首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: To evaluate the relationships between alcohol intake and serum lipoprotein(a) [Lp(a)], a powerful predictor of organ damage, in patients with essential hypertension with a wide range of alcohol intake, and to investigate whether the association between alcohol intake and serum Lp(a) concentrations occurs over the entire spectrum of apo(a) phenotypes. DESIGN: Cross-sectional study of a case series. SETTING: University medical centre. PATIENTS: Four hundred and two patients with untreated essential hypertension recruited at a hypertension clinic. MAIN OUTCOME MEASURES: Serum Lp(a) concentrations, apo(a) isoforms, alcohol consumption, smoking habits and cardiovascular status. RESULTS: No difference in Lp(a) concentrations was observed between teetotalers and occasional drinkers. Light drinkers (1-20 g/day ethanol), moderate drinkers (21-50 g/day), and heavy drinkers (> 50 g/day) had, respectively, 21, 26 and 57% lower median Lp(a) concentrations than teetotalers and occasional drinkers. Similar findings were obtained when male and female patients were analysed separately. Log Lp(a) concentrations were inversely and independently correlated with alcohol consumption in both men and women with hypertension. The frequency distributions of apo(a) isoforms and liver function parameters were comparable across the different alcohol intake groups. Patients with evidence of cardiovascular damage had greater concentrations of serum Lp(a) and higher frequency of low-molecular weight apo(a) isoforms as compared with patients without such evidence. CONCLUSIONS: Serum Lp(a) is inversely and dose-dependently related with alcohol intake in patients with hypertension, and this relationship is independent of the size distribution of apo(a) isoforms. Reduction of Lp(a) concentrations by regular consumption of alcohol might favourably affect the atherosclerotic risk profile of patients with hypertension and thereby decrease cardiovascular morbidity.  相似文献   

2.
Elevated levels of lipoprotein(a) [Lp(a)] and the presence of small isoforms of apolipoprotein(a) [apo(a)] have been associated with coronary artery disease (CAD) in whites but not in African Americans. Because of marked race/ethnicity differences in the distribution of Lp(a) levels across apo(a) sizes, we tested the hypothesis that apo(a) isoform size determines the association between Lp(a) and CAD. We related Lp(a) levels, apo(a) isoforms, and the levels of Lp(a) associated with different apo(a) isoforms to the presence of CAD (>/=50% stenosis) in 576 white and African American men and women. Only in white men were Lp(a) levels significantly higher among patients with CAD than in those without CAD (28.4 versus 16.5 mg/dL, respectively; P:=0.004), and only in this group was the presence of small apo(a) isoforms (<22 kringle 4 repeats) associated with CAD (P:=0.043). Elevated Lp(a) levels (>/=30 mg/dL) were found in 26% of whites and 68% of African Americans, and of those, 80% of whites but only 26% of African Americans had a small apo(a) isoform. Elevated Lp(a) levels with small apo(a) isoforms were significantly associated with CAD (P:<0.01) in African American and white men but not in women. This association remained significant after adjusting for age, diabetes mellitus, smoking, hypertension, HDL cholesterol, LDL cholesterol, and triglycerides. We conclude that elevated levels of Lp(a) with small apo(a) isoforms independently predict risk for CAD in African American and white men. Our study, by determining the predictive power of Lp(a) levels combined with apo(a) isoform size, provides an explanation for the apparent lack of association of either measure alone with CAD in African Americans. Furthermore, our results suggest that small apo(a) size confers atherogenicity to Lp(a).  相似文献   

