首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
  目的   研究微小RNA-200a(miR-200a)对肺癌细胞增殖的影响,并探讨其分子机制。   方法   采用Real-time PCR检测15例非小细胞肺癌组织和对应癌旁组织、人肺癌细胞株(A549、NCI-H520、SK-MES-1)及人正常肺支气管上皮细胞株16HBE中miR-200a的表达水平。用CCK-8法检测miR-200a对A549肺癌细胞增殖活性的影响。通过生物信息学方法预测miR-200a可能的靶基因,双荧光素酶报告基因实验结合Real-time PCR和Western blot验证miR-200a对靶基因YAP1的调控作用。CCK-8法检测下调靶基因YAP1对A549肺癌细胞株增殖活性的影响。   结果   miR-200a在非小细胞肺癌组织和肺癌细胞系中表达明显降低(P < 0.01)。上调miR-200a表达后明显抑制A549肺癌细胞的增殖活力(P < 0.01)。双荧光素酶报告基因显示miR-200a可以直接作用于靶基因YAP1的3'-UTR区域抑制荧光素酶活性(P < 0.01),Real-time PCR和Western blot检测显示上调miR-200a的表达能够明显下调A549肺癌细胞YAP1 mRNA和蛋白的表达水平(P < 0.01)。CCK-8法显示下调YAP1的表达能够明显抑制A549肺癌细胞的增殖活性(P < 0.01)。   结论   miR-200a通过靶向作用于YAP1基因来抑制肺癌细胞的增殖,从而在肺癌中发挥抑癌基因的功能。   相似文献   

3.
WW domain containing E3 ubiquitin protein ligase 1 (WWP1) is an HECT domain-containing E3 ligase regulating apoptosis. The WWP1 gene is frequently amplified and overexpressed in estrogen receptor α (ERα)-positive breast cancer. Inhibition of WWP1 by siRNA induced apoptosis in MCF7 and HCC1500. In our study, we demonstrate that WWP1 depletion by siRNA activated the extrinsic apoptotic pathway. WWP1 depletion-induced apoptosis was rescued by the overexpression of the wild-type WWP1 but not the E3 ligase inactive WWP1-C890A mutant in MCF7 cells. In contrast, WWP1-C890A enhanced apoptosis, suggesting that the E3 ligase activity is required for WWP1 to promote cell survival. The expression levels of WWP1 in four breast cancer cell lines were specifically correlated with the tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resistance, but not TNFα and doxorubicin resistance. Both WWP1 depletion and dominant negative WWP1 overexpression increased the TRAIL-induced caspase-8 recruitment and apoptosis although WWP1 did not regulate FLIP and death receptor levels. Depletion of the initial caspase-8 blocked WWP1 inhibition-induced apoptosis in MCF7. These findings suggest that inhibition of WWP1 may be combined with TRAIL to suppress ERα-positive breast cancer cell survival.  相似文献   

4.
Liver cancer is the sixth most common cancer and the third leading cause of cancer-related death globally. Despite efforts being made in last two decades in cancer diagnosis and treatment, the 5-year survival rate of liver cancer remains extremely low. TRIM21 participates in cancer metabolism, glycolysis, immunity, chemosensitivity and metastasis by targeting various substrates for ubiquitination. TRIM21 serves as a prognosis marker for human hepatocellular carcinoma (HCC), but the mechanism by which TRIM21 regulates HCC tumorigenesis and progression remains elusive. In this study, we demonstrated that TRIM21 protein levels were elevated in human HCC. Elevated TRIM21 expression was associated with HCC progression and poor survival. Knockdown of TRIM21 in HCC cell lines significantly impaired cell growth and metastasis and enhanced sorafenib-induced toxicity. Mechanistically, we found that knockdown of TRIM21 resulted in cytosolic translocation and inactivation of YAP. At the molecular level, we further identified that TRIM21 interacted and induced ubiquitination of MST1, which resulted in MST1 degradation and YAP activation. Knockdown of MST1 or overexpression of YAP reversed TRIM21 knockdown-induced impairment of HCC growth and chemosensitivity. Taken together, the current study demonstrates a novel mechanism that regulates the Hippo pathway and reveals TRM21 as a critical factor that promotes growth and chemoresistance in human HCC.  相似文献   

