首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
2.
3.
Four rhesus monkeys were surgically implanted with arrays of subcortical electrodes and trained to self-administer rewarding electrical stimulation (ICSS) to the hypothalamus. In all four animals, concurrent electrical stimulation of the CA3 region of uncal anterior hippocampus or of the cortico-medial region of amygdala inhibited hypothalamic ICSS. In two of the four animals, concurrent stimulation of the more posterior hippocampus (CA3) facilitated ICSS. Concurrent stimulation of other areas (including basolateral amygdala, hippocampal CA4 region, internal capsule, optic tract, thalamus, and caudate nucleus) had no effect on hypothalamic ICSS. It is suggested that hypothalamic reinforcement processes may vary according to the parameters of limbic involvement.  相似文献   

4.
Summary Adrenocortical responses, as expressed by changes in plasma corticosterone levels, following ether stress and dorsal hippocampal stimulation, were studied in intact rats and in rats with complete, anterior or posterior hypothalamic deafferentations. Ether stress produced normal responses in all experimental groups. In the three groups with hypothalamic deafferentations, the adrenocortical response following hippocampal stimulation was completely blocked, when compared to intact animals. The results suggest that the hippocampal signal enters the hypothalamus anteriorly, but that caudal propagation and posterior re-entry into the hypothalamus are also essential for the adrenocortical activation by the hippocampus.Supported by US-Israel Binational Foundation grant 1554/78  相似文献   

5.
Li XL  Aou S  Oomura Y  Hori N  Fukunaga K  Hori T 《Neuroscience》2002,113(3):607-615
Leptin is well known to be involved in the control of feeding, reproduction and neuroendocrine functions through its action on the hypothalamus. However, leptin receptors are found in brain regions other than the hypothalamus (including the hippocampus and cerebral cortex) suggesting extrahypothalamic functions. We investigated hippocampal long-term potentiation (LTP) and long-term depression (LTD), and the spatial-memory function in two leptin receptor-deficient rodents (Zucker rats and db/db mice). In brain slices, the CA1 hippocampal region of both strains showed impairments of LTP and LTD; leptin (10(-12) M) did not improve these impairments in either strain. These strains also showed lower basal levels of Ca(2+)/calmodulin-dependent protein kinase II activity in the CA1 region than the respective controls, and the levels did not respond to tetanic stimulation. These strains also showed impaired spatial memory in the Morris water-maze test (i.e. longer swim-path lengths during training sessions and less frequent crossings of the platform's original location in the probe test.From these results we suggest that the leptin receptor-deficient animals show impaired LTP in CA1 and poor spatial memory due, at least in part, to a deficiency in leptin receptors in the hippocampus.  相似文献   

6.
The production and release of the corticosteroids, namely the glucocorticoids and the mineralocorticoids, are regulated by various stimuli, including stress. Previous studies from our laboratory have shown that chronic exposure to stress or to stress levels of glucocorticoids produces atrophy of the apical dendrites of CA3 pyramidal neurons in the hippocampus. This stress-induced dendritic remodeling is blocked by the anti-epileptic drug phenytoin, which suppresses glutamate release, and also by N-methyl-D-aspartate receptor antagonists. These results suggest an interaction between glucocorticoids and excitatory amino acids in the development of stress-induced atrophy of CA3 pyramidal neurons. Since nitric oxide is proposed to play an important role in mediating both the physiological and pathophysiological actions of excitatory amino acids, we examined the regulation of neuronal nitric oxide synthase messenger RNA expression by corticosterone and phenytoin in the rat hippocampus. The expression of neuronal nitric oxide synthase messenger RNA in hippocampal pyramidal neurons and granule neurons of the dentate gyrus was unaffected by 21-day administration of corticosterone (40 mg/kg), phenytoin (40 mg/kg) or the combination of corticosterone and phenytoin. However, in hippocampal interneurons, corticosterone/ phenytoin co-administration led to a significant reduction in neuronal nitric oxide synthase messenger RNA levels when compared with vehicle controls. These results suggest that, during exposure to stress levels of corticosterone, phenytoin inhibits glucocorticoid-induced atrophy of CA3 pyramidal neurons by reducing neuronal nitric oxide synthase expression in hippocampal interneurons. Moreover, these results may provide another example of synaptic plasticity in the hippocampus mediated by nitric oxide synthase.  相似文献   

