首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Immunological studies have supported the idea that innate immunity is critical for the control of Mycobacterium tuberculosis (Mtb) infection in humans. Despite the overwhelming evidence showing the critical role of Toll-like receptors (TLRs) in the in vitro recognition of Mtb, the in vivo significance of individual TLRs has been more difficult to demonstrate consistently. We were interested in examining the role of genes of TLRs and molecules involved in their signalling cascades, and a case-control study was designed to test the association of polymorphisms of these innate immune genes with pulmonary tuberculosis (TB) in a Colombian population. In this study, we did not find an association with TLR2, TLR4, TLR9, MyD88 or MAL/TIRAP polymorphic variants. These findings suggest that those genes are not involved as risk factors for pulmonary TB in our population.  相似文献   

2.
The role of Toll-like receptors (TLR) and MyD88 for immune responses to Mycobacterium tuberculosis (Mtb) infection remains controversial. To address the impact of TLR-mediated pathogen recognition and MyD88-dependent signaling events on anti-mycobacterial host responses, we analyzed the outcome of Mtb infection in TLR2/4/9 triple- and MyD88-deficient mice. After aerosol infection, both TLR2/4/9-deficient and wild-type mice expressed pro-inflammatory cytokines promoting antigen-specific T cells and the production of IFN-gamma to similar extents. Moreover, TLR2/4/9-deficient mice expressed IFN-gamma-dependent inducible nitric oxide synthase and LRG-47 in infected lungs. MyD88-deficient mice expressed pro-inflammatory cytokines and were shown to expand IFN-gamma-producing antigen-specific T cells, albeit in a delayed fashion. Only mice that were deficient for MyD88 rapidly succumbed to unrestrained mycobacterial growth, whereas TLR2/4/9-deficient mice controlled Mtb replication. IFN-gamma-dependent restriction of mycobacterial growth was severely impaired only in Mtb-infected MyD88, but not in TLR2/4/9-deficient bone marrow-derived macrophages. Our results demonstrate that after Mtb infection neither TLR2, -4, and -9, nor MyD88 are required for the induction of adaptive T cell responses. Rather, MyD88, but not TLR2, TLR4 and TLR9, is critical for triggering macrophage effector mechanisms central to anti-mycobacterial defense.  相似文献   

3.
TLR signaling pathways   总被引:34,自引:0,他引:34  
Toll-like receptors (TLRs) have been established to play an essential role in the activation of innate immunity by recognizing specific patterns of microbial components. TLR signaling pathways arise from intracytoplasmic TIR domains, which are conserved among all TLRs. Recent accumulating evidence has demonstrated that TIR domain-containing adaptors, such as MyD88, TIRAP, and TRIF, modulate TLR signaling pathways. MyD88 is essential for the induction of inflammatory cytokines triggered by all TLRs. TIRAP is specifically involved in the MyD88-dependent pathway via TLR2 and TLR4, whereas TRIF is implicated in the TLR3- and TLR4-mediated MyD88-independent pathway. Thus, TIR domain-containing adaptors provide specificity of TLR signaling.  相似文献   

4.
Genetic variation in Toll-like receptors and disease susceptibility   总被引:1,自引:0,他引:1  
Toll-like receptors (TLRs) are key initiators of the innate immune response and promote adaptive immunity. Much has been learned about the role of TLRs in human immunity from studies linking TLR genetic variation with disease. First, monogenic disorders associated with complete deficiency in certain TLR pathways, such as MyD88-IRAK4 or TLR3-Unc93b-TRIF-TRAF3, have demonstrated the specific roles of these pathways in host defense against pyogenic bacteria and herpesviruses, respectively. Second, common polymorphisms in genes encoding several TLRs and associated genes have been associated with both infectious and autoimmune diseases. The study of genetic variation in TLRs in various populations combined with information on infection has demonstrated complex interaction between genetic variation in TLRs and environmental factors. This interaction explains the differences in the effect of TLR polymorphisms on susceptibility to infection and autoimmune disease in various populations.  相似文献   