3.
The increased risk for ischemic heart disease (IHD) associated with subclinical hypothyroidism (SH) has been partly attributed to dyslipidemia. There is limited information on the effect of SH on lipoprotein (a) [Lp(a)], which is considered a significant predictor of IHD. Serum Lp(a) levels are predominantly regulated by apolipoprotein [apo(a)] gene polymorphisms. The aim of our study was to evaluate the Lp(a) levels and apo(a) phenotypes in patients with SH compared to healthy controls as well as the influence of levothyroxine substitution therapy on Lp(a) values in relation to the apo(a) isoform size. Lp(a) levels were measured in 69 patients with SH before and after restoration of a euthyroid state and in 83 age- and gender-matched healthy controls. Apo(a) isoform size was determined by sodium dodecyl sulfate (SDS) agarose gel electrophoresis followed by immunoblotting and development via chemiluminescence. Patients with SH exhibited increased Lp(a) levels compared to controls (median value 10.6 mg/dL vs. 6.0 mg/dL, p = 0.003]), but this was not because of differences in the frequencies of apo(a) phenotypes. There was no association between thyrotropin (TSH) and Lp(a) levels in patients with SH. In subjects with either low (LMW; 25 patients and 28 controls) or high (HMW; 44 patients and 55 controls) molecular weight apo(a) isoforms, Lp(a) concentrations were higher in patients than in the control group (median values 26.9 mg/dL vs. 21.8 mg/dL, p = 0.02 for LMW, and 6.0 mg/dL versus 3.3 mg/dL, p < 0.001 for HMW). Levothyroxine treatment resulted in an overall reduction of Lp(a) levels (10.6 mg/dL baseline vs. 8.9 mg/dL posttreatment, p = 0.008]). This effect was mainly evident in patients with LMW apo(a) isoforms associated with high baseline Lp(a) concentrations (median values 26.9 mg/dL vs. 23.2 mg/dL pretreatment and posttreatment, respectively; p = 0.03). In conclusion, even though a causal effect of thyroid dysfunction on Lp(a) was not clearly demonstrated in patients with SH, levothyroxine treatment is beneficial, especially in patients with increased baseline Lp(a) levels and LMW apo(a) isoforms.  相似文献   

4.
BACKGROUND AND AIM: In addition to high serum cholesterol levels, various cardiovascular risk factors may be involved in the development of coronary heart disease (CHD) in hypercholesterolemic subjects. As the levels of lipoprotein(a) [Lp(a)], an important and independent cardiovascular risk factor, are high in polygenic hypercholesterolemia (PH), we investigated plasma Lp(a) levels and apolipoprotein(a) [apo(a)] phenotypes in relation to occurrence of CHD events in PH patients. METHODS AND RESULTS: Lp(a) levels and apo(a) isoforms were determined in 191 PH patients, 83 normocholesterolemic subjects with CHD, and 94 normocholesterolemic controls without CHD. Lp(a) levels were similar in the hypercholesterolemic subjects with (n=100) or without CHD (n=91): 21.4 (range 6.6-59.23) vs 18.5 (range 5.25-57.25) mg/dL (p=NS). Low molecular weight apo(a) isoforms were more prevalent (55%) in the PH patients with CHD, whereas high molecular weight apo(a) isoforms were more prevalent (62.6%) in those without CHD: this difference was significant (p<0.05). A stepwise multiple-discriminant analysis made in order to determine the independence of common cardiovascular risk factors, Lp(a) levels and low molecular weight apo(a) isoforms in predicting CHD among hypercholesterolemic subjects showed that the presence of a positive family history of CHD, smoking, age, and the presence of at least one apo(a) isoform of low molecular weight were independently associated with CHD. CONCLUSIONS: Despite high Lp(a) levels, our findings do not support the hypothesis that Lp(a) plays an independent role in determining clinical CHD in PH subjects. However, the presence of at least one low molecular weight apo(a) isoform is an independent genetic predictor of CHD in hypercholesterolemic subjects. Together with other cardiovascular risk factors, apo(a) phenotypes should be assessed to evaluate the overall CHD risk status of all subjects with high serum cholesterol levels.  相似文献   

5.
The purpose of this study was to evaluate whether high levels and small isoforms of lipoprotein (a) [Lp(a)] are markers of risk of early myocardial infarction and markers of the severity of coronary atherosclerosis. Lp(a) levels and small apo(a) isoforms were higher in 222 patients than in 199 controls (p<0.001). In patients, Lp(a)> or =30 mg/dL was associated with the presence of coronary lesions (p=0.007) and the severity of coronary atherosclerosis (p=0.002). The present study suggests that Lp(a) levels and small isoforms are markers of early myocardial infarction and that Lp(a) levels > or =30 mg/dL are associated with severe patterns of coronary atherosclerosis.  相似文献   