7.
Stressor or cytokine treatments, such as interleukin-1beta, promote time-dependent alterations of hypothalamic-pituitary-adrenal functioning, including increased arginine vasopressin stores within corticotropin-releasing hormone (CRH) terminals in the external zone of the median eminence. Likewise, we have previously shown that the proinflammatory cytokine, tumor necrosis factor-alpha (TNF-alpha), provoked a time-dependent sensitization of neuroendocrine and brain monoamine activity. To further explore the protracted consequences of TNF-alpha, the present investigation determined whether the cytokine sensitized activity of neuroendocrine regulatory brain regions, as assessed by c-fos expression, and had protracted consequences on amygdaloid CRH, as well as hypothalamic corticotropin secretagogues. Indeed, immunoreactivity for arginine vasopressin and corticotropin-releasing hormone, and their colocalization within cell terminals of the median eminence, varied over time following an initial 4.0-microg tumor necrosis factor-alpha treatment, peaking after 7 days and normalizing within 28 days. Within the central amygdala, a sensitization effect was evident as reflected by increased CRH immunoreactivity, but this effect required re-exposure to the cytokine, unlike the median eminence changes that simply evolved with the passage of time. As well, tumor necrosis factor-alpha provoked a marked sensitization of c-fos staining within the paraventricular nucleus of the hypothalamus, supraoptic nucleus and the central amygdala.From these data we suggest that tumor necrosis factor-alpha influences responsivity of stressor-reactive brain regions and has protracted effects on central neuropeptide expression within the hypothalamus and central amygdala, although the time course for the effects vary across brain regions. Evidently, exposure to tumor necrosis factor-alpha may promote neuroplasticity of brain circuits involved in mediating neuroendocrine, sickness or inflammatory responses. It is suggested that such a sensitization may influence the response to immunological and traumatic insults and may thus be relevant to behavioral pathology.  相似文献   

8.
The role of brain corticotropin-releasing hormone receptors in modulating hypothalamic-pituitary-adrenal and sympathoadrenal responses to acute immobilization stress was studied in conscious rats under central corticotropin-releasing hormone receptor blockade by intracerebroventricular injection of a peptide corticotropin-releasing hormone receptor antagonist. Blood for catecholamines, adrenocorticotropic hormone and corticosterone levels was collected through vascular catheters, and brains were removed at 3 h for in situ hybridization for tyrosine hydroxylase messenger RNA in the locus coeruleus, and corticotropin-releasing hormone and corticotropin-releasing hormone receptor messenger RNA in the hypothalamic paraventricular nucleus. Central corticotropin-releasing hormone receptor blockade reduced the early increases in plasma epinephrine and dopamine, but not norepinephrine, during stress. Immobilization stress increased tyrosine hydroxylase messenger RNA levels in the locus coeruleus by 36% in controls, but not in corticotropin-releasing hormone antagonist-injected rats. In control rats, corticotropin-releasing hormone messenger RNA and type 1 corticotropin-releasing hormone receptor messenger RNA in the paraventricular nucleus increased after stress (P<0.01), and these responses were attenuated by central corticotropin-releasing hormone receptor blockade. In contrast, central corticotropin-releasing hormone antagonist potentiated plasma adrenocorticotropic hormone responses, but slightly attenuated plasma corticosterone responses to stress. The inhibition of plasma catecholamine and locus coeruleus tyrosine hydroxylase messenger RNA responses to stress by central corticotropin-releasing hormone receptor blockade supports the notion that central corticotropin-releasing hormone regulates sympathoadrenal responses during stress. The attenuation of stress-induced corticotropin-releasing hormone and corticotropin-releasing hormone receptor messenger RNA responses by central corticotropin-releasing hormone receptor blockade suggests direct or indirect positive feedback effects of corticotropin-releasing hormone receptor ligands on corticotropin-releasing hormone expression, whereas additional mechanisms potentiate adrenocorticotropic hormone responses at the pituitary level. In addition, changes in neural activity by central corticotropin-releasing hormone are likely to modulate adrenocortical responsiveness during stress.  相似文献   

