首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shen Q  Duong TQ 《NMR in biomedicine》2011,24(9):1111-1118
In arterial spin labeling (ASL) MRI to measure cerebral blood flow (CBF), pair-wise subtraction of temporally adjacent non-labeled and labeled images often can not completely cancel the background static tissue signal because of temporally fluctuating physiological noise. While background suppression (BS) by inversion nulling improves CBF temporal stability, imperfect pulses compromise CBF contrast. Conventional BS techniques may not be applicable in small animals because the arterial transit time is short. This study presents a novel approach of BS to overcome these drawbacks using a separate 'neck' radiofrequency coil for ASL and a 'brain' radiofrequency coil for BS with the inversion pulse placed before spin labeling. The use of a separate 'neck' coil for ASL should also improve ASL contrast. This approach is referred to as the inversion-recovery BS with the two-coil continuous ASL (IR-cASL) technique. The temporal and spatial contrast-to-noise characteristics of basal CBF and CBF-based fMRI of hypercapnia and forepaw stimulation in rats at 7 Tesla were analyzed. IR-cASL yielded two times better temporal stability and 2.0-2.3 times higher functional contrast-to-noise ratios for hypercapnia and forepaw stimulation compared with cASL without BS in the same animals. The Bloch equations were modified to provide accurate CBF quantification at different levels of BS and for multislice acquisition where different slices have different degree of BS and residual degree of labeling. Improved basal CBF and CBF-based fMRI sensitivity should lead to more accurate CBF quantification and should prove useful for imaging low CBF conditions such as in white matter and stroke.  相似文献   

2.
Jahng GH  Weiner MW  Schuff N 《Medical physics》2007,34(11):4519-4525
Measurements of cerebral blood flow (CBF) with arterial spin labeling (ASL) MRI are challenging primarily due to a poor signal-to-noise (SNR) ratio. Therefore, methods that improve SNR and minimize measurement errors can play a significant role for better estimations of CBF. The purpose of this work was to develop an ASL method for measurements of CBF at high magnetic field strength. In the proposed multislice ASL method, using in-plane double inversion for labeling, stationary spins are kept at equilibrium to avoid T1 relaxation effects, while blood water is labeled using a lower magnetic field gradient. Improvement for CBF measurements is demonstrated on subjects and by comparison with other multislice ASL MRI methods at 1.5 Tesla. Furthermore, echo-planar imaging (EPI) and Turbo-FLASH (TFL) at 4 T MRI are compared for mapping CBF in human brain using various postlabeling delay times. CBF maps were obtained and analyzed within region-of-interests encompassing either gray matter or white matter. Elimination of T1 dependence of stationary spins in conjunction with avoidance of magnetization transfer mismatch between labeling and control scans lead to improved CBF measurements. Although measurements of CBF in brain tissue are feasible at 4 T using either EPI or TFL, TFL reduced contaminations from an intravascular signal and susceptibility-related artifacts, providing overall more robust CBF measurements than EPI. Therefore, the proposed ASL method in combination with TFL should be used for measuring CBF of human brain at 4T.  相似文献   

3.