5.
Toll-like receptors and other links between innate and acquired alloimmunity   总被引:11,自引:0,他引:11  
Innate immunity represents the first line of defense against invading pathogens and noxious stimuli. The Toll-like receptors (TLRs) are essential innate immune receptors that alert the immune system to the presence of invading microbes. Emerging evidence shows that TLR signaling is important in allograft rejection. In a murine model, the rejection of minor mismatched allografts cannot occur in the absence of MyD88, an important TLR signal adaptor protein, owing to a defect in dendritic cell maturation, which leads to diminished T-helper cell type 1 immune responses. A recent clinical study also suggests that recipients with a mutant TLR4 genotype manifest reduced lung allograft rejection. Thus, innate immune signaling via TLRs is important for alloimmunity.  相似文献   

6.
Effects of flagellin on innate and adaptive immunity   总被引:1,自引:0,他引:1  
Flagella are locomotive organelles present on a wide range of bacteria and are important for the pathogenesis of many species. Cells of the innate immune system lack memory perse, but recognize conserved pathogen-associated molecular patterns (PAMPs) through a family of type I membrane receptors known as Toll-like receptors (TLRs). Flagellin, the major structural component of flagella, is a highly conserved protein recognized in hosts by TLR5. Signaling of flagellin via TLR5/TLR4 heteromeric complexes enhances the diversity of the response, likely by engaging MyD88-independent adaptors to activate the interferon pathway. Flagellin is a potent immune activator, stimulating diverse biologic effects that mediate both innate inflammatory responses as well as the development of adaptive immunity. Binding of flagellin to the extracellular domain of TLR5 rapidly induces a signal cascade that culminates in the production of proinflammatory mediators such as cytokines, chemokines, and costimulatory molecules. This review focuses on the mechanisms of action of flagellin and its effects on both innate and adaptive immunity.  相似文献   

7.
The Toll-like receptors (TLRs) are key components in the immune response against numerous pathogens. Previous studies have indicated that TLR2 plays an essential role in promoting immune responses against mycobacterial infections. Prior work has also shown that mice deficient in TLR2 are more susceptible to infection by Mycobacterium tuberculosis, Mycobacterium bovis bacillus Calmette-Guerin, and Mycobacterium avium. Therefore, it is important to define the molecules expressed by pathogenic mycobacteria, which bind the various TLRs. Although a number of TLR agonists have been characterized for M. tuberculosis, no specific TLR ligand has been identified in M. avium. We have found that glycopeptidolipids (GPLs), which are highly expressed surface molecules on M. avium, can stimulate the nuclear factor-kappaB pathway as well as mitogen-activated protein kinase p38 and Jun N-terminal kinase activation and production of proinflammatory cytokines when added to murine bone marrow-derived macrophages. This stimulation was dependent on TLR2 and myeloid differentiation primary-response protein 88 (MyD88) but not TLR4. M. avium express apolar and serovar-specific (ss)GPLs, and it is the expression of the latter that determines the serotype of a particular M. avium strain. It is interesting that the ssGPLs activated macrophages in a TLR2- and MyD88-dependent manner, and no macrophage activation was observed when using apolar GPLs. ssGPLs also differed in their ability to activate macrophages with Serovars 1 and 2 stimulating inhibitor of kappaB p38 and phosphorylation and tumor necrosis factor alpha (TNF-alpha) secretion, while Serovar 4 failed to stimulate p38 activation and TNF-alpha production. Our studies indicate that ssGPLs can function as TLR2 agonists and promote macrophage activation in a MyD88-dependent pathway.  相似文献   