6.
Plasma lipoprotein(a) [Lp(a)] levels are largely genetically determined by sequences linked to the gene encoding apolipoprotein(a) [apo(a)], the distinct protein component of Lp(a). Apo(a) is highly polymorphic in length due to variation in the numbers of a sequence encoding the apo(a) kringle 4 domain, and plasma levels of Lp(a) are inversely correlated with apo(a) size. In 2 racially homogeneous Bantu populations from Tanzania differing in their dietary habits, we found that median plasma levels of Lp(a) were 48% lower in those living on a fish diet than in those living on a vegetarian diet. Considering the relationship between apo(a) size and Lp(a) plasma concentration, we have extensively evaluated apo(a) isoform distribution in the 2 populations to determine the impact of apo(a) size in the determination of Lp(a) values. The majority of individuals (82% of the fishermen and 80% of the vegetarians) had 2 expressed apo(a) alleles. Additionally, the fishermen had a high frequency of large apo(a) isoforms, whereas a higher frequency of small isoforms was found in the vegetarians. When subjects from the 2 groups were matched for apo(a) phenotype, the median Lp(a) value was 40% lower in Bantus on the fish diet than in those on the vegetarian diet. A significant inverse relationship was also found between plasma n-3 polyunsaturated fatty acids and Lp(a) levels (r=-0.24, P=0.01). The results of this study are consistent with the concept that a diet rich in n-3 polyunsaturated fatty acids, and not genetic differences, is responsible for the lower plasma levels of Lp(a) in the fish-eating Bantus and strongly suggest that a sustained fish-based diet is able to lower plasma levels of Lp(a).  相似文献   

7.
A high serum lipoprotein(a) [Lp(a)] level, which is genetically determined by apolipoprotein(a) [apo(a)] size polymorphism, is an independent risk factor for coronary atherosclerosis. However, the associations among Lp(a) levels, apo(a) phenotypes, and myocardial infarction (MI) have not been studied. Patients with MI (cases, n = 101, M/F: 86/15, age: 62+/-10y) and control subjects (n = 92, M/F: 53/39, age: 58+/-14y) were classified into quintile groups (Groups I to V) according to Lp(a) levels. Apo(a) isoform phenotyping was performed by a sensitive, high-resolution technique using sodium dodecyl sulfate-agarose/gradient polyacrylamide gel electrophoresis (3-6%), which identified 26 different apo(a) phenotypes, including a null type. Groups with higher Lp(a) levels (Groups II, III, and V) had higher percentages of MI patients than that with the lowest Lp(a) levels (Group I) (54%, 56%, or 75% vs. 32%, p<0.05). Groups with different Lp(a) levels had different frequency distributions of apo(a) isoprotein phenotypes: Groups II, III, IV, and V, which had increasing Lp(a) levels, had increasingly higher percentages of smaller isoforms (A1-A4, A5-A9) and decreasingly lower percentages of large isoforms (A10-A20, A21-A25) compared to Group I. An apparent inverse relationship existed between Lp(a) and the apo(a) phenotype. Subjects with the highest Lp(a) levels (Group V) had significantly (p<0.05) higher serum levels of total cholesterol, apo B, and Lp(a). Patients with MI and the controls had different distributions of apo(a) phenotypes: i.e., more small isoforms and more large size isoforms, respectively (A1-A4/A5-A9/A10-A20/A21-A25: 35.7%/27.7%/20.8%/15.8% and 22.8%/23.9%/29.4%/23.9%, respectively). Lp(a) (parameter estimate +/- standard error: 0.70+/-0.20, Wald chi2 = 12.4, p = 0.0004), apo(a) phenotype (-0.43+/-0.15, Wald chi2 = 8.17, p = 0.004), High-density lipoprotein-cholesterol, apo A-I, and apo B were significantly associated with MI after adjusting for age, gender, and conventional risk factors, as assessed by a univariate logistic regression analysis. The association between Lp(a) and MI was independent of the apo(a) phenotype, but the association between the apo(a) phenotype and MI was not independent of Lp(a), as assessed by a multivariate logistic regression analysis. This association was not influenced by other MI- or Lp(a)-related lipid variables. These results suggest that apo(a) phenotype contributes to, but does not completely explain, the increased Lp(a) levels in MI. A stepwise logistic regression analysis with and without Lp(a) in the model identified Lp(a) and the apo(a) phenotype as significant predictors for MI, respectively.  相似文献   