Arterial spin labeling (ASL) is a valuable non‐contrast perfusion MRI technique with numerous clinical applications. Many previous ASL MRI studies have utilized either echo‐planar imaging (EPI) or true fast imaging with steady‐state free precession (true FISP) readouts, which are prone to off‐resonance artifacts on high‐field MRI scanners. We have developed a rapid ASL‐FISP MRI acquisition for high‐field preclinical MRI scanners providing perfusion‐weighted images with little or no artifacts in less than 2 s. In this initial implementation, a flow‐sensitive alternating inversion recovery (FAIR) ASL preparation was combined with a rapid, centrically encoded FISP readout. Validation studies on healthy C57/BL6 mice provided consistent estimation of in vivo mouse brain perfusion at 7 and 9.4 T (249 ± 38 and 241 ± 17 mL/min/100 g, respectively). The utility of this method was further demonstrated in the detection of significant perfusion deficits in a C57/BL6 mouse model of ischemic stroke. Reasonable kidney perfusion estimates were also obtained for a healthy C57/BL6 mouse exhibiting differential perfusion in the renal cortex and medulla. Overall, the ASL‐FISP technique provides a rapid and quantitative in vivo assessment of tissue perfusion for high‐field MRI scanners with minimal image artifacts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
The movement towards MRI at higher field strengths (>7T) has enhanced the appeal of arterial spin labeling (ASL) for many applications due to improved SNR of the measurements. Greater field strength also introduces increased magnetic susceptibility effects resulting in marked B0 field inhomogeneity. Although B0 field perturbations can be minimised by shimming over the imaging volume, marked field inhomogeneity is likely to remain within the labeling region for pulsed ASL (PASL). This study highlights a potential source of error in cerebral blood flow quantification using PASL at high field. We show that labeling efficiency in flow‐sensitive alternating inversion recovery (FAIR) displayed marked sensitivity to the RF bandwidth of the inversion pulse in a rat model at 9.4T. The majority of preclinical PASL studies have not reported the bandwidth of the inversion pulse. We show that a high bandwidth pulse of > = 15 kHz was required to robustly overcome the field inhomogeneity in the labeling region at high field strength, which is significantly greater than the inversion bandwidth ~2–3 kHz used in previous studies. Unless SAR levels are at their limit, we suggest the use of a high bandwidth labeling pulse for most PASL studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Perfusion is an important biomarker of tissue function and has been associated with tumor pathophysiology such as angiogenesis and hypoxia. Arterial spin labeling (ASL) MRI allows noninvasive and quantitative imaging of perfusion; however, the application in mouse xenograft tumor models has been challenging due to the low sensitivity and high perfusion heterogeneity. In this study, flow‐sensitive alternating inversion recovery (FAIR) ASL was optimized for a mouse xenograft tumor. To assess the sensitivity and reliability for measuring low perfusion, the lumbar muscle was used as a reference region. By optimizing the number of averages and inversion times, muscle perfusion as low as 32.4 ± 4.8 (mean ± standard deviation) ml/100 g/min could be measured in 20 min at 7 T with a quantification error of 14.4 ± 9.1%. Applying the optimized protocol, heterogeneous perfusion ranging from 49.5 to 211.2 ml/100 g/min in a renal carcinoma was observed. To understand the relationship with tumor pathology, global and regional tumor perfusion was compared with histological staining of blood vessels (CD34), hypoxia (CAIX) and apoptosis (TUNEL). No correlation was observed when the global tumor perfusion was compared with these pathological parameters. Regional analysis shows that areas of high perfusion had low microvessel density, which was due to larger vessel area compared with areas of low perfusion. Nonetheless, these were not correlated with hypoxia or apoptosis. The results suggest that tumor perfusion may reflect certain aspect of angiogenesis, but its relationship with other pathologies needs further investigation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Measurement of cerebral perfusion territories using arterial spin labelling   总被引:1,自引:0,他引:1  
The ability to assess the perfusion territories of major cerebral arteries can be a valuable asset to the diagnosis of a number of cerebrovascular diseases. Recently, several arterial spin labeling (ASL) techniques have been proposed for determining the cerebral perfusion territories of individual arteries by three different approaches: (1) using a dedicated labeling radio frequency (RF) coil; (2) applying selective inversion of spatially confined areas; (3) employing multidimensional RF pulses. Methods that use a separate labeling RF coil have high signal-to-noise ratio (SNR), low RF power deposition, and unrestricted three-dimensional coverage, but are mostly limited to separation of the left and right circulation, and do require extra hardware, which may limit their implementation in clinical systems. Alternatively, methods that utilize selective inversion have higher flexibility of implementation and higher arterial selectivity, but suffer from imaging artifacts resulting from interference between the labeling slab and the volume of interest. The goal of this review is to provide the reader with a critical survey of the different ASL approaches proposed to date for determining cerebral perfusion territories, by discussing the relative advantages and disadvantages of each technique, so as to serve as a guide for future refinement of this promising methodology.  相似文献   

7.
