首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A transgenic mouse model of Huntington's disease (R6/1 and R6/2 lines) expressing exon 1 of the HD gene with 115-150 CAG repeats resisted striatal damage following injection of quinolinic acid and other neurotoxins. We examined whether excitotoxin resistance characterizes mice with mutant huntingtin transgenes. In a new transgenic mouse with 3 kb of mutant human huntingtin cDNA with 18, 46, or 100 CAG repeats, we found no change in susceptibility to intrastriatal injections of the excitotoxin quinolinic acid, compared to wild-type littermates. The new transgenic mice were injected with the same dose of quinolinic acid (30 nmol) as had been the R6 mice. Our findings highlight the importance of studying pathogenetic mechanisms in different transgenic models of a disease.  相似文献   

2.
Increasing evidence implicates glutamate-mediated excitotoxicity as a contributory factor in dopaminergic cell death in the substantia nigra pars compacta (SNc) in Parkinson's disease (PD). Previous studies have suggested that metabotropic glutamate receptor (mGluR) ligands are neuroprotective against excitotoxicity in vitro. In the present study, the neurotoxin 6-hydroxydopamine (6-OHDA) produced a significant loss (61.2 +/- 8.9%; P < 0.01) of tyrosine hydroxylase-immunopositive (TH+) cells in both the SNc and striatal dopamine (58.02 +/- 1.27%; P < 0.05) in control male Sprague-Dawley rats. Both losses were significantly attenuated by sub-chronic (7 day) treatment with the Group I mGluR antagonists, 2-methyl-6(phenylethynyl)-pyridine (MPEP) or (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid (LY367385); the Group II mGluR agonist (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC); or the Group III mGluR agonist, L(+)-2-amino-4-phosphonobutyric acid (L-AP4). These data demonstrate a neuroprotective action of mGluR ligands in vivo against 6-OHDA toxicity that has important implications for the treatment of PD.  相似文献   

3.
Deficits of neurotrophic support caused by reduced levels of brain-derived neurotrophic factor (BDNF) have been implicated in the selective vulnerability of striatal neurones in Huntington's disease (HD). Therapeutic strategies based on BDNF administration have been proposed to slow or prevent the disease progression. However, the effectiveness of BDNF may depend on the proper expression of its receptor TrkB. In this study, we analysed the expression of TrkB in several HD models and in postmortem HD brains. We found a specific reduction of TrkB receptors in transgenic exon-1 and full-length knock-in HD mouse models and also in the motor cortex and caudate nucleus of HD brains. Our findings also demonstrated that continuous expression of mutant huntingtin is required to down-regulate TrkB levels. This was shown by findings in an inducible HD mouse model showing rescue of TrkB by turning off mutant huntingtin expression. Interestingly, the length of the polyglutamine tract in huntingtin appears to modulate the reduction of TrkB. Finally, to analyse the effect of BDNF in TrkB we compared TrkB expression in mutant huntingtin R6/1 and double mutant (R6/1 : BDNF+/-) mice. Similar TrkB expression was found in both transgenic mice suggesting that reduced TrkB is not a direct consequence of decreased BDNF. Therefore, taken together our findings identify TrkB as an additional component that potentially might contribute to the altered neurotrophic support in HD.  相似文献   

4.
Environmental enrichment (EE) has been shown to improve neurological function and cognitive performance in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). We have shown recently that even when they are already living in an enriched environment, additional EE had beneficial effects in R6/2 mice. Here we examined the effects of three different enrichment paradigms on cognitive dysfunction in R6/2 mice in a longitudinal study. The EE consisted of either enforced physical exercise on the Rotarod (predominantly motor stimulation), training in a novel type of maze, the 'noughts and crosses' (OX) maze (mainly cognitive stimulation), or access to a playground, that gave the mice the opportunity for increased, self-motivated activity using running wheels and other toys in a social context (mixed EE). We designed the OX maze to test spatial memory in the R6/2 mouse while minimizing motor demands. Control mice remained in their home cages during the training period. Mice were given enrichment between 6 and 8 weeks of age, followed by cognitive (Lashley maze) and motor testing (Rotarod) between 8 and 10 weeks. Mice were then given a further period of enrichment between 10 and 12 weeks, and their behavior was re-tested between 12 and 14 weeks of age. We also collected body weights and age at death from all mice. The OX maze was as sensitive for detecting learning deficits in the R6/2 mice as other types of mazes (such as the Morris water maze). Interestingly, providing cognitive stimulation via training in the OX maze produced significant improvements in subsequent cognitive performance by male, but not female, R6/2 mice in the Lashley maze task. OX maze training also significantly improved loss of body weight and survival in male R6/2 mice. These effects became apparent after as little as 2 weeks of training in the OX maze. These data suggest that there is a cognitive reserve that may be exploited in neurodegenerative disease. While brain training was not beneficial for all mice, it produced no deleterious effects, and so warrants further study in rodent models of HD.  相似文献   

