首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Hemoglobin is a promising drug carrier but lacks extensive investigation. The chemical conjugation of hemoglobin and drugs is costly and complex, so we have developed curcumin-loaded hemoglobin nanoparticles (CCM-Hb-NPs) via self-assembly for the first time. Using the acid-denaturing method, we avoid introducing denaturants and organic solvents. The nanoparticles are stable with uniform size. We have conducted a series of experiments to examine the interaction of hemoglobin and CCM, including hydrophobic characterization, SDS-PAGE. These experiments substantiate that this self-assembly process is mainly driven by hydrophobic forces. Our nanoparticles achieve much higher cell uptake efficiency and cytotoxicity than free CCM solution in vitro. The uptake inhibition experiments also demonstrate that our nanoparticles were incorporated via the classic clathrin-mediated endocytosis pathway. These results indicate that hemoglobin nanoparticles formed by self-assembly are a promising drug delivery system for cancer therapy.  相似文献   

2.
In the present study, Eudragit S100 coated Citrus Pectin Nanoparticles (E-CPNs) were prepared for the colon targeting of 5-Fluorouracil (5-FU). Citrus pectin also acts as a ligand for galectin-3 receptors that are over expressed on colorectal cancer cells. Nanoparticles (CPNs and E-CPNs) were characterized for various physical parameters such as particle size, size distribution, and shape etc. In vitro drug release studies revealed selective drug release in the colonic region in the case of E-CPNs of more than 70% after 24 h. In vitro cytoxicity assay (Sulphorhodamine B assay) was performed against HT-29 cancer cells and exhibited 1.5 fold greater cytotoxicity potential of nanoparticles compared to 5-FU solution. In vivo data clearly depicted that Eudragit S100 successfully guarded nanoparticles to reach the colonic region wherein nanoparticles were taken up and showed drug release for an extended period of time. Therefore, a multifaceted strategy is introduced here in terms of receptor mediated uptake and pH-dependent release using E-CPNs for effective chemotherapy of colorectal cancer with uncompromised safety and efficacy.  相似文献   

3.
Most drug carriers used in pulmonary administration are microparticles with diameters over 1 µm. Only a few examples involving nanoparticles have been reported because such small particles are readily exhaled. Consequently, the development of microparticles capable of encapsulating nanoparticles and a wide range of compounds for pulmonary drug-delivery applications is an important objective. In this study, we investigated the development of polysaccharide microparticles containing nanoparticles for the temperature-responsive and two-step release of inclusions. The prepared microparticles containing nanoparticles can release two differently charged compounds in a stepwise manner. The particles have two different drug release pathways: one is the release of nanoparticle inclusions from the nanoparticles and the other is the release of microparticle inclusions during microparticle collapse. The nanoparticles can be efficiently delivered deep into the lungs and a wide range of compounds are released in a charge-independent manner, owing to the suitable roughness of the microparticle surface. These polysaccharide microparticles containing nanoparticles are expected to be used as temperature-responsive drug carriers, not only for pulmonary administration but also for various administration routes, including transpulmonary, intramuscular, and transdermal routes, that can release multiple drugs in a controlled manner.  相似文献   

4.
In this work, we designed and fabricated a multifunctional nanocomposite system that consists of chitosan, raspberry-like silver nanoparticles, and graphene oxide. The room temperature atmospheric pressure microplasma (RT-APM) process provides a rapid, facile, and environmentally-friendly method for introducing silver nanoparticles into the composite system. Our composite can achieve a pH controlled single and/or dual drug release. Under pH 7.4 for methyl blue loaded on chitosan, the drug release profile features a burst release during the first 10 h, followed by a more stabilized release of 70–80% after 40–50 h. For fluorescein sodium loaded on graphene oxide, the drug release only reached 45% towards the end of 240 h. When the composite acted as a dual drug release system, the interaction of fluorescein sodium and methyl blue slowed down the methyl blue release rate. Under pH 4, both single and dual drug systems showed a much higher release rate. In addition, our composite system demonstrated strong antibacterial abilities against E. coli and S. aureus, as well as an excellent photothermal conversion effect under irradiation of near infrared lasers. The photothermal conversion efficiency can be controlled by the laser power. These unique functionalities of our nanocomposite point to its potential application in multiple areas, such as multimodal therapeutics in healthcare, water treatment, and anti-microbials, among others.  相似文献   

