首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We compared the expression of chemokine receptor CCR2 protein in the dorsal root ganglia (DRG) injured by the chronic constriction injury (CCI), the spinal nerve ligation (SNL) and a chronic compression of DRG (CCD). Each of these injuries produced the same significant increase in CCR2 protein in the DRG, as assessed by Western blot analyses. Whole-cell patch-clamp recordings revealed that CCL2, a ligand for CCR2 receptor, depolarized nociceptive DRG neurons from rats of the all three models. A greater percentage of these neurons was depolarized by CCL2 after CCD than after either of the other injuries. Furthermore, CCL2 significantly lowered current threshold only in CCD neurons but not in CCI or SNL neurons. CCL2 significantly lowered the net whole-cell potassium currents in neurons after CCD but not after CCI or SNL. Thus, the injury-induced effects of CCL2 in increasing the excitability of the cell bodies of DRG neurons depend on the site of the injury – with greater effects occurring after an injury of the ganglion than after an injury of the spinal or peripheral nerve.  相似文献   

2.
 目的:研究坐骨神经损伤后,大鼠背根神经节(dorsal root ganglion,DRG)C类初级感觉神经元膜表面唾液酸含量变化对其电生理特性的影响。方法:制作大鼠慢性压迫性神经损伤(chronic constriction injury,CCI)痛觉模型,以正常大鼠为对照,采用胞内电生理记录法检测损伤及正常C类神经元的电生理特性,随后用Ca2+去中和损伤及正常C类神经元膜表面唾液酸所带负电荷或用唾液酸酶(neuraminidase,NA)分解膜表面唾液酸,观察电生理特性的变化。结果:损伤性C类神经元的静息电位(rest potential,RP)较正常C类神经元移向去极化方向,诱发动作电位(action potential,AP)发生率增加,所需阈强度减小,兴奋性增加;使用Ca2+和唾液酸酶使损伤性C类神经元膜电位向超极化方向移动,诱发AP所需阈强度增加,兴奋性降低。而Ca2+和唾液酸酶对正常C类神经元的电生理特性及兴奋性无影响。结论:损伤C类神经元膜表面唾液酸含量增加,导致其RP 去极化且兴奋性增加。  相似文献   

3.
A chronic compression of the dorsal root ganglion (CCD) produces ipsilateral cutaneous hyperalgesia that is associated with an increased excitability of neuronal somata in the compressed ganglion, as evidenced by spontaneous activity and a lower rheobase. We searched for differences in the properties of voltage-gated Na+ and K+ currents between somata of CCD- and control (unoperated) rats. CCD was produced in adult rats by inserting two rods through the intervertebral foramina, one compressing the L4, and the other, the ipsilateral, L5 dorsal root ganglion (DRG). After 5-9 days, DRG somata were dissociated and placed in culture for 16-26 h. Cutaneous neurons of medium size (35-45 microm), Fluorogold-labeled from the hindpaw, were selected for whole cell patch-clamp recording of action potentials and ion currents. In comparison with control neurons, CCD neurons had steady-state activation curves for TTX-sensitive (TTX-S) Na+ currents that were shifted in the hyperpolarizing direction, and CCD neurons had enhanced TTX-resistant (TTX-R) current. CCD neurons also had smaller, fast-inactivating K+ currents (Ka) at voltages from -30 to 50 mV. The reduction in Ka, the hyperpolarizing shift in TTX-S Na+ current activation, and the enhanced TTX-R Na+ current may all contribute to the enhanced neuronal excitability and thus to the pain and hyperalgesia associated with CCD.  相似文献   