8.
Little is known regarding the role of Toll-like receptors (TLRs) in regulating protein- and polysaccharide-specific immunoglobulin (Ig) isotype production in response to an in vivo challenge with an extracellular bacterium. In this report we demonstrate that MyD88(-/-), but not TLR2(-/-), mice are markedly defective in their induction of multiple splenic proinflammatory cytokine- and chemokine-specific mRNAs after intraperitoneal (i.p.) challenge with heat-killed Streptococcus pneumoniae capsular type 14 (S. pneumoniae type 14). This is correlated with analogous responses in splenic cytokine protein release in vitro following addition of S. pneumoniae type 14. Consistent with these data, naive MyD88(-/-), but not TLR2(-/-), mice are more sensitive to killing following i.p. challenge with live S. pneumoniae type 14, relative to responses in wild-type mice. However, prior immunization of MyD88(-/-) mice with heat-killed S. pneumoniae type 14 protects against an otherwise-lethal challenge with live S. pneumoniae type 14. Surprisingly, both MyD88(-/-) and TLR2(-/-) mice exhibit striking and equivalent defects in elicitation of type 1 IgG isotypes (IgG3, IgG2b, and IgG2a), but not the type 2 IgG isotype, IgG1, specific for several protein and polysaccharide antigens, in response to i.p. challenge with heat-killed S. pneumoniae type 14. Of note, the type 1 IgG isotype titers specific for pneumococcal surface protein A are reduced in MyD88(-/-) mice but not TLR2(-/-) mice. These data suggest that distinct TLRs may differentially regulate innate versus adaptive humoral immunity to intact S. pneumoniae and are the first to implicate a role for TLR2 in shaping an in vivo type 1 IgG humoral immune response to a gram-positive extracellular bacterium.  相似文献   

9.
Helicobacter pylori is a gram-negative microaerophilic bacterium that colonizes the gastric mucosa, leading to disease conditions ranging from gastritis to cancer. Toll-like receptors (TLRs) play a central role in innate immunity by their recognition of conserved molecular patterns on bacteria, fungi, and viruses. Upon recognition of microbial components, these TLRs associate with several adaptor molecules, including myeloid differentiation factor 88 (MyD88). To investigate the contribution of the innate immune system to H. pylori infection, bone marrow-derived macrophages from mice deficient in TLR2, TLR4, TLR9, and MyD88 were infected with H. pylori SS1 and SD4 for 24 or 48 h. We demonstrate that MyD88 was essential for H. pylori induction of all cytokines investigated except alpha interferon (IFN-alpha). The secretion of IFN-alpha was substantially increased from cells deficient in MyD88. H. pylori induced interleukin-12 (IL-12) and IL-10 through TLR4/MyD88 signaling. In addition, H. pylori induced less IL-6 and IL-1beta in TLR2-deleted macrophages, suggesting that the MyD88 pathway activated by TLR2 stimulation is responsible for H. pylori induction of the host proinflammatory response (IL-6 and IL-1beta). These observations are important in light of a recent report on IL-6 and IL-1beta playing a role in the development of H. pylori-related gastric cancer. In conclusion, our study demonstrates that H. pylori activates TLR2 and TLR4, leading to the secretion of distinct cytokines by macrophages.  相似文献   

10.
It is clear that resistance against acute tuberculosis (TB) is dependent on the host's ability to generate Th1 immunity. Nevertheless, the role of host immunity in latent TB remains incompletely defined. Recent progress in elucidating host innate and adaptive immune responses to M. tuberculosis (Mtb) and their impact on latent infection includes identification of TLR2-dependent anti-inflammatory responses, a MyD88-independent, non-protective Th1 response, the formation of secondary lymphoid follicles in granulomas and the role of Th1 responses, IFN-gamma and TNF-alpha in preventing re-activation of infection; IFN-gamma also appears to be involved in activating latency genes in Mtb. When Mtb re-infects a patient, it appears to localize in established granulomas; however, different bacterial strains may behave differently. Although these advances do not provide all the answers regarding host defense mechanisms, they nevertheless bring us closer to new and better design strategies for immunotherapy and immunoprophylaxis.  相似文献   

11.
Recognition of pathogens by Toll-like receptors (TLRs) triggers innate immune responses through signaling pathways mediated by Toll-interleukin 1 receptor (TIR) domain-containing adaptors such as MyD88, TIRAP and TRIF. MyD88 is a common adaptor that is essential for proinflammatory cytokine production, whereas TRIF mediates the MyD88-independent pathway from TLR3 and TLR4. Here we have identified a fourth TIR domain-containing adaptor, TRIF-related adaptor molecule (TRAM), and analyzed its physiological function by gene targeting. TRAM-deficient mice showed defects in cytokine production in response to the TLR4 ligand, but not to other TLR ligands. TLR4- but not TLR3-mediated MyD88-independent interferon-beta production and activation of signaling cascades were abolished in TRAM-deficient cells. Thus, TRAM provides specificity for the MyD88-independent component of TLR4 signaling.  相似文献   