5.
Vinorelbine tartrate (VLBT), as a kind of high hydrophilic and temperature-induced degradation drug, was prepared into nanoparticles by a desolvation procedure. Bovine serum albumin (BSA), as a drug carrier, was stabilized by chemical cross-linking with glutaraldehyde. Firstly, the optimization process of preparing VLBT-loaded BSA nanoparticles (VLBT-BSANPs) was accomplished using response surface methodology (RSM) by desolvation. Then VLBT-BSANPs were conjugated with folate, namely Fa-BSANPs-VLBT. Hence targeting drug carrier delivery system loading VLBT was produced. In this study, the characteristics of the nanoparticles, such as the amount of folate conjugation, surface morphology, surface chemistry, physical status of VLBT in Fa-BSANPs-VLBT, stability of Fa-BSANPs-VLBT with mannitol and in vitro drug release behavior were all investigated. The VLBT-BSANPs were obtained under optimum conditions, with a mean particle size (MPS) of 155.4 nm and a zeta potential (ZP) of −32.97 mV at a pH value of 5.4. Drug loading efficiency (DLE) and drug entrapment efficiency (DEE) of this obtained drug were approximately 45.6% and 90.6%, respectively.  相似文献   

6.
AimThe aim of this study was to develop glipizide (GPZ) loaded biodegradable nanoparticles by using a biodegradable polymer, poly(d,l-lactic-co-glycolic acid) (PLGA) as a sustained release carrier.Material and MethodsPLGA nanoparticles (PLGA NPs) were prepared by a modified emulsification solvent evaporation technique. Subsequent study shows no interaction of GPZ with PLGA (FT-IR study). Various formulation parameters such as stirring speed (300–3000 rpm), drug:polymer ratio (1:4 to 2:1), with addition of surfactants (0.5%, w/v polyvinyl alcohol/polysorbate-80) were studies for particle size, drug loading, and encapsulation efficiency.ResultThe drug entrapment efficiency, drug loading, particle size and zeta potential were investigated. The surface morphology was characterized by scanning electron microscopy (SEM). Mean particle size of nanoparticles was altered by changing the drug:polymer ratio and stirring speed. Addition of surfactants showed a promise to increase drug loading, encapsulation efficiency, and decreased particle size. The drug release pattern consisted of two phases releasing about 40% (within first 24 h) followed by a slow releasing phase (up to 90%) within next 48 h. The release data was fitted in various kinetic models (zero-order, first-order, and Higuchi's kinetics) indicated a controlled drug release. Accelerated stability studies (ICH guidelines) revealed that the GPZ-loaded nanoparticles were stable at the end of 6 months.ConclusionsThe Controlled release biodegradable nanoparticles can be prepared by selecting the proper processing variables.  相似文献   

7.
Rapid and effective differentiation between normal and cancer cells is an important challenge for the diagnosis and treatment of tumors. Here, we describe an array-based system for identification of normal and cancer cells based on a “chemical nose/tongue” approach that exploits subtle changes in the physicochemical nature of different cell surfaces. Their differential interactions with functionalized nanoparticles are transduced through displacement of a multivalent polymer fluorophore that is quenched when bound to the particle and fluorescent after release. Using this sensing strategy we can rapidly (minutes/seconds) and effectively distinguish (i) different cell types; (ii) normal, cancerous and metastatic human breast cells; and (iii) isogenic normal, cancerous and metastatic murine epithelial cell lines.  相似文献   