9.
We have previously demonstrated that an acute pharmacological interruption of the afferent inputs from the hypothalamus to the hippocampus resulted in the blockade of the genesis and spread of intra-amygdala kainate-induced seizure activity in the hippocampus. This finding suggests that a sustained interruption of the hypothalamic stimulative influences may completely prevent amygdaloid seizure-induced hippocampal neuron damage. To test this assumption, we delivered antisense oligodeoxynucleotides (ODNs) against synaptotagmin I, a regulatory protein of the transmitter release machinery, into the hypothalamus by using a Hemagglutinating virus of Japan (HVJ)-liposome-mediated gene transfer technique. Four days prior to the induction of status epilepticus by intra-amygdala injection of kainate, the synaptotagmin I antisense was injected into the supramammillary nucleus (SuM) of the hypothalamus to chronically suppress the stimulative influences to the hippocampus via the reduction of transmitter release. The synaptotagmin I hypothalamic knockdown resulted in the almost complete prevention of seizure-induced damage of hippocampal neurons but not of entorhinal neurons following the kainate-induced amygdaloid seizures. This result suggests that the hypothalamic stimulative influences to the hippocampus have a major contribution to the amygdaloid seizure-induced hippocampal sclerosis, probably via disinhibition mechanism.  相似文献   

10.
Corticotropin-releasing hormone plays a critical role in mediating the stress response. Brain circuits hypothesized to mediate stress include the thalamus, which plays a pivotal role in distributing sensory information to cortical and subcortical structures. In situ hybridization revealed neurons containing corticotropin-releasing hormone messenger RNA in the posterior thalamic nuclear group and the central medial nucleus of the thalamus, which interfaces with the ventral posteromedial nucleus (parvicellular part). These regions are of interest because they process somatosensory and visceral information. In the first experiment, the effect of acute stress on thalamic corticotropin-releasing hormone messenger RNA levels was assessed. Rats restrained for 1 h and killed 1 h later were found to have increased corticotropin-releasing hormone messenger RNA in the posterior thalamic nuclear group. The time course of these changes was examined in a second experiment in which rats were killed immediately or 3 h after restraint. While no changes occurred in the thalamus immediately after restraint, 3 h after restraint, increases in corticotropin-releasing hormone messenger RNA occurred in both the posterior thalamic nuclear group and the central medial-ventral posteromedial nucleus (parvicellular part) of the thalamus. A different pattern of activation was observed in the paraventricular nucleus of the hypothalamus with increased corticotropin-releasing hormone messenger RNA immediately after restraint, but not 1 or 3 h later. In addition to the stress-induced changes, a prominent decrease in baseline thalamic corticotropin-releasing hormone messenger RNA was observed from 1000 to 1300 h.These results show that the thalamus contains corticotropin-releasing hormone messenger RNA that increases after restraint stress, indicating a role for thalamic corticotropin-releasing hormone systems in the stress response. Stress-induced changes in thalamic corticotropin-releasing hormone messenger RNA expression appears to be regulated differently than that in the paraventricular nucleus of the hypothalamus, and may be influenced by diurnal mechanisms.  相似文献   