5.
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignant tumors in the urinary system. Surgical intervention is the preferred treatment for ccRCC, but targeted biological therapy is required for postoperative recurrent or metastatic ccRCC. Autophagy is an intracellular degradation system for misfolded/aggregated proteins and dysfunctional organelles. Defective autophagy is associated with many diseases. Mul1 is a mitochondrion‐associated E3 ubiquitin ligase and involved in the regulation of divergent pathophysiological processes such as mitochondrial dynamics, and thus affects the development of various diseases including cancers. Whether Mul1 regulates ccRCC development and what is the mechanism remain unclear. Histochemical staining and immunoblotting were used to analyze the levels of Mul1 protein in human renal tissues. Statistical analysis of information associated with tissue microarray and The Cancer Genome Atlas (TCGA) database was conducted to show the relationship between Mul1 expression and clinical features and survival of ccRCC patients. Impact of Mul1 on rates of cell growth and migration and autophagy flux were tested in cultured cancer cells. Herein we show that Mul1 promoted autophagy flux to facilitate the degradation of P62‐associated protein aggresomes and adipose differentiation‐related protein (ADFP)‐associated lipid droplets and suppressed the growth and migration of ccRCC cells. Levels of Mul1 protein and mRNA were significantly reduced so that autophagy flux was likely blocked in ccRCC tissues, which is potentially correlated with enhancement of malignancy of ccRCC and impairment of patient survival. Therefore, Mul1 may promote autophagy to suppress the development of ccRCC.  相似文献   

6.
Increased expression of Yes-associated protein-1 (YAP1) was shown to correlate with reduced survival in breast cancer (BC) patients. However, the exact mechanism of YAP1 regulation in BC cells remains ambiguous. Genomic sequence search showed that the promoter region of the YAP1 gene contains CpG Islands, hence the likelihood of epigenetic regulation by DNA methylation. To address this possibility, the effect of estrogen (17β estradiol; E2) on YAP1 gene expression and YAP1 promoter methylation status was evaluated in BC cells. The functional consequences of E2 treatment in control and YAP1-silenced BC cells were also investigated. Our data showed that E2 modulates YAP1 expression by hypomethylation of its promoter region via downregulation of DNA methyltransferase 3B (DNMT3B); an effect that seems to facilitate tumor progression in BC cells. Although the effect of E2 on YAP1 expression was estrogen receptor (ER) dependent, E2 treatment also upregulated YAP1 expression in MDA-MB231 and SKBR3 cells, which are known ER-negative BC cell lines but expresses ERα. Functionally, E2 treatment resulted in increased cell proliferation, decreased apoptosis, cell cycle arrest, and autophagic flux in MCF7 cells. The knockdown of the YAP1 gene reversed these carcinogenic effects of E2 and inhibited E2-induced autophagy. Lastly, we showed that YAP1 is highly expressed and hypomethylated in human BC tissues and that increased YAP1 expression correlates negatively with DNMT3B expression but strongly associated with ER expression. Our data provide the basis for considering screening of YAP1 expression and its promoter methylation status in the diagnosis and prognosis of BC.  相似文献   

7.
Tyrosine kinase inhibitors (TKIs) that target the ROS proto-oncogene 1, receptor tyrosine kinase (ROS1) gene have shown dramatic therapeutic effects in patients with ROS1-rearranged non-small-cell lung cancer (NSCLC). Nevertheless, advanced ROS1-rearranged NSCLC is rarely cured as a portion of the tumor cells can survive the initial stages of ROS1-TKI treatment, even after maximum tumor shrinkage. Therefore, understanding the mechanisms underlying initial cell survival during ROS1-TKI treatment is necessary to prevent cell survival and achieve a cure for ROS1-rearranged NSCLC. In this study, we clarified the initial survival mechanisms during treatment with lorlatinib, a ROS1 TKI. First, we established a patient-derived ezrin gene-ROS1-rearranged NSCLC cell line (KTOR71). Then, following proteomic analysis, we focused on yes-associated protein 1 (YAP1), which is a major mediator of the Hippo pathway, as a candidate factor involved in cell survival during early lorlatinib treatment. Yes-associated protein 1 was activated by short-term lorlatinib treatment both in vitro and in vivo. Genetic inhibition of YAP1 using siRNA, or pharmacological inhibition of YAP1 function by the YAP1-inhibitor verteporfin, enhanced the sensitivity of KTOR71 cells to lorlatinib. In addition, the prosurvival effect of YAP1 was exerted through the reactivation of AKT. Finally, combined therapy with verteporfin and lorlatinib was found to achieve significantly sustained tumor remission compared with lorlatinib monotherapy in vivo. These results suggest that YAP1 could mediate initial cell resistance to lorlatinib in KTOR71 cells. Thus, combined therapy targeting both YAP1 and ROS1 could potentially improve the outcome of ROS1-rearranged NSCLC.  相似文献   