8.
Expression of organ-specific antigens on capillary endothelial cells   总被引:20,自引:0,他引:20  
Our central thesis is that the endothelial cells which line capillaries of various organs are not all alike. Using monoclonal and conventional antibodies we demonstrate that capillary endothelial cells express on their cell surface an array of antigens that manifest organ selectivity. Brain-derived endothelial cells possess brain-associated antigens, ovary-derived endothelial cells share antigenic markers with other ovarian cells, and lung-derived endothelium possesses antigens that are primarily expressed on cells of the lung. Our experiments lead us to suggest that organ-associated determinants on the endothelial cell surface may play a role in the selective adhesion of tumor cells during metastasis, in site-limited vascular pathology, and in the regionally limited release of angiogenesis-induced factors.  相似文献   

9.
BACKGROUNDNorcantharidin (NCTD) is suitable for the treatment of primary liver cancer, especially early and middle primary liver cancer. This compound can reduce tumors and improve immune function. However, the side effects of NCTD have limited its application. There is a marked need to reduce the side effects and increase the efficacy of NCTD.AIMTo develop a nanomaterial carrier, NCTD-loaded metal-organic framework IRMOF-3 coated with a temperature-sensitive gel (NCTD-IRMOF-3-Gel), aiming to improve the anticancer activity of NCTD and reduce the drug dose.METHODSNCTD-IRMOF-3-Gel was obtained by a coordination reaction. The apparent characteristics and in vitro release of NCTD-IRMOF-3-Gel were investigated. Cell cytotoxicity assays, flow cytometry, and apoptosis experiments in mouse hepatoma (Hepa1-6) cells were used to determine the anti-liver cancer activity of NCTD-IRMOF-3-Gel in in vitro models.RESULTSThe particle size of NCTD-IRMOF-3-Gel was 50-100 nm, and the particle size distribution was uniform. The release curve showed that NCTD-IRMOF-3-Gel had an obvious sustained-release effect. The cytotoxicity assays showed that the free drug NCTD and NCTD-IRMOF-3-Gel treatments markedly inhibited Hepa1-6 cell proliferation, and the inhibition rate increased with increasing drug concentration. By flow cytometry, NCTD-IRMOF-3-Gel was observed to block the Hepa1-6 cell cycle in the S and G2/M phases, and the thermosensitive gel nanoparticles may inhibit cell proliferation by inducing cell cycle arrest. Apoptosis experiments showed that NCTD-IRMOF-3-Gel induced the apoptosis of Hepa1-6 cells.CONCLUSIONOur results indicated that the NCTD-IRMOF-3-Gel may be beneficial for liver cancer disease treatment.  相似文献   

10.
Polymer-based nanoparticles of tailored size, morphology, and surface properties have attracted increasing attention as carriers for drugs, biomolecules, and genes. By protecting the payload from degradation and maintaining sustained and controlled release of the drug, polymeric nanoparticles can reduce drug clearance, increase their cargo’s stability and solubility, prolong its half-life, and ensure optimal concentration at the target site. The inherent immunomodulatory properties of specific polymer nanoparticles, coupled with their drug encapsulation ability, have raised particular interest in vaccine delivery. This paper aims to review current and emerging drug delivery applications of both branched and linear, natural, and synthetic polymer nanostructures, focusing on their role in vaccine development.  相似文献   