Measurements of blood flow in the human hippocampus are complicated by its relatively small size, unusual anatomy and patterns of blood supply. Only a handful of arterial spin labeling (ASL) MRI articles have reported regional cerebral blood flow (rCBF) values for the human hippocampus. Numerous reports have found heterogeneity in a number of other physiological and biochemical parameters along the longitudinal hippocampal axis. There is, however, only one ASL study of perfusion properties as a function of anteroposterior location in the hippocampus, reporting that rCBF is lower and the arterial transit time (ATT) is longer in the anterior hippocampus than in the posterior hippocampus of the rat brain. The purpose of this article was to measure ATT and rCBF in anterior, middle and posterior normal adult human hippocampus. To better distinguish anteroposterior perfusion heterogeneity in the hippocampus, a modified ASL method, called Orthogonally Positioned Tagging Imaging Method for Arterial Labeling with Flow‐sensitive Alternating Inversion Recovery (OPTIMAL FAIR), was developed that provides high in‐plane resolution with oblique coronal imaging slices perpendicular to the long axis of the hippocampus to minimize partial volume effects. Perfusion studies performed with this modified FAIR method at 3 T indicated that anterior, middle and posterior human hippocampus segments have unique transit time and rCBF values. Of these three longitudinal hippocampal regions, the middle hippocampus has the highest perfusion and the shortest transit time and the anterior hippocampus has the lowest perfusion and the longest transit time. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Pulsed arterial spin labeling (ASL) is an attractive and robust method for quantification of rodent cerebral blood flow (CBF) in particular, although there is a need for sensitivity optimization. Look-Locker flow-sensitive alternating inversion recovery (FAIR) echo planar imaging (EPI) (LLFAIREPI) was expected to be a likely candidate for assessing sensitivity, although it has not yet been applied to rodents. In this study, the performance of two FAIR techniques and two Look-Locker FAIR techniques were compared in mouse brain at 4.7 T. FAIR-EPI (single inversion time, FAIREPI-1TI), FAIR-EPI (eight inversion times, FAIREPI-8TI), LLFAIREPI and Look-Locker FAIR gradient echo (LLFAIRGE) sequences were implemented with equal spatial resolution and equal FAIR preparation modules. Measurements were carried out sequentially on the brain in 10 healthy mice, and quantitative CBF maps were obtained after different acquisition times up to 23 min. All methods gave similar group variability in CBF. Especially at shorter acquisition times, LLFAIREPI gave lower relative variations in CBF within selected brain regions than the other techniques at the same acquisition time. The Look-Locker techniques, however, overestimated CBF compared with classical FAIR-EPI, which was attributed to bulk flow in arterioles and T(2) effects. The image quality with LLFAIREPI was less reproducible within the group. Both FAIREPI-1TI and LLFAIREPI appear to be good candidates for serial rapid measurement of CBF, but LLFAIREPI has the additional advantage that apparent T(1) can be measured simultaneously with CBF.  相似文献   

9.
The majority of functional MRI studies of pain processing in the brain use the blood oxygenation level‐dependent (BOLD) imaging approach. However, the BOLD signal is complex as it depends on simultaneous changes in blood flow, vascular volume and oxygen metabolism. Arterial spin labeling (ASL) perfusion imaging is another imaging approach in which the magnetically labeled arterial water is used as an endogenous tracer that allows for direct measurement of cerebral blood flow. In this study, we assessed the pain response in the brain using a pulsed‐continuous arterial spin labeling (pCASL) approach and a thermal stimulation paradigm. Using pCASL, response to noxious stimulation was detected in somatosensory cortex, anterior cingulate cortex, anterior insula, hippocampus, amygdala, thalamus and precuneus, consistent with the pain response activation patterns detected using the BOLD imaging approach. We suggest that pCASL is a reliable alternative for functional MRI pain studies in conditions in which blood flow, volume or oxygen extraction are altered or compromised. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
Arterial spin labeling (ASL) MRI is increasingly used in research and clinical settings. The purpose of this work is to develop a cloud‐based tool for ASL data processing, referred to as ASL‐MRICloud, which may be useful to the MRI community. In contrast to existing ASL toolboxes, which are based on software installation on the user's local computer, ASL‐MRICloud uses a web browser for data upload and results download, and the computation is performed on the remote server. As such, this tool is independent of the user's operating system, software version, and CPU speed. The ASL‐MRICloud tool was implemented to be compatible with data acquired by scanners from all major MRI manufacturers, is capable of processing several common forms of ASL, including pseudo‐continuous ASL and pulsed ASL, and can process single‐delay and multi‐delay ASL data. The outputs of ASL‐MRICloud include absolute and relative values of cerebral blood flow, arterial transit time, voxel‐wise masks indicating regions with potential hyper‐perfusion and hypo‐perfusion, and an image quality index. The ASL tool is also integrated with a T1‐based brain segmentation and normalization tool in MRICloud to allow generation of parametric maps in standard brain space as well as region‐of‐interest values. The tool was tested on a large data set containing 309 ASL scans as well as on publicly available ASL data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study.  相似文献   

11.
