首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Hyperpolarized [1‐13C]pyruvate ([1‐13C]Pyr) has been used to assess metabolism in healthy and diseased states, focusing on the downstream labeling of lactate (Lac), bicarbonate and alanine. Although hyperpolarized [2‐13C]Pyr, which retains the labeled carbon when Pyr is converted to acetyl‐coenzyme A, has been used successfully to assess mitochondrial metabolism in the heart, the application of [2‐13C]Pyr in the study of brain metabolism has been limited to date, with Lac being the only downstream metabolic product reported previously. In this study, single‐time‐point chemical shift imaging data were acquired from rat brain in vivo. [5‐13C]Glutamate, [1‐13C]acetylcarnitine and [1‐13C]citrate were detected in addition to resonances from [2‐13C]Pyr and [2‐13C]Lac. Brain metabolism was further investigated by infusing dichloroacetate, which upregulates Pyr flux to acetyl‐coenzyme A. After dichloroacetate administration, a 40% increase in [5‐13C]glutamate from 0.014 ± 0.004 to 0.020 ± 0.006 (p = 0.02), primarily from brain, and a trend to higher citrate (0.002 ± 0.001 to 0.004 ± 0.002) were detected, whereas [1‐13C]acetylcarnitine was increased in peripheral tissues. This study demonstrates, for the first time, that hyperpolarized [2‐13C]Pyr can be used for the in vivo investigation of mitochondrial function and tricarboxylic acid cycle metabolism in brain. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
It has been hypothesized that increased flux through the pentose phosphate pathway (PPP) is required to support the metabolic demands of rapid malignant cell growth. Using orthotopic mouse models of human glioblastoma (GBM) and renal cell carcinoma metastatic to brain, we estimated the activity of the PPP relative to glycolysis by infusing [1,2‐13C2]glucose. The [3‐13C]lactate/[2,3‐13C2]lactate ratio was similar for both the GBM and brain metastasis and their respective surrounding brains (GBM, 0.197 ± 0.011 and 0.195 ± 0.033, respectively (p = 1); metastasis: 0.126 and 0.119 ± 0.033, respectively). This suggests that the rate of glycolysis is significantly greater than the PPP flux in these tumors, and that the PPP flux into the lactate pool is similar in both tumors. Remarkably, 13C–13C coupling was observed in molecules derived from Krebs cycle intermediates in both tumor types, denoting glucose oxidation. In the renal cell carcinoma, in contrast with GBM, 13C multiplets of γ‐aminobutyric acid (GABA) differed from its precursor glutamate, suggesting that GABA did not derive from a common glutamate precursor pool. In addition, the orthotopic renal tumor, the patient's primary renal mass and brain metastasis were all strongly immunopositive for the 67‐kDa isoform of glutamate decarboxylase, as were 84% of tumors on a renal cell carcinoma tissue microarray of the same histology, suggesting that GABA synthesis is cell autonomous in at least a subset of renal cell carcinomas. Taken together, these data demonstrate that 13C‐labeled glucose can be used in orthotopic mouse models to study tumor metabolism in vivo and to ascertain new metabolic targets for cancer diagnosis and therapy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Xiang Y  Shen J 《NMR in biomedicine》2011,24(9):1054-1062
In this study, in vivo 13C MRS was used to investigate the labeling of brain metabolites after intravenous administration of [1‐13C]ethanol. After [1‐13C]ethanol had been administered systemically to rats, 13C labels were detected in glutamate, glutamine and aspartate in the carboxylic and amide carbon spectral region. 13C‐labeled bicarbonate HCO (161.0 ppm) was also detected. Saturating acetaldehyde C1 at 207.0 ppm was found to have no effect on the ethanol C1 (57.7 ppm) signal intensity after extensive signal averaging, providing direct in vivo evidence that direct metabolism of alcohol by brain tissue is minimal. To compare the labeling of brain metabolites by ethanol with labeling by glucose, in vivo time course data were acquired during intravenous co‐infusion of [1‐13C]ethanol and [13C6]‐D ‐glucose. In contrast with labeling by [13C6]‐D ‐glucose, which produced doublets of carboxylic/amide carbons with a J coupling constant of 51 Hz, the simultaneously detected glutamate and glutamine singlets were labeled by [1‐13C]ethanol. As 13C labels originating from ethanol enter the brain after being converted into [1‐13C]acetate in the liver, and the direct metabolism of ethanol by brain tissue is negligible, it is suggested that orally or intragastrically administered 13C‐labeled ethanol may be used to study brain metabolism and glutamatergic neurotransmission in investigations involving alcohol administration. In vivo 13C MRS of rat brain following intragastric administration of 13C‐labeled ethanol is demonstrated. Published in 2011 by John Wiley & Sons, Ltd.  相似文献   

4.