11.
A major question challenging immunobiologists relates to those mechanisms that control the selective movement of cells involved in immune and inflammatory processes at various tissue sites such as the skin. Little is known about those influences that control the selective migration of macrophage-like Langerhans cells (LC) to normal epidermis, where it is uniformly distributed. Mechanistically, this includes the interaction of blood-borne LC precursors with the vascular endothelium of the skin and those factors that control the migration of the LC into the avascular epidermal component of the skin. By using (i) monoclonal antibodies specific for I-region associated Ia antigens found on LC from various inbred strains of animals and (ii) the congenitally athymic (nude) mouse as an immunologically compromised recipient of allografts and selected xenografts, we developed a model system to study the factors that restrict LC migration into the epidermis. Using this model, which excludes the need to lethally x-irradiate graft recipients, we established that: (i) the ingress of LC does not show major histocompatibility complex restriction [LC of the nude host are capable of migrating into the epidermis of allogeneic and certain xenogeneic (rat) skin grafts]; (ii) host LC are incapable of migrating into the epidermis of guinea pig or human skin grafts; (iii) the ingress of host LC into the epidermis of the graft is not accompanied by an overgrowth of the graft by host epidermis; and (iv) LC or LC precursors are capable of dividing in the skin or, alternatively, represent an extremely long-lived cell population. The specificity of this model system provides a powerful tool to help understand many aspects of LC biology. Grafting human skin to the nude mouse not only provides a biologic support system for the graft but also is, by design, a system that is devoid of contaminating circulating precursor cell types. Manipulation of the experimental conditions is quite easy and provides a highly specific means to investigate many parameters of LC function.  相似文献   

12.
Rivastigmine, a reversible cholinesterase inhibitor, is frequently indicated in the management of demented conditions associated with Alzheimer disease. The major hurdle of delivering this drug through the oral route is its poor bioavailability, which prompted the development of novel delivery approaches for improved efficacy. Due to numerous beneficial properties associated with nanocarriers in the drug delivery system, rivastigmine nanoparticles were fabricated to be administer through the intranasal route. During the development of the nanoparticles, preliminary optimization of processing and formulation parameters was done by the design of an experimental approach. The drug–polymer ratio, stirrer speed, and crosslinking time were fixed as independent variables, to analyze the effect on the entrapment efficiency (% EE) and in vitro drug release of the drug. The formulation (D8) obtained from 23 full factorial designs was further coated using Eudragit EPO to extend the release pattern of the entrapped drug. Furthermore, the 1:1 ratio of core to polymer depicted spherical particle size of ~175 nm, % EE of 64.83%, 97.59% cumulative drug release, and higher flux (40.39 ± 3.52 µg.h/cm2). Finally, the intranasal ciliotoxicity study on sheep nasal mucosa revealed that the exposure of developed nanoparticles was similar to the negative control group, while destruction of normal architecture was noticed in the positive control test group. Overall, from the in vitro results it could be summarized that the optimization of nanoparticles’ formulation of rivastigmine for intranasal application would be retained at the application site for a prolonged duration to release the entrapped drug without producing any local toxicity at the mucosal region.  相似文献   

13.
Surface Enhanced Raman Scattering (SERS) active gold nanostars represent an opportunity in the field of bioimaging and drug delivery. The combination of gold surface chemical versatility with the possibility to tune the optical properties changing the nanoparticles shape constitutes a multimodal approach for the investigation of the behavior of these carriers inside living cells. In this work, SERS active star-shaped nanoparticles were functionalized with doxorubicin molecules and covered with immuno-mimetic thiolated polyethylene glycol (PEG). Doxorubicin-conjugate gold nanoparticles show an intense Raman enhancement, a good stability in physiological conditions, and a low cytotoxicity. The strong adsorption of the anticancer drug doxorubicin in close contact with the gold nanostars surface enables their use as SERS tag imaging probes in vivo. Upon laser irradiation of the nanoparticles, a strong SERS signal is generated by the doxorubicin molecules close to the nanostars surface, enabling the localization of the nanoparticles inside the cells. After long time irradiation, the SERS signal drops, indicating the thermally driven delivery of the drug inside the cell. Therefore, the combination of SERS and laser scanning confocal microscopy is a powerful technique for the real-time analysis of drug release in living cells.  相似文献   