11.
12.
The forced swim test (FST) has been considered as a pharmacologically valid test of the depressive syndrome in rodents. However, few studies have focused on neurochemical and behavioral responses during FST in both male and female rats. Thus, we investigated certain behavioral and neuroendocrine responses as well as the serotonergic activity after the application of FST in both sexes. Our data show that the duration of immobility was increased in both male and female rats during the 2nd session of the FST. Sex differences are observed in some behavioral responses, such as head swinging that is mostly present in male rats. In female rats FST induced a decrease in serotonergic activity in hippocampus and hypothalamus while in male rats it induced an increase in serotonergic activity in hypothalamus. Corticosterone serum levels were elevated in both sexes. However, hippocampal GR mRNA levels tended to be increased in males and females respectively. Moreover, hypothalamic serotonin (5-HT)1A mRNA levels were decreased in female rats while in male rats hippocampal 5-HT1A mRNA levels were increased. These data have shown that FST induces "depressive like symptoms" in both sexes and provide evidence that sex differences characterize certain behavioral aspects in the FST. Notably, hippocampal and hypothalamic serotonergic activity has been differentially modified in male rats compared with female rats and these neurochemical findings could be relevant to the differentiated expression of 5-HT1A receptor. Hypothalamic-pituitary-adrenal axis activity was also affected by FST application in a sex specific manner. The present results support that FST induced behavioral, neurochemical and neurobiological alterations, which are sex dependent.  相似文献   

13.
The wealth of expression and functional data presented in this overview discloses the homeogene Orthopedia (Otp) as critical for the development of the hypothalamic neuroendocrine system of vertebrates. Specifically, the results depict the up-to-date portrait of the regulation and functions of Otp. The development of neuroendocrine nuclei relies on Otp from fish to mammals, as demonstrated for several peptide and hormone releasing neurons. Additionally, the activity of Otp is essential for the induction of the dopaminergic phenotype in the hypothalamus of vertebrates. Recent insights into the pathways required for Otp regulation have revealed the implication of the main extracellular signals acting during hypothalamic development. Alterations in these pathways are involved in several neuronal disorders, and the resultant downstream misregulation of Otp might impair the development of the hypothalamus, and be therefore responsible for the neuroendocrine dysfunctions that typify these diseases. Developmental Dynamics 237:2295-2303, 2008. (c) 2008 Wiley-Liss, Inc.  相似文献   

14.
We have investigated with histochemical techniques the expression of peptides and other neurochemical markers in the hypothalamus and olfactory bulb of male mice, in which the genes encoding the alpha and beta thyroid hormone receptors (TRalpha1, TRbeta1 and TRbeta2) have been deleted. Thyrotropin-releasing hormone messenger RNA levels were increased in the hypothalamic paraventricular nucleus and in the medullary raphe nuclei of mutant mice lacking the thyroid hormone receptors alpha1 and beta (alpha1(-/-)beta(-/-)), as compared to wild-type mice. In contrast, galanin messenger RNA levels were lower in the hypothalamic paraventricular nucleus of mutant animals, as was galanin-like immunoreactivity in the internal layer of the median eminence. Substance P messenger RNA levels were unchanged in the medullary raphe nuclei. Thyrotropin-releasing hormone receptor messenger RNA levels were increased in motoneurons, unchanged in the subiculum, and lower in the amygdala of mutant animals. Galanin messenger RNA levels were unchanged in the hypothalamic dorsomedial and arcuate nuclei of the thyroid hormone receptor alpha1(-/-)beta(-/-) mice, as was the immunocytochemistry for oxytocin and for vasopressin in the hypothalamic paraventricular nucleus. A reduction in tyrosine hydroxylase messenger RNA levels was found in the arcuate nucleus of mutant mice. In the olfactory bulb, immunohistochemistry for calbindin and for tyrosine hydroxylase revealed a reduction in the intensity of labeling of nerve processes in the glomerular layer of thyroid hormone receptor alpha1(-/-)beta(-/-) mice. The tyrosine hydroxylase messenger RNA levels were also slightly reduced. In contrast, the levels of galanin and neuropeptide Y messenger RNA in this region were unchanged in thyroid hormone receptor alpha1(-/-)beta(-/-) mice as compared to wild-type mice.Together these studies reveal many regional and neurochemically selective alterations in neuronal phenotype of mice devoid of all known thyroid hormone receptors.  相似文献   