8.
YAP1, the main Hippo pathway effector, is a potent oncogene and is overexpressed in non‐small‐cell lung cancer (NSCLC); however, the YAP1 expression pattern in small‐cell lung cancer (SCLC) has not yet been elucidated in detail. We report that the loss of YAP1 is a special feature of high‐grade neuroendocrine lung tumors. A hierarchical cluster analysis of 15 high‐grade neuroendocrine tumor cell lines containing 14 SCLC cell lines that depended on the genes of Hippo pathway molecules and neuroendocrine markers clearly classified these lines into two groups: the YAP1‐negative and neuroendocrine marker‐positive group (n = 11), and the YAP1‐positive and neuroendocrine marker‐negative group (n = 4). Among the 41 NSCLC cell lines examined, the loss of YAP1 was only observed in one cell line showing the strong expression of neuroendocrine markers. Immunostaining for YAP1, using the sections of 189 NSCLC, 41 SCLC, and 30 large cell neuroendocrine carcinoma (LCNEC) cases, revealed that the loss of YAP1 was common in SCLC (40/41, 98%) and LCNEC (18/30, 60%), but was rare in NSCLC (6/189, 3%). Among the SCLC and LCNEC cases tested, the loss of YAP1 correlated with the expression of neuroendocrine markers, and a survival analysis revealed that YAP1‐negative cases were more chemosensitive than YAP1‐positive cases. Chemosensitivity test for cisplatin using YAP1‐positive/YAP1‐negative SCLC cell lines also showed compatible results. YAP1‐sh‐mediated knockdown induced the neuroendocrine marker RAB3a, which suggested the possible involvement of YAP1 in the regulation of neuroendocrine differentiation. Thus, we showed that the loss of YAP1 has potential as a clinical marker for predicting neuroendocrine features and chemosensitivity.  相似文献   

9.
Glioblastoma (GBM) is one of the major causes of brain cancer‐related mortality worldwide. Temozolomide (TMZ) is an important agent against GBM. Acquired TMZ‐resistance severely limits the chemotherapeutic effect and leads to poor GBM patient survival. To study the underlying mechanism of drug resistance, two TMZ resistant GBM cell lines, A172 and U87, were generated. In this study, the TMZ resistant cells have less apoptosis and cell‐cycle change in response to the TMZ treatment. Western blot results revealed that cyclin E1 was upregulation in TMZ resistant cells. Inhibition or depletion of cyclin E1 re‐sensitized the resistant cells to the TMZ treatment, which indicated the induction of cyclin E1 is the cause of TMZ resistance in GBM cells. Furthermore, we also found the expression of cyclin E1 stabilized the expression of Mcl‐1, which contributes to the TMZ resistance in GBM cells. Finally, our in vivo xenograft data showed that the combination of flavopiridol, a cyclin E1/CDK2 inhibitor, overcomes the TMZ resistant by inducing higher apoptosis. Overall, our data provided a rationale to overcome the TMZ resistant in GBM treatment by inhibiting the cyclin E1 activity.  相似文献   