8.
High levels of plasma lipoprotein(a) [Lp(a)] represent an independent risk factor for cardiovascular morbidity; however, Lp(a) has not yet been identified as a risk factor for type 1 diabetic patients. Results from the limited number of available studies on plasma Lp(a) levels in relation to renal function in type 1 diabetes mellitus are inconclusive. We hypothesized that only type 1 diabetes mellitus patients with impaired renal function show increased plasma Lp(a) levels, due to decreased urinary apolipoprotein(a) [apo(a)] excretion. We therefore measured urinary apo(a) levels in 52 type 1 diabetes mellitus patients and 52 matched controls, and related the urinary apo(a) concentration to the plasma Lp(a) level, kidney function, and metabolic control. Our findings indicate that patients with incipient diabetic nephropathy as evidenced by microalbuminuria (20 to 200 microg/min) exhibit significantly higher plasma Lp(a) levels (median, 15.6 mg/dL) in comparison to normoalbuminuric patients (median, 10.3 mg/dL) and healthy controls (median, 12.0 mg/dL). Urinary apo(a) normalized to creatinine excretion was significantly elevated in both normoalbuminuric (median, 22.3 microg/dL) and microalbuminuric type 1 diabetic patients (median, 29.1 microg/dL) compared with healthy subjects (median, 16.0 microg/dL) and correlated significantly with Lp(a) plasma levels in both patient and control groups (P < .003). No correlation existed between the Lp(a) plasma level or urinary apo(a) concentration and metabolic control in type 1 diabetes mellitus patients. From these studies, we conclude that urinary apo(a) excretion is significantly increased in type 1 diabetic patients and correlates with plasma Lp(a) levels, and only type 1 diabetic patients with microalbuminuria have higher plasma levels of Lp(a) compared with patients with normoalbuminuria and healthy controls.  相似文献   

9.
INTRODUCTION: Cardio- and/or cerebro-vascular risk are associated with high lipoprotein (a) [Lp(a)] levels and low-molecular-weight (LMW) apo(a) isoforms. Aims of this study were to evaluate the deposition of apo(a) isoforms and apoprotein B (apo B) in atherosclerotic plaque from patients (males and females) who had carotid endarterectomy for severe stenosis, and to identify differences between patients classified by gender and divided according to the stability or instability of their plaques. MATERIALS AND METHODS: We determined lipids, apo B and Lp(a) in serum and plaque extracts from 55 males and 25 females. Apo(a) was phenotyped and isoforms were classified by number of kringle IV (KIV) repeats. RESULTS: Lp(a) levels were higher in female serum and plaque extracts than in male samples, while apo B levels were lower. More Lp(a) than apo B deposition was observed in plaque after normalization for serum levels. Thirty-one different apo(a) isoforms were detected in our patients, with a double band phenotype in 94% of cases. In both sexes, the low/high (L/H) molecular weight apo(a) isoform expression ratio was significantly higher in plaque than in serum. Females with unstable plaques had higher Lp(a) levels in both serum and tissue extracts, and fewer KIV repeats of the principal apo(a) isoform in the serum than the other female group or males. CONCLUSIONS: In both sexes, the same apo(a) isoforms are found in serum and atherosclerotic plaque, but in different proportions: in plaque, LMW apo(a) is almost always more strongly accumulated than HMW apo(a), irrespective of any combination of apo(a) isoforms in double band phenotypes or Lp(a) serum levels. Moreover, serum and tissue Lp(a) levels were higher in females than in males, and particularly in the group with unstable plaques.  相似文献   

10.
Serum apolipoprotein (apo) E levels and its relationship to lipids and lipoprotein cholesterol fractions were examined in a random subsample (n = 561) of children and adolescents (7 to 17 years of age) from a total biracial community. Mean (+/- SD) levels of apo E were higher in blacks (males 4.8 +/- 1.8 mg/dL; females 5.2 +/- 1.8 mg/dL) than in whites (males 3.9 +/- 1.2 mg/dL; females 4.3 +/- 1.0 mg/dL) irrespective of sex (P less than .001). The black-white difference in apo E persisted after controlling for the covariates: sexual maturation, age, adiposity, cigarette smoking, alcohol use, and oral contraceptive use (P less than .001). A sex differential (females greater than males, P less than .01) for apo E was seen in both racial groups. Apo E levels were inversely associated with age (P less than .01) and sexual maturation (P less than .05) only in white males. Apo E related positively and significantly to total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol fractions (HDL2-C and HDL3-C) in certain race-sex groups. Race, HDL2-C, triglycerides (very-low density lipoprotein cholesterol), HDL3-C, and sex were identified as predictor variables for apo E, in that order, and accounted for 21% of its variability in serum. It is conceivable that the observed race-sex differences in apo E may be related to apo E-HDL subfraction, which is thought to participate in the reverse cholesterol transport.  相似文献   