4.
Interactions among antagonists acting at different regulatory sites within the N-methyl-D-aspartate (NMDA) receptor-channel complex on the evoked responses to noxious thermal stimuli of wide dynamic range (WDR) neurons in spinal dorsal horn were studied on 21 adult anesthetized and spinalized cats. The responses of nociceptive spinal dorsal horn neurons to noxious heating (45–55°C) of the glabrous skin of the unilateral hind paw were reduced markedly by iontophoretically applied antagonists. The specific recognition site antagonist, DL-2-amino-5-phosphonovaleratic acid (APV), the strychnine-insensitive glycine site antagonist 7-chlorokynurenic acid (7CKA), the polyamine site antagonist ifenprodil (IFEN), and the phencyclidine (PCP) site antagonists ketamine (KET) and MK-801 (40–100 nA) significantly reduced (t-tests, P < 0.01) the noxious thermal stimulus-evoked responses in about 70% of the neurons by (mean ± SE) 54.1±5.8% (n=19), 80.8 ± 4.7% (n = 16), 51.1 ± 6.4% (n = 10), 77 ± 4.9% (n = 16) and 81.2 ± 8.1% (n = 5), respectively. APV and IFEN were less effective in blocking noxious thermal stimuli-evoked responses than 7CKA, KET and MK-801 (ANOVA, P < 0.05). The responses were completely inhibited in some neurons. After co-administration of the antagonists, APV + 7CKA, APV + IFEN, 7CKA + IFEN, APV + KET and APV + MK-801, all at the subthreshold ejection current, the responses were reduced markedly in 13 of 16, 7 of 10, 5 of 10, 3 of 6 and 3 of 5 neurons, respectively. The present study suggests that blockage of any component of the NMDA receptor-channel complex antagonizes the NMDA receptor-mediated response, and that there are the cooperative interactions among the various regulatory sites within the NMDA receptor-channel complex in the transmission or modulation of spinal nociceptive thermal information. Received: 18 March 1997 / Accepted: 20 October 1997  相似文献   

5.
A laterally herniated disk, spinal stenosis, and various degenerative or traumatic diseases of the spine can sometimes lead to a chronic compression and inflammation of the dorsal root ganglion and chronic abnormal sensations including pain. After a chronic compression of the dorsal root ganglion (CCD) in rats, the somata in the dorsal root ganglion (DRG) become hyperexcitable, and some exhibit ectopic, spontaneous activity (SA). Inflammatory mediators have a potential role in modulating the excitability of DRG neurons and therefore may contribute to the neuronal hyperexcitability after CCD. In this study, an inflammatory soup (IS) consisting of bradykinin, serotonin, prostaglandin E2, and histamine (each 10(-6) M) was applied topically to the DRG. The responses of DRG neurons were electrophysiologically recorded extracellularly from teased dorsal root fibers or intracellularly from the somata in the intact DRG or from dissociated neurons within 30 h of culture. In all three preparations, IS remarkably increased the discharge rates of SA CCD neurons and evoked discharges in more silent-CCD than control neurons. IS slightly depolarized the resting membrane potential and decreased the current and voltage thresholds of action potential in both intact and dissociated neurons, although the magnitude of depolarization or decrease in action potential threshold was not significantly different between CCD and control. IS-evoked responses were found in a proportion of neurons in each size category including those with and without nociceptive properties. Inflammatory mediators, by increasing the excitability of DRG somata, may contribute to CCD-induced neuronal hyperexcitability and to hyperalgesia and tactile allodynia.  相似文献   

6.
Partial peripheral nerve injury often leads to chronic pain states, including allodynia and hyperalgesia. The purpose of this study was to investigate the involvement of the N-methyl-D-aspartate and opioid receptors in the behavioural responses following chronic constriction nerve injury (CCI). The animals were injected a combination of MK-801 (0.3 mg/kg, 20 min before, and 6 h after the operation) and morphine (8 mg/kg, 30 min prior to the operation) and were tested for allodynia and hyperalgesia reactions at 0, 3, 7, 14, 21 and 28 days after CCI. Compound action potentials were also recorded from the injured nerve 2 weeks post-operation to indicate nerve injury state electrophysiologically. Our results indicate that the CCI model importantly influences the behavioural responses to both the thermal and mechanical stimulations. Also, the pre-emptive co-administration of MK-801 and morphine has suppressive effects on the cold allodynia but a slight alleviation on the mechano-allodynia and heat hyperalgesia.  相似文献   