d ‐amino acid oxidase (DAO) is a peroxisomal enzyme that catalyzes the oxidative deamination of several neutral and basic d ‐amino acids to their corresponding α‐keto acids. In most mammalian species studied, high DAO activity is found in the kidney, liver, brain and polymorphonuclear leukocytes, and its main function is to maintain low circulating d ‐amino acid levels. DAO expression and activity have been associated with acute and chronic kidney diseases and with several pathologies related to N‐methyl‐d ‐aspartate (NMDA) receptor hypo/hyper‐function; however, its precise role is not completely understood. In the present study we show that DAO activity can be detected in vivo in the rat kidney using hyperpolarized d ‐[1‐13C]alanine. Following a bolus of hyperpolarized d ‐alanine, accumulation of pyruvate, lactate and bicarbonate was observed only when DAO activity was not inhibited. The measured lactate‐to‐d ‐alanine ratio was comparable to the values measured when the l ‐enantiomer was injected. Metabolites downstream of DAO were not observed when scanning the liver and brain. The conversion of hyperpolarized d ‐[1‐13C]alanine to lactate and pyruvate was detected in blood ex vivo, and lactate and bicarbonate were detected on scanning the blood pool in the heart in vivo; however, the bicarbonate‐to‐d ‐alanine ratio was significantly lower compared with the kidney. These results demonstrate that the specific metabolism of the two enantiomers of hyperpolarized [1‐13C]alanine in the kidney and in the blood can be distinguished, underscoring the potential of d ‐[1‐13C]alanine as a probe of d ‐amino acid metabolism.  相似文献   

5.
The tricarboxylic acid (TCA) cycle performs an essential role in the regulation of energy and metabolism, and deficiencies in this pathway are commonly correlated with various diseases. However, the development of non‐invasive techniques for the assessment of the cycle in vivo has remained challenging. In this work, the applicability of a novel imaging agent, [1,4‐13C]‐diethylsuccinate, for hyperpolarized 13C metabolic imaging of the TCA cycle was explored. In vivo spectroscopic studies were conducted in conjunction with in vitro analyses to determine the metabolic fate of the imaging agent. Contrary to previous reports (Zacharias NM et al. J. Am. Chem. Soc. 2012; 134: 934–943), [13C]‐labeled diethylsuccinate was primarily metabolized to succinate‐derived products not originating from TCA cycle metabolism. These results illustrate potential issues of utilizing dialkyl ester analogs of TCA cycle intermediates as molecular probes for hyperpolarized 13C metabolic imaging. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Hepatocellular carcinoma (HCC), the primary form of human adult liver malignancy, is a highly aggressive tumor with average survival rates that are currently less than 1 year following diagnosis. Most patients with HCC are diagnosed at an advanced stage, and no efficient marker exists for the prediction of prognosis and/or response(s) to therapy. We have reported previously a high level of [1‐13C]alanine in an orthotopic HCC using single‐voxel hyperpolarized [1‐13C]pyruvate MRS. In the present study, we implemented a three‐dimensional MRSI sequence to investigate this potential hallmark of cellular metabolism in rat livers bearing HCC (n = 7 buffalo rats). In addition, quantitative real‐time polymerase chain reaction was used to determine the mRNA levels of lactate dehydrogenase A, nicotinamide adenine (phosphate) dinucleotide dehydrogenase quinone 1 and alanine transaminase. The enzyme levels were significantly higher in tumor than in normal liver tissues within each rat, and were associated with the in vivo MRSI signal of [1‐13C]alanine and [1‐13C]lactate after a bolus intravenous injection of [1‐13C]pyruvate. Histopathological analysis of these tumors confirmed the successful growth of HCC as a nodule in buffalo rat livers, revealing malignancy and hypervascular architecture. More importantly, the results demonstrated that the metabolic fate of [1‐13C]pyruvate conversion to [1‐13C]alanine significantly superseded that of [1‐13C]pyruvate conversion to [1‐13C]lactate, potentially serving as a marker of HCC tumors. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Hypoxia plays a role in many diseases and can have a wide range of effects on cardiac metabolism depending on the extent of the hypoxic insult. Noninvasive imaging methods could shed valuable light on the metabolic effects of hypoxia on the heart in vivo. Hyperpolarized carbon‐13 magnetic resonance spectroscopy (HP 13C MRS) in particular is an exciting technique for imaging metabolism that could provide such information. The aim of our work was, therefore, to establish whether hyperpolarized 13C MRS can be used to assess the in vivo heart's metabolism of pyruvate in response to systemic acute and chronic hypoxic exposure. Groups of healthy male Wistar rats were exposed to either acute (30 minutes), 1 week or 3 weeks of hypoxia. In vivo MRS of hyperpolarized [1‐13C] pyruvate was carried out along with assessments of physiological parameters and ejection fraction. Hematocrit was elevated after 1 week and 3 weeks of hypoxia. 30 minutes of hypoxia resulted in a significant reduction in pyruvate dehydrogenase (PDH) flux, whereas 1 or 3 weeks of hypoxia resulted in a PDH flux that was not different to normoxic animals. Conversion of hyperpolarized [1‐13C] pyruvate into [1‐13C] lactate was elevated following acute hypoxia, suggestive of enhanced anaerobic glycolysis. Elevated HP pyruvate to lactate conversion was also seen at the one week timepoint, in concert with an increase in lactate dehydrogenase (LDH) expression. Following three weeks of hypoxic exposure, cardiac metabolism of pyruvate was comparable with that observed in normoxia. We have successfully visualized the effects of systemic hypoxia on cardiac metabolism of pyruvate using hyperpolarized 13C MRS, with differences observed following 30 minutes and 1 week of hypoxia. This demonstrates the potential of in vivo hyperpolarized 13C MRS data for assessing the cardiometabolic effects of hypoxia in disease.  相似文献   

8.
Hyperpolarized [1‐13C]pyruvate MRS provides a unique imaging opportunity to study the reaction kinetics and enzyme activities of in vivo metabolism because of its favorable imaging characteristics and critical position in the cellular metabolic pathway, where it can either be reduced to lactate (reflecting glycolysis) or converted to acetyl‐coenzyme A and bicarbonate (reflecting oxidative phosphorylation). Cancer tissue metabolism is altered in such a way as to result in a relative preponderance of glycolysis relative to oxidative phosphorylation (i.e. Warburg effect). Although there is a strong theoretical basis for presuming that readjustment of the metabolic balance towards normal could alter tumor growth, a robust noninvasive in vivo tool with which to measure the balance between these two metabolic processes has yet to be developed. Until recently, hyperpolarized 13C‐pyruvate imaging studies had focused solely on [1‐13C]lactate production because of its strong signal. However, without a concomitant measure of pyruvate entry into the mitochondria, the lactate signal provides no information on the balance between the glycolytic and oxidative metabolic pathways. Consistent measurement of 13C‐bicarbonate in cancer tissue, which does provide such information, has proven difficult, however. In this study, we report the reliable measurement of 13C‐bicarbonate production in both the healthy brain and a highly glycolytic experimental glioblastoma model using an optimized 13C MRS imaging protocol. With the capacity to obtain signal in all tumors, we also confirm for the first time that the ratio of 13C‐lactate to 13C‐bicarbonate provides a more robust metric relative to 13C‐lactate for the assessment of the metabolic effects of anti‐angiogenic therapy. Our data suggest a potential application of this ratio as an early biomarker to assess therapeutic effectiveness. Furthermore, although further study is needed, the results suggest that anti‐angiogenic treatment results in a rapid normalization in the relative tissue utilization of glycolytic and oxidative phosphorylation by tumor tissue. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
10.