15.
The steroid hormone vitamin D has important biological roles in calcium transport, cell growth, and cell differentiation. Its cellular activities are mediated by high affinity interaction with the vitamin D receptor. In brain, autoradiographic, immunohistologic, and messenger RNA expression studies implicate a number of neuronal systems, including the hippocampus, as potential targets of vitamin D. However, cellular distribution and protein expression, and binding of the receptor to vitamin D response elements have yet to be established in hippocampus. This investigation was undertaken to characterize the vitamin D receptor in rat hippocampus with western blot, immunocytochemistry, and gel shift analyses. The presence of the receptor protein in hippocampus extracts was revealed with western blotting using an anti-rat vitamin D receptor antiserum. In vivo and in vitro immunocytochemical results confirmed the presence of vitamin D receptor in neuronal and glial cells. In the hippocampus, the receptor was localized in pyramidal and granule cell layers, CA1, CA2, and CA3 subfields and in the dentate gyrus. Double labeling for the vitamin D receptor and glial fibrillary acidic protein revealed that glia also expressed the receptor protein. Gel shift analyses evaluated with the murine osteopontin vitamin D response element indicated a specific, bound receptor-containing complex from hippocampal extracts. Altogether, these findings clearly document the localization of vitamin D receptor in rat hippocampus and that hippocampus contains vitamin D receptors capable of specifically binding to DNA. In combination with reports of a neuroprotective role for vitamin D in hippocampal cell survival, these data suggest that the endogenous vitamin D receptor may mitigate processes related to cellular homeostasis, perhaps through a calcium buffering mechanism.  相似文献   

16.
17.
Psychophysiological stress has been shown to increase 70,000 mol. wt heat shock protein messenger RNAs with northern blotting in rats. However, its localization is unknown. With in situ hybridization, we tested our hypothesis that restraint water-immersion stress may induce heat shock cognate protein 70 messenger RNA expression simultaneously with some morphological changes selectively in the hippocampus of rats. Stress for 6 h significantly increased heat shock cognate protein 70 messenger RNAs in the hippocampus, with maximal intensity in the CA3 subfield of the Ammon's horn and to a lesser extent in CA2. Stress for 12 h significantly increased heat shock cognate protein 70 messenger RNAs in the whole hemisphere including the cerebral cortex, the thalamus, the hypothalamus, and the hippocampus with the highest density in CA3. Heat shock cognate protein 70 messenger RNA in rats with stress for 6 h followed by recovery for 6 h significantly increased at CA3 and CA2 compared with the controls or rats stressed for 6 h without recovery. No overt histological changes were detected in neuronal or glial cells in the slides of hematoxylin-eosin or Cresyl Violet staining. These results show that psychophysiological stress induces heat shock cognate protein 70 messenger RNA in the most stress-vulnerable brain structure, hippocampal CA3, probably for cytoprotection.  相似文献   

18.
Mechanisms regulating the expression of brain-derived neurotrophic factor, a member of the neurotrophin family, have been extensively studied in the rat cerebral cortex, hippocampus and cerebellum. In contrast, little is known regarding the regulation of this growth factor in the hypothalamus. Here we present an analysis of the regulation of brain-derived neurotrophic factor messenger RNA levels in chick embryo hypothalamic slice cultures following exposure to potassium chloride, glutamate agonists and sex steroids. Following a week in chemically-defined media the tissue was depolarized by exposure to 50 mM potassium chloride for 6h, resulting in a significant 4.2-fold increase in the level of brain-derived neurotrophic factor messenger RNA. This result is consistent with studies of other brain regions. Similar 6-h acute exposures of the hypothalamic cultures to 25 microM N-methyl-D-aspartic acid, 25 microM kainic acid and 25 microM alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid also significantly increased messenger RNA levels 2.5-, 2.1- and 1.4-fold, respectively. It was previously reported that brain-derived neurotrophic factor levels within the rat cerebral cortex, olfactory bulb and hippocampus are altered by exposure to 17beta-estradiol. Here we show that in hypothalamic slice cultures neither acute nor chronic treatments with 10 and 100 nM 17beta-estradiol and 10nM testosterone significantly altered the steady-state level of this growth factor.These findings show that neuronal activity, induced by glutamate agonists and potassium chloride, can regulate brain-derived neurotrophic factor messenger RNA levels within embryonic hypothalamic slice cultures. This regulation could play a critical role in the modulation of programmed cell death and synaptic maturation during development of the hypothalamus.  相似文献   