7.
Allodynia or hyperalgesia induced by peripheral nerve injury may be involved in changes in the sensitivity of neurotransmitters at the spinal cord level. In order to clarify the functional role of neurotransmitters in peripheral nerve injury, we used rats with nerve injury induced by chronic constriction of the sciatic nerve (CCI rat model) and estimated the effects of the intrathecal injection of drugs known to affect glutamate and tachykinin receptors. In sham-operated rats, the NMDA receptor agonist NMDA and AMPA-kinate receptor agonist RS-(5)-bromowillardin reduced withdrawal latency. The non-competitive NMDA receptor antagonist MK-801, competitive NMDA receptor antagonist AP-5 and AMPA-kinate receptor antagonist NBQX increased withdrawal latency. Substance P (SP) increased the withdrawal latency but only transitorily. The NK1 receptor antagonist RP67580 increased withdrawal latency, but the NK2 receptor antagonist SR48968 did not show an effect. In CCI rats, RS-(5)-bromowillardin reduced withdrawal latency, but NMDA did not show an effect. NBQX increased withdrawal latency, while MK-801 and AP-5 showed little or no effect. SP reduced withdrawal latency, and both RP67580 and SR48968 increased it. These results indicate that the alteration in sensitivity of ionotropic glutamate receptors and tachykinin receptors in the spinal cord contribute to development and maintenance of nerve injury-evoked neuropathic pain.  相似文献   

8.
Lagraize SC  Guo W  Yang K  Wei F  Ren K  Dubner R 《Neuroscience》2010,171(4):1341-1356
Hyperalgesia in animal injury models is linked to activation of descending raphespinal modulatory circuits originating in the rostral ventromedial medulla (RVM). A neurokinin-1 (NK-1) receptor antagonist microinjected into the RVM before or after inflammation produced by complete Freund's adjuvant (CFA) resulted in an attenuation of thermal hyperalgesia. A transient (acute) or a continuous infusion of Substance P (SP) microinjected into the RVM of non-inflamed animals led to similar pain hypersensitivity. Intrathecal pretreatment or post-treatment of a 5-HT3 receptor antagonist (Y-25130 or ondansetron) blocked the SP-induced hyperalgesia. The SP-induced hyperalgesia was both GABA(A) and NMDA receptor-dependent after pre- and post-treatment with selective antagonists at the spinal level. A microinjection of SP into the RVM also led to increased NMDA NR1 receptor subunit phosphorylation in spinal cord tissue. The GABA(A) receptor-mediated hyperalgesia involved a shift in the anionic gradient in dorsal horn nociceptive neurons and an increase in phosphorylated NKCC1 protein (isoform of the Na-K-Cl cotransporter). Following a low dose of SP infused into the RVM, intrathecal muscimol (GABA(A) agonist) increased SP-induced thermal hyperalgesia, phosphorylated NKCC1 protein expression, and NMDA NR1 subunit phosphorylation in the spinal cord. The thermal hyperalgesia was blocked by intrathecal gabazine, the GABA(A) receptor antagonist, and MK-801, the NMDA receptor channel blocker. These findings indicate that NK-1 receptors in the RVM are involved in SP-induced thermal hyperalgesia, this hyperalgesia is 5-HT3-receptor dependent at the spinal level, and involves the functional interaction of spinal GABA(A) and NMDA receptors.  相似文献   

9.
Numerous studies have implicated the cAMP-protein kinase A (PKA) pathway in producing hyperexcitability of dorsal root ganglia (DRG) sensory neurons under conditions associated with pain. Evidence is presented for roles of both the cAMP-PKA and cGMP-protein kinase G (PKG) pathways in maintaining neuronal hyperexcitability and behavioral hyperalgesia in a neuropathic pain model: chronic compression of the DRG (CCD treatment). Lumbar DRGs were compressed by a steel rod inserted into the intervertebral foramen. Thermal hyperalgesia was revealed by shortened latencies of foot withdrawal to radiant heat. Intracellular recordings were obtained in vitro from lumbar ganglia after in vivo DRG compression. Activators of the cAMP-PKA pathway, 8-Br-cAMP and Sp-cAMPS, and of the cGMP-PKG pathway, 8-Br-cGMP and Sp-cGMPS, increased the hyperexcitability of DRG neurons already produced by CCD treatment, as shown by further decreases in action potential threshold and increased repetitive discharge during depolarization. The adenylate cyclase inhibitor, SQ22536, the PKA antagonist, Rp-cAMPS, the guanylate cyclase inhibitor, ODQ, and the PKG inhibitor, Rp-8-pCPT-cGMPS, reduced the hyperexcitability of CCD DRG neurons. In vivo application of PKA and PKG antagonists transiently depressed behavioral hyperalgesia induced by CCD treatment. Unexpectedly, application of these agonists and antagonists to ganglia of naïve, uninjured animals had little effect on electrophysiological properties of DRG neurons and no effect on foot withdrawal, suggesting that sensitizing actions of these pathways in the DRG are enabled by prior injury or stress. The only effect observed in uncompressed ganglia was modest depolarization of DRG neurons by PKA and PKG agonists. CCD treatment also depolarized DRG neurons, but CCD-induced depolarization was not affected by agonists or antagonists of these pathways.  相似文献   

