首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of new 1‐phenylsulphonyl‐2‐(1‐methylindol‐3‐yl)‐benzimidazole derivatives were designed, synthesized and evaluated as potential inhibitors of tubulin polymerization and anthropic cancer cell lines. Among them, compound 33 displayed the most potent tubulin polymerization inhibitory activity in vitro (IC50 = 1.41 μM) and strong antiproliferative activities against A549, Hela, HepG2 and MCF‐7 cell lines in vitro with GI50 value of 1.6, 2.7, 2.9 and 4.3 μM, respectively, comparable with the positive control colchicine (GI50 value of 4.1, 7.2, 9.5 and 14.5 μM, respectively) and CA‐4 (GI50 value of 2.2, 4.3, 6.4 and 11.4 μM, respectively). Simultaneously, we evaluated that compound 33 could effectively induce apoptosis of A549 associated with G2/M phase cell cycle arrest. Immunofluorescence microscopy also clearly indicated compound 33 a potent antimicrotubule agent. Docking simulation showed that compound 33 could bind tightly with the colchicine‐binding site and act as a tubulin inhibitor. Three‐dimensional‐QSAR model was also built to provide more pharmacophore understanding that could be used to design new agents with more potent tubulin assembling inhibitory activity in the future.  相似文献   

2.
A library of substituted tetrahydroacridin‐9‐amine derivatives were designed, synthesized, and evaluated as dual cholinesterase and amyloid aggregation inhibitors. Compound 8e (N‐(3,4‐dimethoxybenzyl)‐1,2,3,4‐tetrahydroacridin‐9‐amine) was identified as a potent inhibitor of butyrylcholinesterase (BuChE IC50 = 20 nm ; AChE IC50 = 2.2 μm ) and was able to inhibit amyloid aggregation (40% inhibition at 25 μm ). Compounds 9e (6‐chloro‐N‐(3,4‐dimethoxybenzyl)‐1,2,3,4‐tetrahydroacridin‐9‐amine, AChE IC50 = 0.8 μm ; BuChE IC50 = 1.4 μm ; Aβ‐aggregation inhibition = 75.7% inhibition at 25 μm ) and 11b (6‐chloro‐N‐(3,4‐dimethoxyphenethyl)‐1,2,3,4‐tetrahydroacridin‐9‐amine, AChE IC50 = 0.6 μm ; BuChE IC50 = 1.9 μm ; Aβ‐aggregation inhibition = 85.9% inhibition at 25 μm ) were identified as the best compounds with dual cholinesterase and amyloid aggregation inhibition. The picolylamine‐substituted compound 12c (6‐chloro‐N‐(pyridin‐2‐ylmethyl)‐1,2,3,4‐tetrahydroacridin‐9‐amine) was the most potent AChE inhibitor (IC50 = 90 nm ). These investigations demonstrate the utility of 3,4‐dimethoxyphenyl substituent as a novel pharmacophore possessing dual cholinesterase inhibition and anti‐Aβ‐aggregation properties that can be used in the design and development of small molecules with multitargeting ability to treat Alzheimer's disease.  相似文献   

3.
4.
Canagliflozin, used to treat type 2 diabetes mellitus (T2DM), is commonly co‐administered with sulfonylureas. The objective of the present study was to evaluate the possible inhibitory effect of sulfonylureas and non‐steroidal anti‐inflammatory drugs (NSAIDs) on canagliflozin metabolism in vitro. Three sulfonylurea derivatives were evaluated as inhibitors: chlorpropamide, glimepiride and gliclazide. Two other NSAIDs were used as positive control inhibitors: niflumic acid and diclofenac. The rate of formation of canagliflozin metabolites was determined by HPLC analysis of in vitro incubations of canagliflozin as a substrate with and without inhibitors, using human liver microsomes (HLMs). Among sulfonylureas, glimepiride showed the most potent inhibitory effect against canagliflozin M7 metabolite formation, with an IC50 value of 88 μm , compared to chlorpropamide and gliclazide with IC50 values of more than 500 μm . Diclofenac inhibited M5 metabolite formation more than M7, with IC50 values of 32 μm for M5 and 80 μm for M7. Niflumic acid showed no inhibition activity against M5 formation, but had relatively selective inhibitory potency against M7 formation, which is catalysed by UGT1A9, with an IC50 value of 1.9 μm and an inhibition constant value of 0.8 μm . A clinical pharmacokinetic interaction between canagliflozin and sulfonylureas is unlikely. However, a possible clinically important drug interaction between niflumic acid and canagliflozin has been identified.  相似文献   