14.
There has been progressively heightened interest in the development of targeted nanoparticles (NPs) for differential delivery and controlled release of drugs. Despite nearly three decades of research, approaches to reproducibly formulate targeted NPs with the optimal biophysicochemical properties have remained elusive. A central challenge has been defining the optimal interplay of parameters that confer molecular targeting, immune evasion, and drug release to overcome the physiological barriers in vivo. Here, we report a strategy for narrowly changing the biophysicochemical properties of NPs in a reproducible manner, thereby enabling systematic screening of optimally formulated drug-encapsulated targeted NPs. NPs were formulated by the self-assembly of an amphiphilic triblock copolymer composed of end-to-end linkage of poly(lactic-co-glycolic-acid) (PLGA), polyethyleneglycol (PEG), and the A10 aptamer (Apt), which binds to the prostate-specific membrane antigen (PSMA) on the surface of prostate cancer (PCa) cells, enabling, respectively, controlled drug release, "stealth" properties for immune evasion, and cell-specific targeting. Fine-tuning of NP size and drug release kinetics was further accomplished by controlling the copolymer composition. By using distinct ratios of PLGA-b-PEG-b-Apt triblock copolymer with PLGA-b-PEG diblock copolymer lacking the A10 Apt, we developed a series of targeted NPs with increasing Apt densities that inversely affected the amount of PEG exposure on NP surface and identified the narrow range of Apt density when the NPs were maximally targeted and maximally stealth, resulting in most efficient PCa cell uptake in vitro and in vivo. This approach may contribute to further development of targeted NPs as highly selective and effective therapeutic modalities.  相似文献   

15.
In order to overcome the limitations of current endodontic sealers, especially against resistant bacteria, recent developments in the field of nanotechnology have proved the necessity to reconsider the composition and physico-chemical properties of classical sealers. Nanoparticles with their unique features in terms of small size and high specific surface area, are the best choice for incorporation of antiseptic agents and effective delivery. The aim of our study is to prepare a novel platform for antibacterial drug delivery in dental adhesive systems used in endodontics. For this purpose, multi-walled carbon nanotubes (MWCNTs) encapsulating chlorhexidine (CHX) and colloidal silver nanoparticles (AgNPs) were prepared and incorporated into commercial sealer and investigated in terms of bonding performance to dentin and effectiveness against E. faecalis, S. aureus and Candida albicans, which are responsible for the majority of the failures in endodontic treatments. In this context, the challenges related to the long-term biological effects of CHX/AgNPs loaded MWCNTs are discussed.  相似文献   

16.
Since urinary tract infections (UTIs) are closely associated with oxidative stress, we developed ROS-sensitive nanoparticles for ciprofloxacin (CIP) delivery for inhibition of UTI. Poly(D,L-lactide-co-glycolide) (PLGA)- selenocystamine (PLGA-selenocystamine) conjugates were attached to methoxypoly(ethylene glycol) (PEG) tetraacid (TA) (TA-PEG) conjugates to produce a copolymer (abbreviated as LGseseTAPEG). Selenocystamine linkages were introduced between PLGA and TA to endow reactive oxygen species (ROS) sensitivity to nanoparticles. CIP-incorporated nanoparticles of LGseseTAPEG copolymer were fabricated by W/O/W/W emulsion method. CIP-incorporated nanoparticles responded to H2O2 and then their morphologies were disintegrated by incubation with H2O2. Furthermore, particle size distribution of nanoparticles was changed from mono-modal distribution pattern to multi-modal distribution pattern by addition of H2O2. CIP release from nanoparticles of LGseseTAPEG copolymer was faster in the presence of H2O2 than in the absence of it. In antibacterial study using Escherichia coli (E. coli), free CIP and free CIP plus empty nanoparticles showed dose-dependent inhibitory effect against growth of bacteria while CIP-incorporated nanoparticles have less antibacterial activity compared to free CIP. These results were due to that CIP-incorporated nanoparticles have sustained release properties. When free CIP or CIP-incorporated nanoparticles were introduced into dialysis membrane to mimic in vivo situation, CIP-incorporated nanoparticles showed superior antibacterial activity compared to free CIP. At cell viability assay, nanoparticles of LGseseTAPEG copolymer have no acute cytotoxicity against L929 mouse fibroblast cells and CCD986sk human skin fibroblast cells. We suggest LGseseTAPEG nanoparticles are a promising candidate for CIP delivery.  相似文献   