5.
Spinal muscular atrophy (SMA) is a motor neuron disease caused by mutations of the survival motor neuron 1 gene (SMN1). No curative treatment is available. Mutant mice carrying homozygous deletion of Smn exon 7 directed to neurons display a degenerative process of motor neurons similar to that found in human SMA. To test whether riluzole, which exhibits neurotrophic properties, might have a protective role in SMA, mutant mice were treated with it after the onset of the degenerative process. Riluzole improved median survival and exerted a protective effect against aberrant cytoskeletal organization of motor synaptic terminals but not against loss of proximal axons. These results demonstrate that the disease course of SMA can be attenuated after the onset of neuromuscular defects and may warrant further investigation in a therapeutic trial in SMA.  相似文献   

6.
Huntington's disease (HD) is a genetic neurodegenerative condition characterized by abnormal dopamine (DA)–glutamate interactions, severe alterations in motor control, and reduced behavioral flexibility. Experimental models of disease show that during symptomatic phases, HD shares with other hyperkinetic disorders the loss of synaptic depotentiation in the striatal spiny projection neurons (SPNs). Here we test the hypothesis that corticostriatal long-term depression (LTD), a well-conserved synaptic scaling down response to environmental stimuli, is also altered in symptomatic male R6/1 mice, a HD model with gradual development of symptoms. In vitro patch-clamp and intracellular recordings of corticostriatal slices from R6/1 mice confirm that, similar to other models characterized by hyperkinesia and striatal DA D1 receptor pathway dysregulation, once long-term potentiation (LTP) is induced, synaptic depotentiation is lost. Our new observations show that activity-dependent LTD was abolished in SPNs of mutant mice. In an experimental condition in which N-methyl-d -aspartate (NMDA) receptors are normally not recruited, in vitro bath application of DA revealed an abnormal response of D1 receptors that caused a shift in synaptic plasticity direction resulting in an NMDA-dependent LTP. Our results demonstrate that corticostriatal LTD is lost in R6/1 mouse model and confirm the role of aberrant DA–glutamate interactions in the alterations of synaptic scaling down associated with HD symptoms.  相似文献   

7.
Huntington's disease (HD) is caused by an abnormal expansion of CAG repeats in the gene encoding huntingtin. The development of therapies for HD requires preclinical testing of drugs in animal models that reproduce the dysfunction and regionally specific pathology observed in HD. We have developed a new knock-in mouse model of HD with a chimeric mouse/human exon 1 containing 140 CAG repeats inserted in the murine huntingtin gene. These mice displayed an increased locomotor activity and rearing at 1 month of age, followed by hypoactivity at 4 months and gait anomalies at 1 year. Behavioral symptoms preceded neuropathological anomalies, which became intense and widespread only at 4 months of age. These consisted of nuclear staining for huntingtin and huntingtin-containing nuclear and neuropil aggregates that first appeared in the striatum, nucleus accumbens, and olfactory tubercle. Interestingly, regions with early pathology all receive dense dopaminergic inputs, supporting accumulating evidence for a role of dopamine in HD pathology. Nuclear staining and aggregates predominated in striatum and layer II/III and deep layer V of the cerebral cortex, whereas neuropil aggregates were found in the globus pallidus and layer IV/superficial layer V of the cerebral cortex. The olfactory system displayed early and marked aggregate accumulation, which may be relevant to the early deficit in odor discrimination observed in patients with HD. Because of their early behavioral anomalies and regionally specific pathology, these mice provide a powerful tool with which to evaluate the effectiveness of new therapies and to study the mechanisms involved in the neuropathology of HD.  相似文献   