Reprogramming of energy metabolism in the development of prostate cancer can be exploited for a better diagnosis and treatment of the disease. The goal of this study was to determine whether differences in glucose and pyruvate metabolism of human prostate cancer cells with dissimilar aggressivenesses can be detected using hyperpolarized [1‐13C]pyruvate MRS and [18F]FDG‐PET imaging, and to evaluate whether these measures correlate. For this purpose, we compared murine xenografts of human prostate cancer LNCaP cells with those of more aggressive PC3 cells. [1‐13C]pyruvate was hyperpolarized by dissolution dynamic nuclear polarization (dDNP) and [1‐13C]pyruvate to lactate conversion was followed by 13C MRS. Subsequently [18F]FDG uptake was investigated by static and dynamic PET measurements. Standard uptake values (SUVs) for [18F]FDG were significantly higher for xenografts of PC3 compared with those of LNCaP. However, we did not observe a difference in the average apparent rate constant kpl of 13C label exchange from pyruvate to lactate between the tumor variants. A significant negative correlation was found between SUVs from [18F]FDG PET measurements and kpl values for the xenografts of both tumor types. The kpl rate constant may be influenced by various factors, and studies with a range of prostate cancer cells in suspension suggest that LDH inhibition by pyruvate may be one of these. Our results indicate that glucose and pyruvate metabolism in the prostate cancer cell models differs from that in other tumor models and that [18F]FDG‐PET can serve as a valuable complementary tool in dDNP studies of aggressive prostate cancer with [1‐13C]pyruvate.  相似文献   

11.
Ketone bodies can be used for cerebral energy generation in situ, when their availability is increased as during fasting or ingestion of a ketogenic diet. However, it is not known how effectively ketone bodies compete with glucose, lactate, and pyruvate for energy generation in the brain parenchyma. Hence, the contributions of exogenous 5.0 mM [1‐13C]glucose and 1.0 mM [2‐13C]lactate + 0.1 mM pyruvate (combined [2‐13C]lactate + [2‐13C]pyruvate) to acetyl‐CoA production were measured both without and with 5.0 mM [U‐13C]3‐hydroxybutyrate in superfused rat hippocampal slices by 13C NMR non‐steady‐state isotopomer analysis of tissue glutamate and GABA. Without [U‐13C]3‐hydroxybutyrate, glucose, combined lactate + pyruvate, and unlabeled endogenous sources contributed (mean ± SEM) 70 ± 7%, 10 ± 2%, and 20 ± 8% of acetyl‐CoA, respectively. With [U‐13C]3‐hydroxybutyrate, glucose contributions significantly fell from 70 ± 7% to 21 ± 3% (p < 0.0001), combined lactate + pyruvate and endogenous contributions were unchanged, and [U‐13C]3‐hydroxybutyrate became the major acetyl‐CoA contributor (68 ± 3%) – about three‐times higher than glucose. A direct analysis of the GABA carbon 2 multiplet revealed that [U‐13C]3‐hydroxybutyrate contributed approximately the same acetyl‐CoA fraction as glucose, indicating that it was less avidly oxidized by GABAergic than glutamatergic neurons. The appearance of superfusate lactate derived from glycolysis of [1‐13C]glucose did not decrease significantly in the presence of 3‐hydroxybutyrate, hence total glycolytic flux (Krebs cycle inflow + exogenous lactate formation) was attenuated by 3‐hydroxybutyrate. This indicates that, under these conditions, 3‐hydroxybutyrate inhibited glycolytic flux upstream of pyruvate kinase. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In addition to cancer imaging, 13C‐MRS of hyperpolarized pyruvate has also demonstrated utility for the investigation of cardiac metabolism and ischemic heart disease. Although no adverse effects have yet been reported for doses commonly used in vivo, high substrate concentrations have lead to supraphysiological pyruvate levels that can affect the underlying metabolism and should be considered when interpreting results. With lactate serving as an important energy source for the heart and physiological lactate levels one to two orders of magnitude higher than for pyruvate, hyperpolarized lactate could potentially be used as an alternative to pyruvate for probing cardiac metabolism. In this study, hyperpolarized [1‐13C]lactate was used to acquire time‐resolved spectra from the healthy rat heart in vivo and to measure dichloroacetate (DCA)‐modulated changes in flux through pyruvate dehydrogenase (PDH). Both primary oxidation of lactate to pyruvate and subsequent conversion of pyruvate to alanine and bicarbonate could reliably be detected. Since DCA stimulates the activity of PDH through inhibition of PDH kinase, a more than 2.5‐fold increase in bicarbonate‐to‐substrate ratio was found after administration of DCA, similar to the effect when using [1‐13C]pyruvate as the substrate. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Metabolic pathway mapping using 13C NMR spectroscopy has been used extensively to study interactions between neurons and glia in the brain. Established extraction procedures of brain tissue are time consuming and may result in degradation of labile substances. We examined the potential of mapping 13C‐enriched compounds in intact brain tissue using high‐resolution magic angle spinning (HR‐MAS) NMR spectroscopy. Sprague–Dawley rats received an intraperitoneal injection of [1,6‐13C]glucose, and 15 min later the animals were subjected to microwave fixation of the brain. Quantification of concentration and 13C labelling of metabolites in intact rat thalamus were carried out based on exogenous ethylene glycol concentrations measured from 1H NMR spectra using an ERETIC (Electronic REference To access In vivo Concentrations) signal. The results from intact tissue were compared with those from perchloric acid‐extracted brain tissue. Amounts of 13C labelling at different positions (C2, C3 and C4) in glutamate, glutamine, γ‐aminobutyric acid and aspartate measured in either intact tissue or perchloric acid extracts were not significantly different. Proton NMR spectra were used for quantification of six different amino acids plus lactate, inositol, N‐acetylaspartate, creatine and phosphocreatine. Again, results were very similar when comparing the methods. To our knowledge, this is the first time quantitative 13C NMR spectroscopy measurements have been carried out on intact brain tissue ex vivo using the HR‐MAS technique. The results show that HR‐MAS 13C NMR spectroscopy in combination with 1H NMR spectroscopy and the ERETIC method is useful for metabolic studies of intact brain tissue ex vivo. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The aim of this work was to investigate the use of 13C‐labelled acetoacetate and β‐hydroxybutyrate as novel hyperpolarized substrates in the study of cardiac metabolism. [1‐13C]Acetoacetate was synthesized by catalysed hydrolysis, and both it and [1‐13C]β‐hydroxybutyrate were hyperpolarized by dissolution dynamic nuclear polarization (DNP). Their metabolism was studied in isolated, perfused rat hearts. Hyperpolarized [1‐13C]acetoacetate metabolism was also studied in the in vivo rat heart in the fed and fasted states. Hyperpolarization of [1‐13C]acetoacetate and [1‐13C]β‐hydroxybutyrate provided liquid state polarizations of 8 ± 2% and 3 ± 1%, respectively. The hyperpolarized T1 values for the two substrates were 28 ± 3 s (acetoacetate) and 20 ± 1 s (β‐hydroxybutyrate). Multiple downstream metabolites were observed within the perfused heart, including acetylcarnitine, citrate and glutamate. In the in vivo heart, an increase in acetylcarnitine production from acetoacetate was observed in the fed state, as well as a potential reduction in glutamate. In this work, methods for the generation of hyperpolarized [1‐13C]acetoacetate and [1‐13C]β‐hydroxybutyrate were investigated, and their metabolism was assessed in both isolated, perfused rat hearts and in the in vivo rat heart. These preliminary investigations show that DNP can be used as an effective in vivo probe of ketone body metabolism in the heart.  相似文献   

15.