10.
Traub RJ  Zhai Q  Ji Y  Kovalenko M 《Neuroscience》2002,113(1):205-211
In the present three-part study, the effects of intrathecally administered N-methyl-D-aspartate (NMDA) receptor antagonists on responses to noxious and innocuous colorectal distention (CRD) were examined. In the first part, a passive-avoidance paradigm was used to confirm that 80 mm Hg CRD is a noxious stimulus since it produced avoidance behavior. Acquisition of this behavior was blocked by the NMDA receptor antagonist D(-)-2-amino-5-phosphonopetanoic acid (APV, 60 nmol, intrathecal). In contrast, 20 mm Hg CRD is an innocuous stimulus since there was no difference in the behavior of these animals compared to nondistended controls. In the second part, the effects of the NMDA receptor antagonist dizocilpine maleate (MK-801, 0-100 nmol, intrathecal) on CRD-induced Fos expression in the lumbosacral spinal cord were examined. Noxious and innocuous CRD induced 98+/-4 and 50+/-2 Fos labeled cells per section per side of the spinal cord, respectively. MK-801 dose-dependently attenuated noxious CRD-induced Fos. Compared to saline, the peak attenuation was 55%. Innocuous CRD-induced Fos was attenuated by 36% following 100 nmol MK-801. In the third part, the effects of APV (0-240 nmol, intrathecal) on the visceromotor reflex were examined. APV dose-dependently attenuated the visceromotor reflex to graded intensities of CRD that went from the innocuous into the noxious range. In separate animals that only received innocuous stimulation, APV dose-dependently attenuated the visceromotor reflex. The magnitude of attenuation was similar for both stimulus paradigms. These data expand upon our previous dorsal horn neuronal recordings which showed that spinal NMDA receptors partially mediate the processing of both noxious and innocuous colorectal stimuli. They further underscore a difference from somatic tissue in the role of NMDA receptors in processing acute or transient visceral stimuli in the absence of tissue injury.  相似文献   

11.
目的:探讨大鼠CCD模型模拟的腰背痛诱致的DRG大神经元兴奋性改变及其离子通道机制。方法:建立大鼠慢性压迫腰膨大L4/L5 DRG的CCD模型,模拟临床常见的腰背痛的触诱发痛表现。制备整节L4/L5 DRG标本,应用全细胞膜片钳技术记录去极化电流刺激诱致的DRG大型神经元的兴奋性改变及其离子通道机制。结果:对直径50μm的健康的DRG大神经元进行全细胞膜片钳记录。结果显示:给予去极化方波电流刺激可以诱致CCD模型大鼠DRG大神经元呈现兴奋性增强的表现,具体表现为相同刺激强度的电流注射在CCD模型DRG大神经元上诱致的动作电位的频率显著高于对照组神经元。同样的细胞放电增强也见于给予细胞斜波电流刺激。进一步的机制研究分析显示CCD模型大鼠上DRG大神经元的I_h电流明显高于对照组大鼠。结论:CCD模型可以诱致DRG大神经元呈现超兴奋状态,该兴奋性增强的状态主要由I_h电流增强来介导,为认识神经损伤诱致的病理性痛觉敏化尤其是触诱发痛的神经机制提供了实验证据。  相似文献   

12.
We investigated electrophysiological changes in chronically axotomized and neighboring intact dorsal root ganglion (DRG) neurons in rats after either a peripheral axotomy consisting of an L5 spinal nerve ligation (SNL) or a central axotomy produced by an L5 partial rhizotomy (PR). SNL produced lasting hyperalgesia to punctate indentation and tactile allodynia to innocuous stroking of the foot ipsilateral to the injury. PR produced ipsilateral hyperalgesia without allodynia with recovery by day 10. Intracellular recordings were obtained in vivo from the cell bodies (somata) of axotomized and intact DRG neurons, some with functionally identified peripheral receptive fields. PR produced only minor electrophysiological changes in both axotomized and intact somata in L5 DRG. In contrast, extensive changes were observed after SNL in large- and medium-sized, but not small-sized, somata of intact (L4) as well as axotomized (L5) DRG neurons. These changes included (in relation to sham values) higher input resistance, lower current and voltage thresholds, and action potentials with longer durations and slower rising and falling rates. The incidence of spontaneous activity, recorded extracellularly from dorsal root fibers in vitro, was significantly higher (in relation to sham) after SNL but not after PR, and occurred in myelinated but not unmyelinated fibers from both L4 (9.1%) and L5 (16.7%) DRGs. We hypothesize that the changes in the electrophysiological properties of axotomized and intact DRG neurons after SNL are produced by a mechanism associated with Wallerian degeneration and that the hyperexcitability of intact neurons may contribute to SNL-induced hyperalgesia and allodynia.  相似文献   