10.
11.
The Hippo pathway significantly correlates with organ size control and tumorigenesis. The activity of YAP/TAZ, a transducer of the Hippo pathway, is required to sustain self-renewal and tumor-initiation capacities in cancer stem cells (CSCs). But, upstream signals that control the mammalian Hippo pathway have not been well understood. Here, we reveal a connection between the Protease-activated receptor 1 (PAR1) signaling pathway and the Hippo-YAP pathway in gastric cancer stem-like cells. The selective PAR1 agonist TFLLR-NH2 induces an increase in the fraction of side population cells which is enriched in CSCs, and promotes tumorigenesis, multi cancer drug resistance, cell morphological change, and cell invasion which are characteristics of CSCs. In addition, PAR1 activation inhibits the Hippo-YAP pathway kinase Lats via Rho GTPase. Lats kinase inhibition in turn results in increased nuclear localization of dephosphorylated YAP. Furthermore, PAR1 activation confers CSCs related traits via the Hippo-YAP pathway, and the Hippo-YAP pathway correlates with epithelial mesenchymal transition which is induced by PAR1 activation. Our research suggests that the PAR1 signaling deeply participates in the ability of multi drug resistance and tumorigenesis through interactions with the Hippo-YAP pathway signaling in gastric cancer stem-like cells. We presume that inhibited YAP is a new therapeutic target in the treatment human gastric cancer invasion and metastasis by dysregulated PAR1 or its agonists. The Hippo pathway significantly correlates with organ size control and tumorigenesis. The activity of YAP/TAZ, a transducer of the Hippo pathway, is required to sustain self-renewal and tumor-initiation capacities in cancer stem cells (CSCs). But, upstream signals that control the mammalian Hippo pathway have not been well understood. Here, we reveal a connection between the Protease-activated receptor 1 (PAR1) signaling pathway and the Hippo-YAP pathway in gastric cancer stem-like cells. The selective PAR1 agonist TFLLR-NH2 induces an increase in the fraction of side population cells which is enriched in CSCs, and promotes tumorigenesis, multi cancer drug resistance, cell morphological change, and cell invasion which are characteristics of CSCs. In addition, PAR1 activation inhibits the Hippo-YAP pathway kinase Lats via Rho GTPase. Lats kinase inhibition in turn results in increased nuclear localization of Dephosphorylated YAP. Furthermore, PAR1 activation confers CSCs related traits via the Hippo-YAP pathway, and the Hippo-YAP pathway correlates with epithelial mesenchymal transition which is induced by PAR1 activation. Our research suggests that the PAR1 signaling deeply participates in the ability of multi drug resistance and tumorigenesis through interactions with the Hippo-YAP pathway signaling in gastric cancer stem-like cells. We presume that inhibited YAP is a new therapeutic target in the treatment human gastric cancer invasion and metastasis by dysregulated PAR1 or its agonists.  相似文献   

12.
Gastric cancer is the second leading cause of cancer‐related mortality and the fourth most common cancer globally. High intratumor heterogeneity of advanced gastric cancer poses great challenges to targeted therapy due to simultaneous activation of many redundant cancer‐driving pathways. A central common signaling mechanism in cancer is proline‐directed phosphorylation, which is further regulated by the unique proline isomerase Pin1. Pin1 inhibition exerts anticancer activity by blocking multiple cancer‐driving pathways in some cancers, but its role in gastric cancer is not fully understood. Here we detected Pin1 protein expression in 1065 gastric cancer patients and paired normal tissues using immunohistochemistry and Western blot, and then examined the effects of Pin1 overexpression, and genetic and chemical Pin1 inhibition using Pin1 short hairpin RNA or small molecule inhibitor all‐trans retinoic acid (ATRA) on tumorigenesis of human gastric cancer in vitro and in vivo, followed by biochemical analyses to elucidate Pin1 regulated oncogenic pathways. We found that Pin1 was significantly overexpressed in primary and metastasized tumors, with Pin1 overexpression being correlated with advanced stage and poor prognosis. Furthermore, whereas Pin1 overexpression promoted the transformed phenotype in immortalized and nontransformed human gastric cells, either genetic or chemical Pin1 inhibition in multiple human gastric cancer cells potently suppressed cell growth, G1/S transition and colony formation in vitro, as well as tumor growth in xenograft tumor models in vivo, which were further supported by downregulation of multiple key oncoproteins in PI3K/AKT and Wnt/β‐catenin signaling pathways. These results not only provide the first evidence for a critical role of Pin1 in the tumorigenesis of gastric cancer but also suggest that targeting Pin1 using ATRA or other inhibitors offers an effective new therapeutic approach for treating advanced gastric cancer.  相似文献   