5.
A novel series of 1‐(thiophen‐2‐yl)‐9H‐pyrido [3,4‐b]indole derivatives were synthesized using DL‐tryptophan as starting material. All the compounds were characterized by spectral analysis such as 1H NMR, Mass, IR, elemental analysis and evaluated for inhibitory potency against HIV‐1 replication. Among the reported analogues, compound 7g exhibited significant anti‐HIV activity with EC50 0.53 μm and selectivity index 483; compounds 7e , 7i , and 7o displayed moderate activity with EC50 3.8, 3.8, and 2.8 μm and selectivity index >105, >105, and 3.85, respectively. Interestingly, compound 7g inhibited p24 antigen expression in acute HIV‐1IIIB infected cell line C8166 with EC50 1.1 μm . In this study, we also reported the Lipinski rule of 5 parameters, predicted toxicity profile, drug‐likeness, and drug score of the synthesized analogues.  相似文献   

6.
A series of novel aminopyrimidine and diaminopyrimidine derivatives were designed and optimized to improve their potency and permeability relative to lead compound 1 (IC50 = 37.4 μM), which was discovered in a previous virtual screening. The potency of the optimized compound, 13g (IC50 = 1.4 μM), was 26‐fold greater than that of 1 based on a fluorescence resonance energy transfer assay, and a parallel artificial membrane permeability assay suggested that it could pass through the blood‐brain barrier. Additionally, several compounds containing selenium showed good potencies and deserve further investigation as anti‐Alzheimer's agents.  相似文献   

7.
A series of novel di‐ and tripeptidyl epoxyketone derivatives composed of β‐amino acids were designed, synthesized and evaluated for their proteasome inhibitory activities and anti‐proliferation activities against two multiple myeloma cell lines RPMI 8226 and NCI‐H929 and normal cells (peripheral blood mononucleated cells). Among these tested compounds, tripeptidyl analogues showed much more potent activities than dipeptides, and four tripeptidyl compounds exhibited proteasome inhibitory activities with IC50 values ranging from 0.97 ± 0.05 to 1.85 ± 0.11 μm . In addition, all the four compounds showed anti‐proliferation activities with IC50 values at low micromolar levels against two multiple myeloma cell lines and weak activities against normal cells. Furthermore, Western blot analysis was performed to verify the proteasome inhibition induced by compounds 21d and 21e . All the experimental results validated that the β‐amino acid building block has the potential for the development of proteasome inhibitors.  相似文献   

8.
A three‐dimensional quantitative structure‐activity relationships model of enterovirus A71 3C protease inhibitors was constructed in this study. The protein‐ligand interaction fingerprint was analyzed to generate a pharmacophore model. A predictive and reliable three‐dimensional quantitative structure‐activity relationships model was built based on the Flexible Alignment of AutoGPA. Moreover, three novel compounds ( I – III) were designed and evaluated for their biochemical activity against 3C protease and anti‐enterovirus A71 activity in vitro. III exhibited excellent inhibitory activity (IC50 = 0.031 ± 0.005 μM, EC50 = 0.036 ± 0.007 μM). Thus, this study provides a useful quantitative structure‐activity relationships model to develop potent inhibitors for enterovirus A71 3C protease.  相似文献   

9.
The main aim of this work is to find out novel chemical moieties with potent anti‐inflammatory and vasorelaxant activities with reduced gastric toxicities. For fulfilling the above aim, here we investigated novel chalcones (1, 3‐diphenylprop‐2‐en‐1‐one derivatives) with nitric oxide (NO) and hydrogen sulphide (H2S) donating potency for anti‐inflammatory activity by carrageenan‐induced rat paw oedema. These molecules then further evaluated for in‐vitro NO‐releasing potency and vasorelaxation effect on isolated adult goat aortic tissue. The promising molecules were further screened for ulcerogenic activity in the rat model. The tested compounds produced % inhibition in paw oedema ranging from 29.16% to 79.69% and standard drug Diclofenac sodium produced 85.30% reduction in paw oedema after 5 hours. Out of this dataset, compounds AI1, AI7, Ca1, B2, B10, D2, and E8 showed 73.01%, 79.69%, 75.02%, 75.46%, 74.35%, 73.9% and 74.35% reduction in paw oedema respectively, which is approximately 80%–90% to that of standard Diclofenac sodium. The compound Ca1 was found to release 0.870 ± 0.025 mol/mol of NO and standard Glyceryl trinitrate (GTN) was found to release 0.983 ± 0.063 mol/mol of NO. The compound Ca1 produced 950.2 μmol/L of EC50 whereas standard GTN produced 975.8 μmol/L of EC50 for aortic smooth relaxation. The compounds Ca1 produced 0.1117 of ulcer index which is far less than that of standard Diclofenac sodium (1.148). The potent lead molecules were further evaluated to understand the mechanism of vasorelaxation by using specific antagonists or blockers of NO and H2S.  相似文献   