12.
Mycobacterium tuberculosis possesses agonists for several Toll-like receptors (TLRs), yet mice with single TLR deletions are resistant to acute tuberculosis. MyD88(-/-) mice were used to examine whether TLRs play any role in protection against aerogenic M. tuberculosis H37Rv infection. MyD88(-/-) mice failed to control mycobacterial replication and rapidly succumbed. Moreover, expressions of interleukin 12, tumor necrosis factor alpha, gamma interferon, and nitric oxide synthase 2 were markedly decreased in the knockout animals. These results argue that resistance to M. tuberculosis must depend on MyD88-dependent signals mediated by an as-yet-undetermined TLR or a combination of TLRs.  相似文献   

13.
Direct and indirect role of Toll-like receptors in T cell mediated immunity   总被引:10,自引:0,他引:10  
Toll-like receptors (TLR) are pathogen-associated molecular patterns (PAMPs) recognition receptors that playan important role in protective immunity against infection and inflammation.They act as central integrators ofa wide variety of signals,responding to diverse agonists of microbial products.Stimulation of Toll-like receptorsby microbial products leads to signaling pathways that activate not only innate,but also adaptive immunity byAPC dependent or independent mechanisms.Recent evidence revealed that TLR signals played a determiningrole in the skewing of na(?)ve T cells towards either Th1 or Th2 responses.Activation of Toll-like receptors alsodirectly or indirectly influences regulatory T cell functions.Therefore,TLRs are required in both immuneactivation and immune regulation.Study of TLRs has significantly enhanced our understanding of innate andadaptive immune responses and provides novel therapeutic approaches against infectious and inflammatorydiseases.Cellular & Molecular Immunology.2004;1(4):239-246.  相似文献   

14.
Toll-like receptors in innate immunity   总被引:45,自引:0,他引:45  
Functional characterization of Toll-like receptors (TLRs) has established that innate immunity is a skillful system that detects invasion of microbial pathogens. Recognition of microbial components by TLRs initiates signal transduction pathways, which triggers expression of genes. These gene products control innate immune responses and further instruct development of antigen-specific acquired immunity. TLR signaling pathways are finely regulated by TIR domain-containing adaptors, such as MyD88, TIRAP/Mal, TRIF and TRAM. Differential utilization of these TIR domain-containing adaptors provides specificity of individual TLR-mediated signaling pathways. Several mechanisms have been elucidated that negatively control TLR signaling pathways, and thereby prevent overactivation of innate immunity leading to fatal immune disorders. The involvement of TLR-mediated pathways in autoimmune and inflammatory diseases has been proposed. Thus, TLR-mediated activation of innate immunity controls not only host defense against pathogens but also immune disorders.  相似文献   

15.
Toll-like receptors (TLRs) are the most important class of innate pattern recognition receptors (PRRs) by which host immune and non-immune cells are able to recognize pathogen-associated molecular patterns (PAMPs). Most mammalian species have 10 to 15 types of TLRs. TLRs are believed to function as homo- or hetero-dimers. TLR2, which plays a crucial role in recognizing PAMPs from Staphylococcus aureus, forms heterodimers with TLR1 or TLR6 and each dimer has a different ligand specificity. Staphylococcal lipoproteins, Panton-Valentine toxin and Phenol Soluble Modulins have been identified as potent TLR2 ligands. Conversely, the ligand function attributed to peptidoglycan and LTA remains controversial. TLR2 uses a MyD88-dependent signaling pathway that results in NF-kB translocation into the nucleus and activation of the expression of pro-inflammatory cytokine genes. Recognition rouses both an inflammatory response, culminating in the phagocytosis of bacteria, and an adaptive immune response, with the presentation of resulting bacterial compounds to T cells. Here, recent advances on the recognition of S. aureus by TLRs are presented and discussed, as well as the new therapeutic opportunities deriving from this new knowledge.  相似文献   

