiotoxicity remained unclear. This study aimed to elucidate whether microRNAs (miRs) participate in As2O3-induced QT prolongation.

Methods

A guinea pig model of As2O3-induced QT prolongation was established by intravenous injection with As2O3. Real-time PCR and Western blot were employed to determine the expression alterations of miRs and mRNAs, and their corresponding proteins.

Results

The QT interval and QRS complex were significantly prolonged in a dose-dependent fashion after 7-day administration of As2O3. As2O3 induced a significant upregulation of the muscle-specific miR-1 and miR-133, as well as their transactivator serum response factor. As2O3 depressed the protein levels of ether-a-go-go related gene (ERG) and Kir2.1, the K+ channel subunits responsible for delayed rectifier K+ current IKr and inward rectifier K+ current IK1, respectively. In vivo transfer of miR-133 by direct intramuscular injection prolonged QTc interval and increased mortality rate, along with depression of ERG protein and IKr in guinea pig hearts. Similarly, forced expression of miR-1 widened QTc interval and QRS complex and increased mortality rate, accompanied by downregulation of Kir2.1 protein and IK1. Application of antisense inhibitors to knockdown miR-1 and miR-133 abolished the cardiac electrical disorders caused by As2O3.

Conclusions

Deregulation of miR-133 and miR-1 underlies As2O3-induced cardiac electrical disorders and these miRs may serve as potential therapeutic targets for the handling of As2O3 cardiotoxicity.  相似文献   

14.

Background and aims

MicroRNAs have been recently identified as important regulators that influence human carcinogenesis, cancer progression, and the interaction between the host and virus. This study investigates an association between microRNAs (miR-101-1, miR-101-2, and miR-338) and the risk of liver diseases through clearance of hepatitis B virus infection, development of liver cirrhosis, and hepatocellular carcinoma occurrence.

Methods

Genetic variations were genotyped using the TaqMan assay in 1439 Korean hepatitis B virus patients. To investigate the relationship between four polymorphisms in three microRNAs and the disease phenotypes, differences in frequency distribution of variations were analysed using logistic and multiple regression analyses after adjusting for age and gender as covariates.

Results

We find that the rs7536540 polymorphism in miR-101-1 is significantly associated with development of liver cirrhosis and hepatocellular carcinoma occurrence. In addition, rs12375841 and its unique haplotype (ht2) in miR-101-2 show significant association with clearance of hepatitis B virus infection.

Conclusions

To our knowledge, this is the first study to examine a relationship between the three microRNA genes and the risk of hepatitis B-related liver diseases. We expect that the findings in this study will be helpful to further genetic studies in the pathophysiology of hepatitis B virus-related liver diseases.  相似文献   

15.

Objectives

Polyamines are organic polycations playing an essential role in cell proliferation and differentiation, as well as in cell contractility, migration and apoptosis. These processes are known to contribute to restenosis, a pathophysiological process often occurring in patients submitted to revascularization procedures. We aimed to test the effect of α-difluoromethylornithine (DFMO), an inhibitor of ornithine decarboxylase, on vascular cell pathophysiology in vitro and in a rat model of carotid arteriotomy-induced (re)stenosis.

Methods

The effect of DFMO on primary rat smooth muscle cells (SMCs) and mouse microvascular bEnd.3 endothelial cells (ECs) was evaluated through the analysis of DNA synthesis, polyamine concentration, cell viability, cell cycle phase distribution and by RT-PCR targeting cyclins and genes belonging to the polyamine pathway. The effect of DFMO was then evaluated in arteriotomy-injured rat carotids through the analysis of cell proliferation and apoptosis, RT-PCR and immunohistochemical analysis of differential gene expression.

Results

DFMO showed a differential effect on SMCs and on ECs, with a marked, sustained anti-proliferative effect of DFMO at 3 and 8 days of treatment on SMCs and a less pronounced, late effect on bEnd.3 ECs at 8 days of DFMO treatment. DFMO applied perivascularly in pluronic gel at arteriotomy site reduced subsequent cell proliferation and preserved smooth muscle differentiation without affecting the endothelial coverage. Lumen area in DFMO-treated carotids was 49% greater than in control arteries 4 weeks after injury.

Conclusions

Our data support the key role of polyamines in restenosis and suggest a novel therapeutic approach for this pathophysiological process.  相似文献   

16.

Objective

The protective effect of sodium tanshinone IIA sulfonate (STS) pretreatment against experimental myocardial ischemia/reperfusion (I/R) has been demonstrated previously, however its therapeutic effects and mechanism of action still remain unclear. The objective of this study was to investigate the therapeutic time window and potential mechanism of STS action on myocardial I/R injury in a rat model of myocardial I/R.

Methods

Rats received 30 min ischemia by complete ligation of the left ascending coronary artery, and then were reperfused for 24 h. STS (8 mg/kg) was administered intravenously 15 min before and at 0, 0.5, 1, 2, 4, 6 h after reperfusion. The infarct size and several consequences of myocardial I/R including myocardial zymogram, antioxidant status, cardiac function and microstructure disorder were evaluated 24 h after reperfusion. Furthermore, the effect of STS on heme oxygenase-1 (HO-1) protein expression and nuclear factor-κB (NF-κB) activation were also evaluated.

Results

In the present study, the time point of optimal cardioprotective effect of STS was within 2 h after reperfusion, with declining effect at 4 h and no effect at 6 h after the onset of reperfusion. In addition, STS-mediated cytoprotection against oxidative stress and inflammatory responses was correlated with an increased HO-1 activity..