8.
A semi professional marathon runner at risk for Huntington's disease (HD) (43 CAG repeats) developed signs of a slowly progressive myopathy with exercise-induced muscle fatigue, pain, elevated creatine kinase level, and worsening of his running performance many years before first signs of chorea were detected. Muscle biopsy displayed a mild myopathy with mitochondrial pathology including a complex IV deficiency and analysis of the patient's fibroblast culture demonstrated deficits in mitochondrial function. Challenging skeletal muscle by excessive training might have disclosed myopathy in HD even years before the appearance of other neurological symptoms.  相似文献   

9.
There is substantial evidence implicating excitotoxicity and oxidative damage in the pathogenesis of Huntington's disease (HD). We therefore examined whether the antioxidants 2-sulpho-tert-phenyibutyinitrone (S-PBN) and alpha-lipoic acid could exert neuroprotective effects in transgenic mouse models of HD. S-PBN showed no effects on either weight loss or survival in the R6/2 transgenic HD mice. alpha-Lipoic acid produced significant increases in survival in both R6/2 and N171-82Q transgenic mouse models of HD. These findings suggest that alpha-lipoic acid might have beneficial effects in HD patients.  相似文献   

10.
Huntington's disease (HD) is a progressive neurodegenerative illness for which there is no effective therapy. We examined whether creatine, which may exert neuroprotective effects by increasing phosphocreatine levels or by stabilizing the mitochondrial permeability transition, has beneficial effects in a transgenic mouse model of HD (line 6/2). Dietary creatine supplementation significantly improved survival, slowed the development of brain atrophy, and delayed atrophy of striatal neurons and the formation of huntingtin-positive aggregates in R6/2 mice. Body weight and motor performance on the rotarod test were significantly improved in creatine-supplemented R6/2 mice, whereas the onset of diabetes was markedly delayed. Nuclear magnetic resonance spectroscopy showed that creatine supplementation significantly increased brain creatine concentrations and delayed decreases in N-acetylaspartate concentrations. These results support a role of metabolic dysfunction in a transgenic mouse model of HD and suggest a novel therapeutic strategy to slow the pathological process.  相似文献   

11.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with the death of motor neurons in the spinal cord and brainstem. The cause of ALS is unknown and there is no cure. This study demonstrates, for the first time, that vascular endothelial growth factor (VEGF) delays progression of symptoms and prolongs survival in a Cu/Zn superoxide dismutase (SOD1) transgenic mouse model of ALS. These observations suggest that VEGF or related compounds, might be of value in the treatment of ALS patients.  相似文献   

12.
Huntington's disease is due to an expansion of CAG repeats in the huntingtin gene. Huntingtin interacts with several proteins including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We performed immunohistochemical analysis of GAPDH expression in the brains of transgenic mice carrying the huntingtin gene with 89 CAG repeats. In all wild-type animals examined, GAPDH was evenly distributed among the different cell types throughout the brain. In contrast, the majority of transgenic mice showed GAPDH overexpression, with the most prominent GAPDH changes observed in the caudate putamen, globus pallidus, neocortex, and hippocampal formation. Double staining for NeuN and GFAP revealed that GAPDH overexpression occurred exclusively in neurons. Nissl staining analysis of the neocortex and caudate putamen indicated 24 and 27% of cell loss in transgenic mice, respectively. Subcellular fluorescence analysis revealed a predominant increase in GAPDH immunostaining in the nucleus. Thus, we conclude that mutation of huntingtin is associated with GAPDH overexpression and nuclear translocation in discrete populations of brain neurons.  相似文献   