Recent technical developments have significantly increased the signal‐to‐noise ratio (SNR) of arterial spin labeled (ASL) perfusion MRI. Despite this, typical ASL acquisitions still employ large voxel sizes. The purpose of this work was to implement and evaluate two ASL sequences optimized for whole‐brain high‐resolution perfusion imaging, combining pseudo‐continuous ASL (pCASL), background suppression (BS) and 3D segmented readouts, with different in‐plane k‐space trajectories. Identical labeling and BS pulses were implemented for both sequences. Two segmented 3D readout schemes with different in‐plane trajectories were compared: Cartesian (3D GRASE) and spiral (3D RARE Stack‐Of‐Spirals). High‐resolution perfusion images (2 × 2 × 4 mm3) were acquired in 15 young healthy volunteers with the two ASL sequences at 3 T. The quality of the perfusion maps was evaluated in terms of SNR and gray‐to‐white matter contrast. Point‐spread‐function simulations were carried out to assess the impact of readout differences on the effective resolution. The combination of pCASL, in‐plane segmented 3D readouts and BS provided high‐SNR high‐resolution ASL perfusion images of the whole brain. Although both sequences produced excellent image quality, the 3D RARE Stack‐Of‐Spirals readout yielded higher temporal and spatial SNR than 3D GRASE (spatial SNR = 8.5 ± 2.8 and 3.7 ± 1.4; temporal SNR = 27.4 ± 12.5 and 15.6 ± 7.6, respectively) and decreased through‐plane blurring due to its inherent oversampling of the central k‐space region, its reduced effective TE and shorter total readout time, at the expense of a slight increase in the effective in‐plane voxel size. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
We compared cerebral blood flow (CBF) parameters obtained by dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with those obtained by flow-sensitive alternating inversion recovery (FAIR) in brain regions with different perfusion levels in rats with permanent middle cerebral artery (MCA) occlusion. MCA occlusion was performed in 19 rats. T2-weighted MRI, FAIR and DSC-MRI were performed within 48 h after occlusion. CBF parameters were analyzed in regions of interest with either prolonged or less prolonged mean transit time (MTT). Ratios of ipsi- vs contralateral CBF values were calculated and tested for correlation and differences between FAIR and DSC-MRI. FAIR-aCBF ratios correlated significantly with DSC-rCBF ratios. The mean FAIR-aCBF ratio was significantly lower than mean DSC-rCBF ratio in the area with prolonged MTT. In the area with less prolonged MTT, the mean FAIR-aCBF ratio and mean DSC-rCBF values did not differ significantly. We conclude that FAIR correlates with DSC-MRI if perfusion is preserved. FAIR provides lower CBF values than DSC-MRI if perfusion is reduced and MTT is prolonged. This probable underestimation of perfusion may be caused by transit delays. Care should be taken when quantifying CBF with FAIR and when comparing the results of FAIR- and DSC-MRI in areas with hypoperfusion.  相似文献   

13.
S Lai  J Wang  G H Jahng 《NMR in biomedicine》2001,14(7-8):507-516
A new pulse sequence, dubbed FAIR exempting separate T(1) measurement (FAIREST) in which a slice-selective saturation recovery acquisition is added in addition to the standard FAIR (flow-sensitive alternating inversion recovery) scheme, was developed for quantitative perfusion imaging and multi-contrast fMRI. The technique allows for clean separation between and thus simultaneous assessment of BOLD and perfusion effects, whereas quantitative cerebral blood flow (CBF) and tissue T(1) values are monitored online. Online CBF maps were obtained using the FAIREST technique and the measured CBF values were consistent with the off-line CBF maps obtained from using the FAIR technique in combination with a separate sequence for T(1) measurement. Finger tapping activation studies were carried out to demonstrate the applicability of the FAIREST technique in a typical fMRI setting for multi-contrast fMRI. The relative CBF and BOLD changes induced by finger-tapping were 75.1 +/- 18.3 and 1.8 +/- 0.4%, respectively, and the relative oxygen consumption rate change was 2.5 +/- 7.7%. The results from correlation of the T(1) maps with the activation images on a pixel-by-pixel basis show that the mean T(1) value of the CBF activation pixels is close to the T(1) of gray matter while the mean T(1) value of the BOLD activation pixels is close to the T(1) range of blood and cerebrospinal fluid.  相似文献   

14.