17.
Atherosclerosis (AS), a chronic arterial disease, is the leading cause of death in western developed countries. Considering its long-term asymptomatic progression and serious complications, the early prevention and effective treatment of AS are particularly important. The unique characteristics of nanoparticles (NPs) make them attractive in novel therapeutic and diagnostic applications, providing new options for the treatment of AS. With the assistance of reactive oxygen species (ROS)-based NPs, drugs can reach specific lesion areas, prolong the therapeutic effect, achieve targeted controlled release and reduce adverse side effects. In this article, we reviewed the mechanism of AS and the generation and removal strategy of ROS. We further discussed ROS-based NPs, and summarized their biomedical applications in scavenger and drug delivery. Furthermore, we highlighted the recent advances, challenges and future perspectives of ROS-based NPs for treating AS.  相似文献   

18.
Chitosan (CS) and chondroitin sulfate (CHS) are natural polymers with demonstrated applicability in drug delivery, while nanoparticles are one of the most explored carriers for transmucosal delivery of biopharmaceuticals. In this work we have prepared CS/CHS nanoparticles and associated for the first time the therapeutic protein insulin. Fluorescein isothiocyanate bovine serum albumin (FITC-BSA) was also used to enable comparison of behaviors regarding differences in molecular weight (5.7 kDa versus 67 kDa). Nanoparticles of approximately 200 nm and positive zeta potential around +20 mV were obtained. These parameters remained stable for up to 1 month at 4 °C. Proteins were associated with efficiencies of more than 50%. The release of FITC-BSA in PBS pH 7.4 was more sustained (50% in 24 h) than that of insulin (85% in 24 h). The biocompatibility of nanoparticles was tested in Calu-3 and A549 cells by means of three different assays. The metabolic assay MTT, the determination of lactate dehydrogenase release, and the quantification of the inflammatory response generated by cell exposure to nanoparticles have indicated an absence of overt toxicity. Overall, the results suggest good indications on the application of CS/CHS nanoparticles in respiratory transmucosal protein delivery, but the set of assays should be widened to clarify obtained results.  相似文献   

19.
We examined the effects of vascular and transpulmonary (Ptp) pressures on endothelial vesicles in nonedematous and edematous dog lungs by transmission electron microscopy (TEM). Edema was defined as a 30% increase in lung weight. Lungs were prepared for TEM by rapid freezing followed by freeze substitution. Using a random sampling procedure, the size and numerical density (Nv) of vesicles was obtained by standard morphometric techniques and the percentage of cytoplasm occupied by vesicles (Vv) calculated. Results show that at Ptp = 5 cm H2O, vascular pressure has no influence on the variables examined in nonedematous and edematous lungs. At Ptp = 25 cm H2O, increases in vascular pressure were associated with significant decreases in the percent cytoplasm occupied by vesicles for both series of experiments. When nonedematous lungs were compared to edematous lungs, we found increases in vesicle size, Nv, and the percentage of endothelial cell cytoplasm occupied by vesicles. The results confirm the increase in vesicles associated with edema. This result does not appear to be due to increased vascular pressure per se, although time related influences could be involved.  相似文献   

20.

Background  

Combination antiretroviral (AR) therapy continues to be the mainstay for HIV treatment. However, antiretroviral drug nonadherence can lead to the development of resistance and treatment failure. We have designed nanoparticles (NP) that contain three AR drugs and characterized the size, shape, and surface charge. Additionally, we investigated the in vitro release of the AR drugs from the NP using peripheral blood mononuclear cells (PBMCs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号