13.
Sun PH  Zhu LM  Qiao MM  Zhang YP  Jiang SH  Wu YL  Tu SP 《Cancer letters》2011,310(2):170-180
Autophagy is designated as type II programmed cell death and may confer a tumor-suppressive function. Our previous studies have shown that XIAP-associated factor 1 (XAF1) induced apoptosis and inhibited tumor growth in gastric cancer cells. In this study, we investigated the effect of XAF1 on the induction of autophagy in gastric cancer cells. We found that adenovirus vector-mediated XAF1 (adeno-XAF1) expression markedly induced autophagy, upregulated the level of Beclin-1 and inhibited phospho-Akt and phospho-p70S6K in gastric cancer cells. The downregulation of Beclin 1 or 3-methyladenine treatment suppressed adeno-XAF1-induced autophagy, but significantly enhanced adeno-XAF1-induced apoptosis. A pan-caspase inhibitor prevented adeno-XAF1-induced apoptosis, but significantly increased adeno-XAF1-induced autophagy. Furthermore, adeno-XAF1 induced autophagy in xenograft tumor and inhibited tumor growth. Our results document that adeno-XAF1 induces autophagy through upregulation of Beclin 1 expression and inhibition of Akt/p70S6K pathway, and reveal a new mechanism of XAF1 tumor suppression.  相似文献   

14.
BackgroundSecreted frizzled-related protein 1 (sFRP1), Wnt signalling regulator, can positively or negatively regulate tumourigenesis and progression. We sought to determine the clinical relevance and the role of sFRP1 in gastric cancer development and progression.MethodsWe investigated the sFRP1 protein expression levels and its clinicopathological correlations using 85 cases of human gastric samples with survival information (JWCI cohort). mRNA levels of sFRP1 and coexpressed genes were analysed using 131-sample cDNA microarray data (Ruijin cohort). The effects of sFRP1 alteration were investigated using cell proliferation, colony formation, migration, and invasion and xenograft models.ResultsWe show that sFRP1 is overexpressed in some human cancers and is significantly associated with lymph node metastasis and decreased overall survival in gastric cancer patients. Using gastric cancer cell models, we demonstrate that sFRP1 overexpression is correlated with the activation of TGFβ (transforming growth factor-beta) signalling pathway and thereby induces cell proliferation, epithelial–mesenchymal transition (EMT), and invasion. Conversely, sFRP1 knockdown shows the opposite effects. Furthermore, sFRP1 overexpression promotes tumourigenesis and metastasis in a xenograft model.ConclusionOur studies demonstrate that sFRP1 is a biomarker for aggressive subgroups of human gastric cancer and a prognostic biomarker for patients with poor survival. Our data provide insight into a crosstalk between Wnt and TGFβ pathways which underlies gastric cancer development and progression.  相似文献   

15.
16.
Exogenous 17β‐estradiol (E2) accelerates the progression of ovarian cancer in the transgenic tgCAG‐LS‐TAg mouse model of the disease. We hypothesized that E2 has direct effects on ovarian cancer cells and this study was designed to determine the molecular mechanisms by which E2 accelerates ovarian tumor progression. Mouse ovarian cancer ascites (MAS) cell lines were derived from tgCAG‐LS‐TAg mice. Following intraperitoneal engraftment of two MAS cell lines, MASC1 and MASE2, into SCID mice, exogenous E2 significantly decreased the survival time and increased the tumor burden. Microarray analysis performed on MASE2‐derived tumors treated with E2 or placebo showed that E2 treatment caused the upregulation of 197 genes and the downregulation of 55 genes. The expression of gene regulated by estrogen in breast cancer 1 (Greb1) was upregulated in mouse tumors treated with E2 and was overexpressed in human ovarian cancers relative to human ovarian surface epithelium, suggesting a role for GREB1 in human ovarian tumor progression. RNA interference‐mediated knockdown of GREB1 in MASE2 cells decreased their proliferation rate in vitro and increased survival time in mice engrafted with the cells. These results emphasize the importance of E2 in ovarian tumor progression and identify Greb1 as a novel gene target for therapeutic intervention.  相似文献   