19.
The paraventricular nucleus of the hypothalamus contains a number of intermingled populations of neuroendocrine cell groups involved in the hormonal stress response, including cells synthesizing corticotropin-releasing hormone and oxytocin. Ascending noradrenergic afferents to the paraventricular nucleus, acting through alpha1 adrenergic receptors, are thought to play a role in stress-induced activation of the hypothalamic-pituitary-adrenal axis. We have previously demonstrated that, of the three known alpha1 adrenergic receptor subtypes, messenger RNA for the alpha1D subtype is the most prominently expressed in the paraventricular nucleus. Thus, regulation of the expression of this receptor may be important in modulation of the stress response. It is currently unknown, however, which populations of stress-related neuroendocrine cells in the paraventricular nucleus express alpha1 receptors, or whether the excitatory influence of norepinephrine in stress is exerted directly on neurons expressing oxytocin or corticotropin-releasing hormone. Thus, in the present study, we used dual in situ hybridization, combining a digoxigenin-labeled riboprobe encoding the rat alpha1D adrenergic receptor with radiolabeled riboprobes for oxytocin or corticotropin-releasing hormone, to determine the degree to which these neurons in the paraventricular nucleus express alpha1D adrenergic receptors. In sections through the rostral and mid-level paraventricular nucleus, nearly all (>95%) oxytocin neurons also expressed alpha1D messenger RNA. In contrast, the populations of corticotropin-releasing hormone- and alpha1D-expressing cells overlapped only partially, with most alpha1D expression situated more laterally. A subset (37%) of the neurons expressing corticotropin-releasing hormone also expressed alpha1D messenger RNA, and these were found almost entirely within the region of overlap in the lateral aspect of the medial parvocellular region. These observations support a direct role for alpha1 receptors in regulation of oxytocin secretion. Expression of alpha1D messenger RNA in distinct subsets of cells synthesizing corticotropin-releasing hormone may also help to clarify contradictory and inconsistent observations in the literature regarding the role of norepinephrine in the stress response, and may account for a presumed stressor-specific role for norepinephrine in activation of the hypothalamic-pituitary-adrenal axis.  相似文献   

20.
After experimental traumatic brain injury (TBI), widespread neuronal loss is progressive and continues in selectively vulnerable brain regions, such as the hippocampus, for months to years after the initial insult. To clarify the molecular mechanisms underlying secondary or delayed cell death in hippocampal neurons after TBI, we compared long-term changes in gene expression in the CA1, CA3 and dentate gyrus (DG) subfields of the rat hippocampus at 24 h and 3, 6, and 12 months after TBI with changes in gene expression in sham-operated rats. We used laser capture microdissection to collect several hundred hippocampal neurons from the CA1, CA3, and DG subfields and linearly amplified the nanogram samples of neuronal RNA with T7 RNA polymerase. Subsequent quantitative analysis of gene expression using ribonuclease protection assay revealed that mRNA expression of the anti-apoptotic gene, Bcl-2, and the chaperone heat shock protein 70 was significantly downregulated at 3, 6 (Bcl-2 only), and 12 months after TBI. Interestingly, the expression of the pro-apoptotic genes caspase-3 and caspase-9 was also significantly decreased at 3, 6 (caspase-9 only), and 12 months after TBI, suggesting that long-term neuronal loss after TBI is not mediated by increased expression of pro-apoptotic genes. The expression of two aging-related genes, p21 and integrin beta3 (ITbeta3), transiently increased 24 h after TBI, returned to baseline levels at 3 months and significantly decreased below sham levels at 12 months (ITbeta3 only). Expression of the gene for the antioxidant glutathione peroxidase-1 also significantly increased 6 months after TBI. These results suggest that decreased levels of neuroprotective genes may contribute to long-term neurodegeneration in animals and human patients after TBI. Conversely, long-term increases in antioxidant gene expression after TBI may be an endogenous neuroprotective response that compensates for the decrease in expression of other neuroprotective genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号