fMRI has established itself as the main research tool in neuroscience and brain cognitive research. The common marmoset (Callithrix jacchus) is a non‐human primate model of increasing interest in biomedical research. However, commercial MRI coils for marmosets are not generally available. The present work describes the design and construction of a four‐channel receive‐only surface RF coil array with excellent signal‐to‐noise ratio (SNR) specifically optimized for fMRI experiments in awake marmosets in response to somatosensory stimulation. The array was designed as part of a helmet‐based head restraint system used to prevent motion during the scans. High SNR was obtained by building the coil array using a thin and flexible substrate glued to the inner surface of the restraint helmet, so as to minimize the distance between the array elements and the somatosensory cortex. Decoupling between coil elements was achieved by partial geometrical overlapping and by connecting them to home‐built low‐input‐impedance preamplifiers. In vivo images show excellent coverage of the brain cortical surface with high sensitivity near the somatosensory cortex. Embedding the coil elements within the restraint helmet allowed fMRI data in response to somatosensory stimulation to be collected with high sensitivity and reproducibility in conscious, awake marmosets. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

15.
The combination of flow‐sensitive alternating inversion recovery (FAIR) and single‐shot k‐space‐banded gradient‐ and spin‐echo (kbGRASE) is proposed here to measure perfusion in the mouse brain with high sensitivity and stability. Signal‐to‐noise ratio (SNR) analysis showed that kbGRASE‐FAIR boosts image and temporal SNRs by 2.01 ± 0.08 and 2.50 ± 0.07 times, respectively, when compared with standard single‐shot echo planar imaging (EPI)‐FAIR implemented in our experimental systems, although the practically achievable spatial resolution was slightly reduced. The effects of varying physiological parameters on the precision and reproducibility of cerebral blood flow (CBF) measurements were studied following changes in anesthesia regime, capnia and body temperature. The functional MRI time courses with kbGRASE‐FAIR showed a more stable response to 5% CO2 than did those with EPI‐FAIR. The results establish kbGRASE‐FAIR as a practical and robust protocol for quantitative CBF measurements in mice at 9.4 T. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
We comparatively analyzed the difference between three-dimensional arterial spin labeling (3D-ASL) and the conventional dynamic susceptibility contrast (DSC) perfusion imaging in the setting of assessing brain tumor perfusion in 28 patients with proved brain tumors. All patients were scheduled with standard MRI, 3D-ASL and DSC scannings on a GE DISCOVERY MR 750 system. Maximal relative tumor perfusion was obtained based on the region of interest (ROI) method. A close correlation between 3D-ASL and DSC perfusion imaging was noted as manifested by the absence of significant differences between ASL nTBF and DSC nTBF when normalized to M (mirror region) and GM (contralateral gray matter). However, ASL nTBF was found to be highly correlated with DSC nTBF and DSC nTBV when normalized to M, GM and WM (contralateral normal white matter). Together, our data support that 3D-ASL possesses the potential to be a noninvasive alternate for DSC-MRI in assessing brain tumor perfusion in the setting of treatment prognosis and metastasis, particularly for those patients with renal failure and patients required for collection of follow up information.  相似文献   

17.
Blood perfusion in lung parenchyma is an important property for assessing lung function. In small animals, its quantitation is limited even with radioactive isotopes or dynamic contrast‐enhanced MRI techniques. In this study, the feasibility flow‐sensitive alternating inversion recovery (FAIR) for the quantification of blood flow in lung parenchyma in free breathing rats at 7 T has been investigated. In order to obtain sufficient signal from the short T2* lung parenchyma, a 2D ultra‐short echo time (UTE) Look‐Locker read‐out has been implemented. Acquisitions were segmented to maintain acquisition time within an acceptable range. A method to perform retrospective respiratory gating (DC‐SG) has been applied to investigate the impact of respiratory movement. Reproducibilities within and between sessions were estimated, and the ability of FAIR‐UTE to identify the decrease of lung perfusion under hyperoxic conditions was tested. The implemented technique allowed for the visualization of lung parenchyma with excellent SNR and no respiratory artifact even in ungated acquisitions. Lung parenchyma perfusion was obtained as 32.54 ± 2.26 mL/g/min in the left lung, and 34.09 ± 2.75 mL/g/min in the right lung. Application of retrospective gating significantly but minimally changes the perfusion values, implying that respiratory gating may not be necessary with this center‐our acquisition method. A decrease of 10% in lung perfusion was found between normoxic and hyperoxic conditions, proving the feasibility of the FAIR‐UTE approach to quantify lung perfusion changes.  相似文献   

18.