13.
The present study investigated the role of NMDA receptors in the spinal processing of acute noxious and nonnoxious colorectal stimulation using extracellular single-unit recording in the rat. Fifty-three neurons in the L6-S2 dorsal horn of the spinal cord were studied. Neurons were identified using touch and light pinch of the ipsilateral perianal/scrotal area and colorectal distention (CRD). All neurons had excitatory responses to CRD. Thirty neurons were studied using a search stimulus of 80-mmHg CRD. The effects of a systemically administered N-methyl-D-aspartate (NMDA) receptor channel blocker, dizocilpine maleate (MK-801) (0.1, 0.5, 1.0, and 5.0 mg/kg), were tested on the CRD-evoked responses of 13 neurons. The lowest dose had no effect on the neuronal responses to CRD, while greater doses lowered the CRD-evoked responses at all distention pressures tested (20, 40, 60, and 80 mmHg). Similarly, spinal application of MK-801 (20, 50, 100, and 200 nmol) attenuated CRD-evoked activity (n = 9). In addition, a spinally administered competitive NMDA receptor antagonist, 2-amino-5-phosphonovaleric acid (APV) (30, 60, 120, and 240 nmol), dose-dependently attenuated the CRD-evoked response at all distention pressures (n = 5). Systemically administered APV did not affect neuronal responses to CRD (n = 3). Twenty-three neurons were studied in animals that never received distention pressures exceeding 30 mmHg; the search stimulus ranged between 20- and 30-mmHg CRD. These neurons were tested using 20-mmHg CRD. Systemically administered MK-801 facilitated the response to 20-mmHg CRD in three neurons and inhibited the response in five neurons, and the response of five neurons was not affected. Spinally administered MK-801 had no effect on neuronal responses to 20-mmHg CRD in six neurons. However, spinally administered APV dose-dependently decreased the response to 20-mmHg CRD in four neurons. These results are consistent with our previous observations that used Fos expression as the index, suggesting that spinal NMDA receptors contribute to processing of both noxious and nonnoxious CRD.  相似文献   

14.
We have recently shown that exogenous neurotrophin-3 (NT-3) acts antagonistically to nerve growth factor (NGF) in regulation of nociceptor phenotype in intact neurons and suppresses thermal hyperalgesia and expression of molecules complicit in this behavioral response induced by chronic constriction injury (CCI) of the sciatic nerve. The present study examines whether there is a global influence of NT-3 in mitigating alterations in peptide and NGF receptor expression; molecules believed to also contribute to CCI-associated pain. Thus, the influence of NT-3 on phenotypic changes in dorsal root ganglion (DRG) neurons in rats coincident with CCI was examined using in situ hybridization. Seven days following injury, the incidence of expression of the neuropeptides galanin and pituitary adenylate cyclase-activating polypeptide (PACAP) was increased in L5 sensory neurons ipsilateral to the injury from 12% to 60% and 16% to 37% respectively, in addition to an increased level of expression. In contrast, there was no consistent significant change in tropomyosin-related kinase A (trkA) expression following CCI. Intrathecal infusion of NT-3 globally mitigated both the increased incidence and elevated levels of galanin messenger RNA (mRNA) expression observed following CCI, reducing the former from 60% to 39%. NT-3 infusion resulted in a limited reduction in the incidence and level of neuronal PACAP in medium to large size, but not small size, DRG neurons. NT-3 had no significant net effect on CCI-induced alterations in trkA mRNA expression.  相似文献   