Hyperpolarized 13C MRS allows the in vivo assessment of pyruvate dehydrogenase complex (PDC) flux, which converts pyruvate to acetyl‐coenzyme A (acetyl‐CoA). [1‐13C]pyruvate has been used to measure changes in cardiac PDC flux, with demonstrated increase in 13C‐bicarbonate production after dichloroacetate (DCA) administration. With [1‐13C]pyruvate, the 13C label is released as 13CO2/13C‐bicarbonate, and, hence, does not allow us to follow the fate of acetyl‐CoA. Pyruvate labeled in the C2 position has been used to track the 13C label into the TCA (tricarboxylic acid) cycle and measure [5‐13C]glutamate as well as study changes in [1‐13C]acetylcarnitine with DCA and dobutamine. This work investigates changes in the metabolic fate of acetyl‐CoA in response to metabolic interventions of DCA‐induced increased PDC flux in the fed and fasted state, and increased cardiac workload with dobutamine in vivo in rat heart at two different pyruvate doses. DCA led to a modest increase in the 13C labeling of [5‐13C]glutamate, and a considerable increase in [1‐13C]acetylcarnitine and [1,3‐13C]acetoacetate peaks. Dobutamine resulted in an increased labeling of [2‐13C]lactate, [2‐13C]alanine and [5‐13C]glutamate. The change in glutamate with dobutamine was observed using a high pyruvate dose but not with a low dose. The relative changes in the different metabolic products provide information about the relationship between PDC‐mediated oxidation of pyruvate and its subsequent incorporation into the TCA cycle compared with other metabolic pathways. Using a high dose of pyruvate may provide an improved ability to observe changes in glutamate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
Intracranial hypertension is a severe complication of acute liver failure (ALF) secondary to brain edema. The pathogenesis of cerebral edema in ALF is not clear, but seems to be related to energy metabolism in which lactate may have an important role. The aim of this study was to follow the synthesis of brain lactate using a novel in vivo metabolic technology in a rat model of ALF. Time‐resolved 13C MRS of hyperpolarized 13C1‐pyruvate was used to quantitatively follow the in vivo conversion of pyruvate to its substrates in a model of devascularized ALF in rats. Rats with ALF showed a significant increase in the lactate to pyruvate ratio from 36% to 69% during the progression of liver disease relative to rats with portocaval anastomosis. Rats with ALF also showed a significant increase in the alanine to pyruvate ratio from 72% to 95%. These increases were detectable at very early stages (6 h) when animals had no evident disease signs in their behavior (without loss of righting or corneal reflexes). This study shows the dynamic consequences of cerebral in vivo 13C metabolism at real time in rats with ALF. The early detection of the de novo synthesis of lactate suggests that brain lactate is involved in the physiopathology of ALF. Hyperpolarization is a potential non‐invasive technique to follow the in vivo metabolism, and both the development and optimization of 13C‐labeled substrates can clarify the mechanism involved in ALF. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
Imaging of the metabolism of hyperpolarized [1‐13C]pyruvate has shown considerable promise in preclinical studies in oncology, particularly for the assessment of early treatment response. The repeatability of measurements of 13C label exchange between pyruvate and lactate was determined in a murine lymphoma model in fasted and non‐fasted animals. The fasted state showed lower intra‐individual variability, although the [1‐13C]lactate/[1‐13C]pyruvate signal ratio was significantly greater in fasted than in non‐fasted mice, which may be explained by the higher tumor lactate concentrations in fasted animals. These results indicate that the fasted state may be preferable for the measurement of 13C label exchange between pyruvate and lactate, as it reduces the variability and therefore should make it easier to detect the effects of therapy. © 2016 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.  相似文献   

18.