Prostate perfusion has the potential to become an important pathophysiological marker for the monitoring of disease progression or the assessment of the therapeutic response of prostate cancer. The feasibility of arterial spin labeling, an MRI approach for the measurement of perfusion without an exogenous contrast agent, is demonstrated in the prostate for the first time. Although various arterial spin labeling methods have been demonstrated previously in highly perfused organs, such as the brain and kidneys, the prospect of obtaining such measurements in the prostate is challenging because of the relatively low blood flow, long transit times, susceptibility‐induced image distortion and local motion. However, despite these challenges, this study demonstrates that, with a whole‐body transmit coil and external receiver array, global prostate perfusion can be measured with arterial spin labeling at 3 T. In five healthy subjects with a mean age of 44 years, the mean total prostate blood flow was measured to be 25.8 ± 7.1 mL/100 cm3/min, with an estimated bolus duration and arterial transit time of 884 ± 209 ms and 721 ± 131 ms, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
The measurement of pulmonary perfusion (blood delivered to the capillary bed within a voxel) using arterial spin labeling (ASL) magnetic resonance imaging is often complicated by signal artifacts from conduit vessels that carry blood destined for voxels at a distant location in the lung. One approach to dealing with conduit vessel contributions involves the application of an absolute threshold on the ASL signal. While useful for identifying a subset of the most dominant high signal conduit image features, signal thresholding cannot discriminate between perfusion and conduit vessel contributions at intermediate and low signal. As an alternative, this article discusses a data‐driven statistical approach based on statistical clustering for characterizing and discriminating between capillary perfusion and conduit vessel contributions over the full signal spectrum. An ASL flow image is constructed from the difference between a pair of tagged magnetic resonance images. However, when viewed as a bivariate projection that treats the image pair as independent measures (rather than the univariate quantity that results from the subtraction of the two images), the signal associated with capillary perfusion contributions is observed to cluster independently of the signal associated with conduit vessel contributions. Analyzing the observed clusters using a Gaussian mixture model makes it possible to discriminate between conduit vessel and capillary‐perfusion‐dominated signal contributions over the full signal spectrum of the ASL image. As a demonstration of feasibility, this study compares the proposed clustering approach with the standard absolute signal threshold strategy in a small number of test images. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Obesity causes damage to several organs, including the brain. Recent studies have been focusing on understanding the mechanisms through which obesity affects brain structure and function using neuroimaging techniques. A functional biomarker, such as cerebral blood flow (CBF), is a powerful tool that can be used to explore neural dysfunction. However, there is currently limited information regarding the association between CBF and obesity. The study was conducted to investigate the potential effect of obesity on brain perfusion in a young cohort aged 20‐30 years. A total of 21 obese (body mass index (BMI) > 26 kg/m2) and 21 lean (BMI < 24 kg/m2) right‐handed volunteers were included in this study. CBF was acquired using the 2D single post‐labeling delay (PLD) arterial spin labeling (ASL) technique on a 3 T MRI scanner. A multiple regression analysis was performed to examine the difference in global and regional gray matter (GM) CBF between the groups. CBF value was assigned as the dependent variable, whereas age, sex, and group (obese or lean) were considered as the independent variables. Results showed that group‐related differences in CBF were homogeneous across brain regions, as obese subjects had significantly lower global GM CBF than lean subjects (P < 0.05). In the voxelwise analysis, obese individuals had significantly lower CBF in the left pulvinar of the thalamus and visual association areas, including Brodmann area (BA) 7, BA18, and BA19, than lean subjects. Although the signal‐to‐noise ratio was slightly compromised for 2D sequences and subject‐specific arterial transit time was not estimated due to a single PLD sequence, this study demonstrated alterations in CBF in obese subjects, particularly in regions of the pulvinar of the thalamus and its synchronously related areas such as visual association areas. These results suggest that ASL provides a potential platform for further obesity‐related research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号