13.
Recent neuroimaging studies reported complex changes in cerebral blood flow (CBF) in early-staged Huntington's disease (HD) patients. Deckel and co-workers [Deckel and Duffy, Brain Res. (in press); Deckel and Cohen, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 24 (2000) 193; Deckel et al., Neurology 51 (1998) 1576; Deckel et al., J. Nucl. Med. 41 (2000) 773] suggested that these findings might be accounted for, in part, by alterations in cerebral nitric oxide (NO) and its byproduct, peroxynitrite. The current experiment tested this hypothesis by altering NO levels via manipulations of dietary L-arginine (ARG), the dietary precursor of NO, in mice transgenic for HD. Seventy-one mice were assigned at 12 weeks of age to one of three isocaloric diets that varied in their content of ARG. These diets included: (a) 0% ARG, (b) 1.2% ARG (i.e. typical mouse chow), or (c) 5% ARG. The 5% ARG diets in HD mice accelerated the time of onset of body weight loss (P<0.05) and motor impairments (P<0.05), and increased resting CBF in HD relative to control (P<0.05). Conversely, the 0% ARG diet demonstrated no loss of body weight and had no changes in CBF relative to controls. However, the 0% ARG HD group continued to show significant deficits on motor testing (P<0. 05). The 1.2% ARG HD group showed reduced body weight loss, better motor functioning, and fewer changes in CBF compared to the 5% ARG HD group. Immunocytochemistry analysis found greater deposition of nitrotyrosine in the cortex, and vasculature, of HD+ mice, 5% and 1. 2%>0% arginine diets. When collapsed across all conditions, CBF inversely correlated (P<0.05) both with the body weight and motor changes suggesting that changes in CBF are associated with behavioral decline in HD mice. Collectively, these findings indicate that dietary consumption of the NO precursor ARG has a measurable, but complex, effect on symptom progression in HD transgenic mice, and implicates NO in the pathophysiology of HD.  相似文献   

14.
15.
A progressive disintegration of the rest-activity rhythm has been observed in the R6/2 mouse model of Huntington's disease (HD). Rest-activity rhythm is controlled by a circadian clock located in the suprachiasmatic nuclei (SCN) of the hypothalamus, although SCN-independent oscillators such as the methamphetamine (MAP)-sensitive circadian oscillator (MASCO) can also control rhythmicity, even in SCN-lesioned animals. We aimed to test whether or not the administration of MAP could restore a normal rest-activity rhythm in R6/2 mice, via the activation of the MASCO. We administered chronic low doses of MAP to wild-type (WT) and presymptomatic (7-8 weeks) R6/2 mice, in constant darkness. As expected, ~ 40% of the WT mice expressed a rest-activity rhythm controlled by the MASCO, with a period of around 32 h. By contrast, the MASCO was missing from almost 95% of the R6/2 mice, even at early stages of disease. Interestingly, although the MASCO was deficient, initially MAP was able to stabilize the day/night activity ratio in R6/2 mice and delay the onset of disintegration of the rest-activity rhythm driven by the SCN. Furthermore, in presymptomatic R6/2 mice treated with L-DOPA, a MASCO-like component began to emerge, although this never became established. Our data show a major dysfunction of the MASCO in presymptomatic R6/2 mice that is likely to be due to an early abnormality of the catecholaminergic systems. We suggest that the dysfunction of the MASCO in humans could be partially responsible for circadian disturbances observed in HD patients, as well as patients with other neurological diseases in which both catecholaminergic and circadian abnormalities are present, such as Parkinson's disease and schizophrenia.  相似文献   