Isoflurane is a frequently used anesthetic in small‐animal dissolution dynamic nuclear polarization‐magnetic resonance imaging (DNP‐MRI) studies. Although the literature suggests interactions with mitochondrial metabolism, the influence of the compound on cardiac metabolism has not been assessed systematically to date. In the present study, the impact of low versus high isoflurane concentration was examined in a crossover experiment in healthy rats. The results revealed that cardiac metabolism is modulated by isoflurane concentration, showing increased [1‐13C]lactate and reduced [13C]bicarbonate production during high isoflurane relative to low isoflurane dose [average differences: +16% [1‐13C]lactate/total myocardial carbon, –22% [13C]bicarbonate/total myocardial carbon; +51% [1‐13C]lactate/[13C]bicarbonate]. These findings emphasize that reproducible anesthesia is important when studying cardiac metabolism. As the depth of anesthesia is difficult to control in an experimental animal setting, careful study design is required to exclude confounding factors.  相似文献   

19.
A change in myocardial metabolism is a known effect of several diseases. MRS with hyperpolarized 13C‐labelled pyruvate is a technique capable of detecting changes in myocardial pyruvate metabolism, and has proven to be useful for the evaluation of myocardial ischaemia in vivo. However, during fasting, the myocardial glucose oxidation is low and the fatty acid oxidation (β‐oxidation) is high, which complicates the interpretation of pyruvate metabolism with the technique. The aim of this study was to investigate whether the infusion of glucose, insulin and potassium (GIK) could increase the myocardial glucose oxidation in the citric acid cycle, reflected as an increase in the [13C]bicarbonate signal in cardiac hyperpolarized [1‐13C]pyruvate MRS measurements in fasted rats. Two groups of rats were infused with two different doses of GIK and investigated by MRS after injection of hyperpolarized [1‐13C]pyruvate. No [13C]bicarbonate signal could be detected in the fasted state. However, a significant increase in the [13C]bicarbonate signal was observed by the infusion of a high dose of GIK. This study demonstrates that a high [13C]bicarbonate signal can be achieved by GIK infusion in fasted rats. The increased [13C]bicarbonate signal indicates an increased flux of pyruvate through the pyruvate dehydrogenase enzyme complex and an increase in myocardial glucose oxidation through the citric acid cycle. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Radioactive glucose and 2-deoxy-d-glucose (deoxyglucose) were compared as tracers for estimating the rate of rat brain glucose utilization after an intravenous injection. The [brain] : [blood] ratio of deoxyglucose content was twice as large as that of glucose at 5 min, 3 times at 45 min, and 13 times at 240 min. While [2-14C]glucose accounted for about 20% of total brain14C (acid soluble) at 10 min, labeled deoxyglucose took 45 min to fall to comparable levels. Labeled 2-deoxy-d-glucose-6-phosphate (deoxyglucose phosphate) did not accumulate after 10 min despite the fact that deoxyglucose was available continuously for phosphorylation. This resulted from loss of deoxyglucose phosphate, which was in proportion to its concentration. The disappearance of deoxyglucose phosphate was probably catalyzed by glucose-6-phosphatase, which reacts with deoxyglucose phosphate and which is present in brain.Since the [brain]: [blood] ratio of labeled deoxyglucose increases as time passes and since deoxyglucose phosphate is lost from brain at an appreciable rate, its use for quantitative determination of the rate of rat brain glucose utilization is much more complex than previously realized. Approximately 45 min are necessary to reduce background contamination to acceeptable levels for autoradiography during which time substantial amounts of deoxyglucose phosphate may be lost. The primary reason for using deoxyglucose to measure glucose utilization by the brain is the assumption that deoxyglucose phosphate is lost very slowly from the brain. In view of the fact that loss of deoxyglucose phosphate cannot be ignored, the advantage of labeled deoxyglucose over labeled glucose is open to question.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号