16.
MyD88 is a key adaptor molecule for signalling via Toll-like receptors (TLRs) and the response to gut commensal microbes. To investigate the role of TLRs/MyD88 pathway in the development of the gut-associated lymphoid tissue (GALT), we examined the development of Peyer's patches (PPs) and cryptopatch (CP), and also one of effector compartment, intraepithelial lymphocyte (IEL) in MyD88-/-, TLR2-/- and TLR4-/- mice. In MyD88-/- mice, the organogenesis of PPs was not disturbed. However, PPs in 2-week-old MyD88-/- mice were significantly smaller than those in MyD88+/- mice. Also, in 2-week-old TLR4-/-, but not TLR2-/- mice, PPs did not develop rapidly. The development of PPs in MyD88-/- and TLR4-/- mice was completely recovered in 10 weeks. PP cells from MyD88-/- mice showed significant decrease in proliferation when stimulated with lipopolysaccharide. The development of CP and IEL was also normal in 10-week-old MyD88-/- mice. These results suggest that the TLRs/MyD88 pathway might be involved in the development of PPs only at early postnatal stage, and TLRs/MyD88-independent signalling is critically involved in the development of GALT in adult mice.  相似文献   

17.
Infection with human papillomaviruses (HPVs) often causes cutaneous benign lesions, cervical cancer, and a number of other tumors. The mechanisms of host immune system to prevent and control HPV infection still remain poorly understood. Toll-like receptors (TLRs) are specific pattern recognition molecules that bind to microbial components to trigger innate immunity and direct adaptive immunity in the face of immunological danger. TLRs have been established to play an essential role in sensing and initiating antiviral immune responses. Recent accumulating evidence demonstrated that HPVs modulate TLR expression and interfere with TLR signaling pathways, leading to persistent viral infection and carcinogenesis. This review summarizes current knowledge on the roles of TLR during HPV infection, focusing on TLR recognition, modulation of TLR expression and signaling, regulatory receptors involved in TLR signaling, and cross-talk of TLRs with antimicrobial peptides. Immunotherapeutic strategies based on TLR agonists have emerged to be one of the novel promising avenues in treatment of HPV-associated diseases in the future.  相似文献   

18.
Dendritic cells (DCs) are key regulators of both innate and adaptive immunity. During infection, DCs recognise pathogen‐associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs) including the Toll‐like receptor (TLR) family. TLRs mainly signal via the adaptor protein MyD88. This signalling pathway is required for immune protection during many infections, which are lethal in the absence of MyD88. However, the cell type specific importance of this pathway during both innate and adaptive immune responses against pathogens in vivo remains ill‐defined. We discuss recent findings from conditional KO or gain‐of‐function mouse models targeting TLR/MyD88 signalling pathways in DCs and other myeloid cells during infection. While the general assumption that MyD88‐dependent recognition by DCs is essential for inducing protective immunity holds true in some instances, the results surprisingly indicate a much more complex context‐dependent requirement for this pathway in DCs and other myeloid or lymphoid cell‐types in vivo. Furthermore, we highlight the advantages of Cre‐mediated DC targeting approaches and their possible limitations. We also present future perspectives on the development of new genetic mouse models to target distinct DC subsets in vivo. Such models will serve to understand the functional heterogeneity of DCs in vivo.  相似文献   

19.
Toll-like receptors control activation of adaptive immune responses   总被引:1,自引:0,他引:1  
Mechanisms that control the activation of antigen-specific immune responses in vivo are poorly understood. It has been suggested that the initiation of adaptive immune responses is controlled by innate immune recognition. Mammalian Toll-like receptors play an essential role in innate immunity by recognizing conserved pathogen-associated molecular patterns and initiating the activation of NF-kappaB and other signaling pathways through the adapter protein, MyD88. Here we show that MyD88-deficient mice have a profound defect in the activation of antigen-specific T helper type 1 (TH1) but not TH2 immune responses. These results suggest that distinct pathways of the innate immune system control activation of the two effector arms of adaptive immunity.  相似文献   

20.
Toll样受体信号通路中MyD88的研究进展   总被引:3,自引:0,他引:3  
MyD88是Toll样受体信号通路中的重要转导蛋白,其依赖的信号通路以及调控的基因产物在固有免疫和适应性免疫中均发挥着关键作用。本文对MyD88及其依赖的信号通路做一简要综述,以期为临床预防和治疗疾病提供新的思路和方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号