10.
A series of genistein derivatives were synthesized and evaluated as multifunctional anti‐Alzheimer agents. The results showed that these derivatives had significant acetylcholinesterase (AChE) inhibitory activity; compound 5a exhibited the strongest inhibition to AChE with an IC50 value (0.034 μM) much lower than that of rivastigmine (6.53 μM). A Lineweaver–Burk plot and molecular modeling study showed that compound 5a targeted both the catalytic active site and the peripheral anionic site of AChE. These compounds also showed potent peroxy scavenging activity and metal‐chelating ability. The compounds did not show obvious effect on HepG2 and PC12 cell viability at the concentration of 100 μM. Therefore, these genistein derivatives can be utilized as multifunctional agents for the treatment of AD.  相似文献   

11.
A small library of new 3‐aryl‐5‐(alkyl‐thio)‐1H‐1,2,4‐triazoles was synthesized and screened for the antimycobacterial potency against Mycobacterium tuberculosis H37Ra strain and Mycobacterium bovis BCG both in active and dormant stage. Among the synthesized library, 25 compounds exhibited promising anti‐TB activity in the range of IC500.03–5.88 μg/ml for dormant stage and 20 compounds in the range of 0.03–6.96 μg/ml for active stage. Their lower toxicity (>100 μg/ml) and higher selectivity (SI = >10) against all cancer cell lines screened make them interesting compounds with potential antimycobacterial effects. Furthermore, to rationalize the observed biological activity data and to establish a structural basis for inhibition of M. tuberculosis, the molecular docking study was carried out against a potential target MTB CYP121 which revealed a significant correlation between the binding score and biological activity for these compounds. Cytotoxicity and in vivo pharmacokinetic studies suggested that 1,2,4‐triazole analogues have an acceptable safety index, in vivo stability and bio‐availability.  相似文献   

12.
In continuation of our efforts toward the discovery of potent non‐nucleoside hepatitis B virus (HBV) inhibitors with novel structures, we have explored the solvent‐exposed protein region of heteroaryldihydropyrimidine derivatives. Herein, the morpholine ring of GLS4 was replaced with substituted sulfonamides and triazoles to generate novel non‐nucleoside HBV inhibitors with desirable potency. In in vitro biological evaluation, several derivatives showed good anti‐HBV DNA replication activity compared to lamivudine. In particular, compound II‐1 displayed the most potent activity against HBV DNA replication (IC50 = 0.35 ± 0.04 μM). The preliminary structure–activity relationships of the new compounds were summarized, which may help in discovering more potent anti‐HBV agents via rational drug design.  相似文献   

13.
14.
A series of novel S‐DABO derivatives with the substituted 1,2,3‐triazole moiety on the C‐2 side chain were synthesized using the simple and efficient CuAAC reaction, and biologically evaluated as inhibitors of HIV‐1. Among them, the most active HIV‐1 inhibitor was compound 4‐((4‐((4‐(2,6‐dichlorobenzyl)‐5‐methyl‐6‐oxo‐1,6‐dihydropyrimidin‐2‐ylthio)methyl)‐1H‐1,2,3‐triazol‐1‐yl)methyl)benzenesulfonamide ( B5b7) , which exhibited similar HIV‐1 inhibitory potency (EC50 = 3.22 μm ) compared with 3TC (EC50 = 2.24 μm ). None of these compounds demonstrated inhibition against HIV‐2 replication. The preliminary structure–activity relationship (SAR) of these new derivatives was discussed briefly.  相似文献   