15.
1. Accumulated evidence from the literature led us to investigate whether centrally generated activity was present within a central neuronal network for cardiovascular control. An in vitro approach using a brain stem slice preparation was employed to study the cardiorespiratory region of the nucleus of the solitary tract (NTS) in the rat. 2. We have discovered rhythmically active neurons within a restricted part of the cardiorespiratory NTS. These neurons were localized to regions directly medial and dorsomedial to the solitary tract (ts) at levels 0.2 mm rostral to obex extending caudally to the rostral part of the commissural subnucleus, an area considered to be concerned with cardiovascular regulation. Although other subnuclei were explored for neurons with ongoing activity (i.e., dorsolateral, dorsal, and interstitial) at levels 1.5 mm caudal to 0.75 mm rostral to obex, we failed to find similarly tonically active cells. 3. Intra- or extracellular recordings were made from 85 neurons with a mean firing rate of 5.1 +/- 0.3 (SE) Hz (range 1-15). The majority of these (n = 75) received an excitatory synaptic input from the ipsilateral ts, with latencies ranging between 4 and 20 ms. 4. To determine whether the tonically rhythmic cells were dependent on synaptic excitatory drives or were inherent to the cell, we tested, in 45 neurons recorded extracellularly, the effect of blocking synaptic inputs mediated by excitatory amino acids by applying either DL-2-amino-5-phosphonovaleric acid [APV; N-methyl-D-aspartate (NMDA) antagonist] or MK-801 (NMDA antagonist) with kynurenic acid (Kyn; NMDA, quisqualate, and kainate receptor blocker) to the bath. After bath application of APV and Kyn or MK-801 and Kyn, two different responses were observed. In 19 cells ongoing rhythmic activity was unperturbed, but firing was completely silenced in 26 neurons. In all cases neurons failed to respond to glutamate delivered locally, and the synaptic input evoked from the ts was blocked. This evidence indicates the existence of two cell types: autoactive (AA) or pacemaker-like neurons, the discharge pattern of which depends on intrinsic properties, and synaptically driven (SD) neurons, the activity of which is driven by synaptic inputs. 5. Cobalt chloride (Co) was used to block synaptic effects and was found to increase the discharge rate of AA neurons by 9.9 Hz on average (i.e., cells resistant to APV and Kyn or MK-801 and Kyn). However, the rhythmic activity of cells previously silenced with excitatory amino acid antagonists (i.e., SD cells) was also abolished in the presence of Co.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Jang JH  Kim DW  Sang Nam T  Se Paik K  Leem JW 《Neuroscience》2004,128(1):169-176
We hypothesized that glutamate (Glu) released from the peripheral terminals of primary afferents contributes to the generation of mechanical hyperalgesia following peripheral nerve injury. Nerve injury was performed on rats with a lumbar 5 spinal nerve lesion (L5 SNL), which was preceded by L5 dorsal rhizotomy (L5 DR) to avoid the potential central effects induced by L5 SNL through the L5 dorsal root. Mechanical hyperalgesia, as evidenced by a reduction in paw withdrawal threshold (PWT), was short-lasting (<6 days) after L5 DR, but persistent (>42 days) after L5 SNL preceded by L5 DR. When an intraplantar injection into the affected hind paw was given immediately before L5 SNL, non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 (20 nmol), group-I metabotropic Glu (mGlu) receptor antagonist DL-amino-3-phosphonopropionic acid (DL-AP3; 70 nmol), and selective group-II mGlu receptor agonist 4-aminopyrrolidine-2,4-dicarboxylate (APDC; 20 nmol) delayed the onset of PWT reduction for 1-4 days. However, this onset was not affected by alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/kainate receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4,-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX; 100 nmol). When the same injection was given after L5 SNL-induced mechanical hyperalgesia had been established, MK-801 reversed the PWT reduction for 30-75 min, whereas NBQX, DL-AP3, or APDC had no effect. These results suggest that the manipulation of the peripheral Glu receptors reduces neuropathic pain, by blocking NMDA and group-I mGlu receptors and by stimulating group-II mGlu receptor during the induction phase of neuropathic pain, but only by blocking the NMDA receptor during its maintenance phase.  相似文献   

17.
The effect of antagonists on N-methyl-D-aspartate (NMDA)-induced response was investigated in isolated nucleus tractus solitarii (NTS) neurons freshly isolated from the rat using a conventional pathclamp technique. The NMDA-induced inward current consisted of an initial peak followed by a steady-state component. The competitive antagonists of NMDA receptor, D-2-amino-5-phosphonovalerate (APV), D-2-amino-4-phosphonoheptanoate (APH) and 3-3(2-carboxypiperazine-4-yl)propyl-1-phosphate (CPP), selectively suppressed the initial peak of NMDA-induced current more than the steady-state component at low concentrations. The non-competitive antagonists, MK-801, ketamine, Zn2+ and Mg2+, equally blocked both peak and steady-state components.  相似文献   