16.
Ginseng, the root of Panax ginseng C.A. Meyer (Araliaceae), is a widely used herbal medicine. Ginsenosides, the active ingredients of ginseng, are the main components responsible for many beneficial actions of ginseng. In the present study, we tested 10 different ginsenosides in the previously developed in vitro Huntington's disease (HD) assay with primary medium spiny striatal neuronal cultures (MSN) from the YAC128 HD mouse model. We found that nanomolar concentrations of ginsenoside Rb1 and Rc effectively protected YAC128 medium spiny neurons from glutamate‐induced apoptosis and that Rg5 was protective at micromolar concentration. The other seven ginsenosides tested were not effective or exerted toxic effects in MSN cultures. From further experiments, we suggested that neuroprotective effects of ginsenosides Rb1, Rc, and Rg5 could correlate with their ability to inhibit glutamate‐induced Ca2+ responses in cultured MSN. From these results we concluded that ginsenosides Rb1, Rc, and Rg5 offer a potential therapeutic choice for the treatment of HD and possibly other neurodegenerative disorders. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The present investigation examined the neuroprotective benefits for combined trehalose administration with C17.2 neural stem cell transplantation in a transgenic mouse model of Huntington's disease (HD), R6/2. C17.2 neural stem cells have the potential of differentiating into a neuronal phenotype in vitro and have been shown to be effective in the treatment of a variety of lysosomal lipid storage disorders in the nervous system. In this study, we transplanted these cells into the lateral ventricle of R6/2 transgenic mice in order to examine the efficacy of using these cells for correcting the accumulated polyglutamine storage materials in HD. To improve efficacy, animals were fed with a diet rich in trehalose, which has been shown to be beneficial to retard aggregate formation. The combined treatment strategy not only decreased ubiquitin-positive aggregation in striatum, alleviated polyglutamine aggregation formation, and reduced striatal volume, but also extended life span in the R6/2 animal model. Behavioral evaluation showed that the combination treatment improved motor function. Statistical analysis revealed that the combination treatment was more effective than treatment with trehalose alone on the basis of the above biochemical and behavioral criteria. This study provides a strong a basis for further developing an effective therapeutic strategy for HD.  相似文献   

18.
Huntington's disease (HD) is a progressive neurodegenerative genetic disorder that leads to motor, cognitive, and psychiatric disturbances. The primary neuropathological hallmark is atrophy of the striatum. HD preferentially affects efferent striato-pallidal neurons that express enkephalin as well as dopamine D2 and A(2A) adenosine receptors (A(2A)Rs). Expression and function of A(2A)Rs are altered in HD but, despite being an important modulator of the striato-pallidal function, the subsequent pathophysiological consequence of such changes remains unclear. Whether blockade of A(2A)Rs is of therapeutic interest in HD remains ill-defined. In the present work, we aimed to determine the pathophysiological consequences of genetic deletion of A(2A)Rs in HD by crossing A(2A)R knockout mice with the N171-82Q HD transgenic model. Our data demonstrate that knockout of A(2A)Rs moderately but significantly worsens motor performances and survival of N171-82Q mice and leads to a decrease in striatal enkephalin expression. These results support that early and chronic blockade of A(2A)Rs might not be beneficial in HD.  相似文献   

19.
Intrastriatal transplantation of striatal neuroblasts from human fetuses is a promising approach for treatment of Huntington's disease, on the basis of many experimental animal studies and, most recently, pilot clinical trials. Technically, several issues remain to be resolved (e.g., the precise site of dissection of the fetal tissue; the number and location of the fetal striatal implants; or the use of immunosuppressive therapy), and await larger-scale trials and purposely designed protocols. Further clinical data must also be obtained, and preliminary promising results must be replicated in a patient group large enough to provide conclusive results. It is important to establish (1) the amount of clinical benefit provided to the patient by the grafted cells; (2) the anticipated duration of clinical benefits; and (3) the secondary rate of decline after the benefit of the graft has been overbalanced. Evaluation of these parameters will require very long-term follow-up of the patients involved, over several years after grafting, before the technique can eventually be proposed widely to patients.  相似文献   

20.
There is substantial evidence for bioenergetic defects in Huntington's disease (HD). Creatine administration increases brain phosphocreatine levels and it stabilizes the mitochondrial permeability transition. We examined the effects of creatine administration in a transgenic mouse model of HD produced by 82 polyglutamine repeats in a 171 amino acid N-terminal fragment of huntingtin (N171-82Q). Dietary supplementation of 2% creatine significantly improved survival, slowed the development of motor symptoms, and delayed the onset of weight loss. Creatine lessened brain atrophy and the formation of intranuclear inclusions, attenuated reductions in striatal N-acetylaspartate as assessed by NMR spectroscopy, and delayed the development of hyperglycemia. These results are similar to those observed using dietary creatine supplementation in the R6/2 transgenic mouse model of HD and provide further evidence that creatine may exert therapeutic effects in HD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号