15.
In this study, novel acridone‐1,2,4‐oxadiazole‐1,2,3‐triazole hybrids were designed, synthesized, and evaluated for their acetylcholinesterase and butyrylcholinesterase inhibitory activity. Among various synthesized compounds, 10‐((1‐((3‐(4‐methoxyphenyl)‐1,2,4‐oxadiazol‐5‐yl)methyl)‐1H‐1,2,3‐triazol‐4‐yl)methyl)acridin‐9(10H)‐one 10b showed the most potent anti‐acetylcholinesterase activity (IC50 = 11.55 μm ) being as potent as rivastigmine. Also docking outcomes were in good agreement with in vitro results confirming the dual binding inhibitory activity of compound 10b .  相似文献   

16.
A series of novel 1,2‐diaryl pyrroles as analogues of combretastatin A‐4 ( CA‐4, 1a ) were synthesized and evaluated for their antitumour potential against three cancer cell lines. Most compounds exhibited growth inhibition against all of the cancer cell lines. Compound 7q not only exhibited prominent antitumour efficacy with IC50 values of 0.390 μm in SGC‐7901, 0.070 μm in HT‐1080 and 0.045 μm in KB cell lines but also showed low activity with IC50 values of 30.08 μm in normal L929 cell line. Moreover, compound 7q inhibited tubulin polymerization into microtubules and caused microtubule destabilization. A molecular docking study of 7q was performed to determine its binding mode at the colchicine site in the tubulin dimer.  相似文献   

17.
Eighteen novel 2,3‐diphenyl acrylonitrile derivatives bearing halogens were designed, synthesized, and evaluated for biological activity. Preliminary in vitro results indicated that the majority of the compounds with a para‐substituted halogen had considerable antiproliferative activity against five human cancer cell lines, including MGC‐803, AGS, and BEL‐7402, with IC50 values in the range of 0.46–100 μm . No significant toxic effects on the non‐cancerous human liver cell line L‐02 were observed. The selective inhibitory activities against cancer cells were significantly better than that of the control lead compound CA‐4 and CA‐4P. Particularly, potent activities were found for the derivatives of 3‐(4‐halogen phenyl)‐2‐(3,4,5‐trimethoxyphenyl)acrylonitrile, such as 5c (4‐fluoro), 5f (4‐bromo), 5h (4‐chloro), and 5k (4‐trifluoro‐ methyl), for AGS with IC50 values of 0.75 ± 0.24, 0.68 ± 0.21, 0.41 ± 0.05, and 1.49 ± 0.92 μm , respectively. The antiproliferative effects of 5f were attributed to cell‐cycle arrest in the G2/M phase, induction of cellular apoptosis, suppression of cell migration, and inhibition of cell colony formation in AGS cells.  相似文献   

18.
A novel 2‐(piperidin‐4‐yl)‐1H‐benzo[d]imidazole derivative 5 with good anti‐inflammatory activity was identified from our in‐house library. Based on hit compound 5 , two series of 2‐(piperidin‐4‐yl)‐1H‐benzo[d]imidazole derivative 6a – g and 7a – h were designed and synthesized as novel anti‐inflammatory agents. Most of synthesized compounds exhibited good inhibitory activity on NO and TNF‐α production in LPS‐stimulated RAW 264.7 macrophages, in which the compound 6e showed most potent inhibitory activity on NO (IC50 = 0.86 μm ) and TNF‐α (IC50 = 1.87 μm ) production. Further evaluation revealed that compound 6e displayed more potent in vivo anti‐inflammatory activity than ibuprofen did on xylene‐induced ear oedema in mice. Additionally, Western blot analysis revealed that compound 6e could restore phosphorylation level of IκBα and protein expression of p65 NF‐κB in LPS‐stimulated RAW 264.7 macrophages.  相似文献   

19.
Based on the hybridization of the privileged fragments in DABO and DAPY‐typed HIV‐1 NNRTIs, a novel series of 4‐aminopiperidinyl‐linked 3,5‐disubstituted‐1,2,6‐thiadiazine‐1,1‐dione derivatives were designed, synthesized, and evaluated for their in vitro anti‐HIV activities in MT‐4 cells. Most of the target compounds showed weak inhibitory activity against WT HIV‐1. In order to confirm the mode of action of the target compounds, representative compounds Ba8 and Bb8 were selected to perform the HIV‐1 RT inhibitory assay. In this assay, Ba8 and Bb8 displayed good activity with IC50 values of 3.15 and 1.52 μm , respectively. Additionally, preliminary structure–activity relationships (SARs) analysis and molecular docking studies of newly synthesized compounds are also discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号