Conclusions

STS could ameliorate cardiac dysfunction and variation of myocardial zymogram, up-regulate antioxidant systems. Moreover, modulation of HO-1 was involved in STS induced cardioprotection..  相似文献   

17.
18.

Background

The prognostic utility of circulating plasma microRNA in patients with acute coronary syndromes (ACS) has been proposed but not yet demonstrated. We set out to investigate circulating microRNA levels in patients incurring recent ACS and examined associations with neurohormones, cardiac structure and function, and survival over 5 years of follow-up.

Methods

An initial screen of 375 microRNAs was performed in 35 ACS patients and 16 healthy controls. Candidates identified from the initial screen (miR-323-3p, miR-652, miR-27b, miR-103 and miR-208a) were validated in a further cohort of 200 patients at baseline (~ 30 days post-ACS) and at 4 and 12 months post-ACS, and compared with 100 controls.

Results

In the validation cohort, significantly higher levels in patients were replicated for miR-323-3p, miR-652 and miR-27b (10-fold, 2.3-fold and 2.3-fold, respectively, adjusted p < 0.05). Lower levels of miR-103 were not replicated and miR-208a was undetectable. From baseline to 4 months post-admission, miR-323-3p and miR-652 remained elevated in patients compared to controls (adjusted p < 0.01), with no further change in levels between 4 and 12 months; whereas miR-27b fell to control levels by 4 months. Baseline levels of miR-652 in the lowest tertile were significantly associated with readmission for heart failure (log-rank p < 0.001). In combination with NT-proBNP and LVEF, miR-652 significantly improved risk stratification (p < 0.001).

Conclusions

Our study identifies miR-652 as a novel candidate biomarker for post-ACS prognosis beyond existing biomarkers of LVEF and NT-proBNP. Moreover circulating miR-323-3p was markedly elevated in patients for at least a year post-ACS and may be a stable biomarker for ACS.  相似文献   

19.

Rationale

Macrophage accumulation of cholesterol leads to foam cell formation which is a major pathological event of atherosclerosis. Recent studies have shown that microRNA (miR)-19b might play an important role in cholesterol metabolism and atherosclerotic diseases. Here, we have identified miR-19b binding to the 3′UTR of ATP-binding cassette transporter A1 (ABCA1) transporters, and further determined the potential roles of this novel interaction in atherogenesis.

Objective

To investigate the molecular mechanisms involved in a miR-19b promotion of macrophage cholesterol accumulation and the development of aortic atherosclerosis.

Methods and results

We performed bioinformatics analysis using online websites, and found that miR-19b was highly conserved during evolution and directly bound to ABCA1 mRNA with very low binding free energy. Luciferase reporter assay confirmed that miR-19b bound to 3110-3116 sites within ABCA1 3′UTR. MiR-19b directly regulated the expression levels of endogenous ABCA1 in foam cells derived from human THP-1 macrophages and mouse peritoneal macrophages (MPMs) as determined by qRT-PCR and western blot. Cholesterol transport assays revealed that miR-19b dramatically suppressed apolipoprotein AI-mediated ABCA1-dependent cholesterol efflux, resulting in the increased levels of total cholesterol (TC), free cholesterol (FC) and cholesterol ester (CE) as revealed by HPLC. The excretion of 3H-cholesterol originating from cholesterol-laden MPMs into feces was decreased in mice overexpressing miR-19b. Finally, we evaluated the proatherosclerotic role of miR-19b in apolipoprotein E deficient (apoE−/−) mice. Treatment with miR-19b precursor reduced plasma high-density lipoprotein (HDL) levels, but increased plasma low-density lipoprotein (LDL) levels. Consistently, miR-19b precursor treatment increased aortic plaque size and lipid content, but reduced collagen content and ABCA1 expression. In contrast, treatment with the inhibitory miR-19b antisense oligonucleotides (ASO) prevented or reversed these effects.

Conclusion

MiR-19b promotes macrophage cholesterol accumulation, foam cell formation and aortic atherosclerotic development by targeting ABCA1.  相似文献   

20.

Objective

The aim of our study was to determine whether Dimethylarginine Dimethylaminohydrolase (DDAH) 1 and 2 gene polymorphisms – the main enzyme involved in ADMA degradation – are associated with high Asymmetric Dimethylarginine (ADMA) levels in Rheumatoid Arthritis (RA).

Methods

Serum ADMA levels were measured in 201 individuals with RA [155 females median age 67 (59–73)]. Four tag SNPs in DDAH1 gene and 2 in the DDAH2 gene were genotyped by using the LightCycler™ System. ADMA was initially compared across the genetic variables using one-way ANOVA and then multivariate analysis examined each of the genes after adjustment for parameters of systemic inflammation and insulin resistance, namely erythrocyte sedimentation rate (ESR) and homeostatic model assessment (HOMA), which we have previously shown affect ADMA levels in RA.

Results

No significant relationship between DDAH genetic variables and ADMA levels was established in ANOVA analysis. Multivariate model adjusted for age, HOMA and ESR did not demonstrate any significant association between DDAH variants and ADMA.

Conclusion

The results of our study give no evidence to suggest that increased ADMA levels in RA relate to DDAH genetic polymorphisms. Better understanding of disease-related factors and their interactions with traditional CV risk factors may represent mechanisms responsible for ADMA accumulation in this population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号