18.
The proinflammatory cytokine tumor necrosis factor-alpha (TNF) is an important mediator in neuropathic pain. We investigated the temporal pattern of TNF mRNA expression in the sciatic nerve, in dorsal root ganglia (DRG) and spinal cord in the mouse chronic constriction injury model of neuropathy with quantitative real-time polymerase chain reaction. Neuropathic pain-like behaviour was monitored by evaluating thermal hyperalgesia and mechanical allodynia. Pain-related behaviour and TNF expression were evaluated 6 h, 1, 3, 7 and 14 days after injury. Naive animals and sham-operated mice were used as controls. We found an early upregulation of sciatic nerve TNF mRNA levels in chronic constriction injury (CCI) and sham-operated animals 6 h after surgery: 1 day later TNF overexpression was present in CCI mice only and disappeared 3 days after injury. The mRNA cytokine levels were elevated in DRG 1 and 3 days after surgery in CCI animals only, while the cytokine was not modulated in the spinal cord. A significant hyperalgesia was present in CCI and sham-operated mice at 6 h and 1 day, while at later time point only CCI mice presented lower thresholds. Mechanical allodynia was already present only in CCI animals 6 h from surgery and remained constant up to the 14 th day. The results indicate that a transient early TNF upregulation takes place in peripheral nervous system after CCI that can activate a cascade of proinflammatory/pronociceptive mediators.  相似文献   

19.
Sympathetic postganglionic fibers sprout in the dorsal root ganglion (DRG) after peripheral nerve injury. Therefore, one possible contributing factor of sympathetic dependency of neuropathic pain is the extent of sympathetic sprouting in the DRG after peripheral nerve injury. The present study compared the extent of sympathetic sprouting in the DRG as well as in the injured peripheral nerve in three rat neuropathic pain models: (1) the chronic constriction injury model (CCI); (2) the partial sciatic nerve ligation injury model (PSI); and (3) the segmental spinal nerve ligation injury model (SSI). All three methods of peripheral nerve injury produced behavioral signs of ongoing and evoked pain with some differences in the magnitude of each pain component. The density of sympathetic fibers in the DRG was significantly higher at all examined postoperative times than controls in the SSI model, while it was somewhat higher than controls only at the last examined postoperative time (20 weeks) in the CCI and PSI models. Therefore, data suggest that, although sympathetic changes in the DRG may contribute to neuropathic pain syndromes in the SSI model, other mechanisms seem to be more important in the CCI and PSI models at early times following peripheral nerve injury.  相似文献   

20.
Hyperexcitability after peripheral nerve injury occurs in axotomized and neighboring unaxotomized dorsal root ganglion (DRG) neurons and contributes to hypersensitivity. Previous studies have focused on proximal nerve injury and have not examined unaxotomized neurons innervating the site of sensory testing. The current study used a distal nerve injury (partial sciatic nerve ligation [PSNL]), and identified, using fluorescent tracers, axotomized and unaxotomized neurons innervating the site of hypersensitivity. We hypothesized that reduced hypersensitivity after perineural clonidine was associated with reduced hyperexcitability of DRG neurons. Rats underwent sham or PSNL surgery, followed 2 wk later by a single injection at the injury site of clonidine or saline. PSNL, but not sham surgery, reduced hindpaw mechanical withdrawal threshold, and clonidine, but not saline, partially reversed this effect 3 days after injection. Intracellular recording of neurons in whole DRG demonstrated similar changes in membrane properties and excitability in unaxotomized and axotomized neurons after PSNL compared with sham surgery, primarily depolarized resting membrane potential, reduced rheobase, presence of oscillations, and capability to fire repetitively. Most of these changes were present in small-, medium-, and large-diameter neurons. Perineural clonidine 3 days later significantly reversed many of these effects, whereas saline was without effect. We speculate that perineural clonidine reduces signals, likely proinflammatory cytokines and prostaglandins produced during Wallerian degeneration after nerve injury, which drive changes in ion channel expression in DRG somata leading to hyperexcitability and hypersensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号