17.
Chen C  Zhou Z  Liu R  Li Y  Azmi PB  Seth AK 《Oncogene》2008,27(54):6845-6855
The WW domain containing E3 ubiquitin protein ligase 1 (WWP1) is a homologous to the E6-associated protein C terminus-type E3 ligase frequently overexpressed in human prostate and breast cancers due to gene amplification. Previous studies suggest that WWP1 promotes cell proliferation and survival; however, the mechanism of WWP1 action is still poorly understood. Here, we showed that WWP1 upregulates and maintains erythroblastic leukemia viral oncogene homolog 2 (ErbB2) and epithelial growth factor receptor (EGFR) in multiple cell lines. WWP1 depletion dramatically attenuates the EGF-induced ERK phosphorylation. WWP1 forms a protein complex with RING finger protein 11 (RNF11), a negative regulator of ErbB2 and EGFR. The protein-protein interaction is through the first and third WW domains of WWP1 and the PY motif of RNF11. Although WWP1 is able to ubiquitinate RNF11 in vitro and in vivo, WWP1 neither targets RNF11 for degradation nor changes RNF11's cellular localization. Importantly, inhibition of RNF11 can rescue WWP1 siRNA-induced ErbB2 and EGFR downregulation and growth arrest. Finally, we demonstrated that RNF11 is overexpressed in a panel of prostate and breast cancer cell lines with WWP1 expression. These findings suggest that WWP1 may promote cell proliferation and survival partially through suppressing RNF11-mediated ErbB2 and EGFR downregulation.  相似文献   

18.
Recent research on non-thermal plasma (NTP, an ionized gas) has identified it as a novel cancer therapeutic tool. However, the molecular mechanism remains unclear. In this study, we demonstrated NTP induced cell death of head and neck cancer (HNC) through the AKT ubiquitin–proteasome system. NTP increased the gene expression of mitochondrial E3 ubiquitin protein ligase 1 (MUL1), an E3 ligase for AKT, and NTP-induced HNC cell death was prevented by MUL1 siRNA. We also showed that MUL1 inhibited the level of AKT and p-AKT and MUL1 expression was increased by NTP-induced ROS. Furthermore, we optimized and manufactured a new type of NTP, a liquid type of NTP (LTP). In syngeneic and xenograft in vivo tumor models, LTP inhibited tumor progression by increasing the MUL1 level and reducing p-AKT levels, indicating that LTP also has an anti-cancer effect through the same mechanism as that of NTP. Taken together, our results suggest that NTP and LTP have great potential for HNC therapy.  相似文献   

19.
Multidrug resistance (MDR) significantly restricts the clinical efficacy of gastric cancer (GC) chemotherapy, and it is critical to search novel targets to predict and overcome MDR. Leucine‐rich repeats and immunoglobulin‐like domains 1 (LRIG1) has been proved to be correlated with drug resistance in several cancers. The present study revealed that LRIG1 was overexpressed in chemosensitive GC tissues and decreased expression of LRIG1 predicted poor survival in GC patients. We observed that upregulation of LRIG1 enhanced chemosensitivity in GC cells. Interestingly, miR‐20a, which was overexpressed in GC MDR cell lines and tissues, was identified to regulate LRIG1 expression by directly targeting its 3′ untranslated region. We also found that inhibition of miR‐20a suppressed GC MDR, and upregulation showed opposite effects. Moreover, we demonstrated that the miR‐20a/LRIG1 axis regulated GC cell MDR through epidermal growth factor receptor (EGFR)‐mediated PI3K/AKT and MAPK/ERK signaling pathways. Finally, LRIG1 expression in human GC tissues is inversely correlated with miR‐20a and EGFR. Taken together, the newly identified miR‐20a/LRIG1/EGFR link provides insight into the MDR process of GC, and targeting this axis represents a novel potential therapeutic strategy to block GC chemoresistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号