11.
Lipoprotein (a) [Lp(a)], is present only in humans, Old World nonhuman primates, and the European hedgehog. Lp(a) has many properties in common with low-density lipoprotein (LDL) but contains a unique protein, apo(a), which is structurally different from other apolipoproteins. The size of the apo(a) gene is highly variable, resulting in the protein molecular weight ranging from 300 to 800 kDa; this large variation may be caused by neutral evolution in the absence of any selection advantage. Apo(a) influences to a major extent metabolic and physicochemical properties of Lp(a), and the size polymorphism of the apo(a) gene contributes to the pronounced heterogeneity of Lp(a). There is an inverse relationship between apo(a) size and Lp(a) levels; however, this pattern is complex. For a given apo(a) size, there is a considerable variation in Lp(a) levels across individuals, underscoring the importance to assess allele-specific Lp(a) levels. Further, Lp(a) levels differ between populations, and blacks have generally higher levels than Asians and whites, adjusting for apo(a) sizes. In addition to the apo(a) size polymorphism, an upstream pentanucleotide repeat (TTTTA(n)) affects Lp(a) levels. Several meta-analyses have provided support for an association between Lp(a) and coronary artery disease, and the levels of Lp(a) carried in particles with smaller size apo(a) isoforms are associated with cardiovascular disease or with preclinical vascular changes. Further, there is an interaction between Lp(a) and other risk factors for cardiovascular disease. The physiological role of Lp(a) is unknown, although a majority of studies implicate Lp(a) as a risk factor.  相似文献   

12.
Lipoprotein(a) in homozygous familial hypercholesterolemia   总被引:2,自引:0,他引:2  
Lipoprotein(a) [Lp(a)] is a quantitative genetic trait that in the general population is largely controlled by 1 major locus-the locus for the apolipoprotein(a) [apo(a)] gene. Sibpair studies in families including familial defective apolipoprotein B or familial hypercholesterolemia (FH) heterozygotes have demonstrated that, in addition, mutations in apolipoprotein B and in the LDL receptor (LDL-R) gene may affect Lp(a) plasma concentrations, but this issue is controversial. Here, we have further investigated the influence of mutations in the LDL-R gene on Lp(a) levels by inclusion of FH homozygotes. Sixty-nine members of 22 families with FH were analyzed for mutations in the LDL-R as well as for apo(a) genotypes, apo(a) isoforms, and Lp(a) plasma levels. Twenty-six individuals were found to be homozygous for FH, and 43 were heterozygous for FH. As in our previous analysis, FH heterozygotes had significantly higher Lp(a) than did non-FH individuals from the same population. FH homozygotes with 2 nonfunctional LDL-R alleles had almost 2-fold higher Lp(a) levels than did FH heterozygotes. This increase was not explained by differences in apo(a) allele frequencies. Phenotyping of apo(a) and quantitative analysis of isoforms in family members allowed the assignment of Lp(a) levels to both isoforms in apo(a) heterozygous individuals. Thus, Lp(a) levels associated with apo(a) alleles that were identical by descent could be compared. In the resulting 40 allele pairs, significantly higher Lp(a) levels were detected in association with apo(a) alleles from individuals with 2 defective LDL-R alleles compared with those with only 1 defective allele. This difference of Lp(a) levels between allele pairs was present across the whole size range of apo(a) alleles. Hence, mutations in the LDL-R demonstrate a clear gene-dosage effect on Lp(a) plasma concentrations.  相似文献   

13.
BACKGROUND AND AIM: Insulin resistance/hyperinsulinemia are often associated with aging and could play an important role in the development of glucose intolerance and dyslipidemia in the elderly. We investigated the relationship between plasma fasting insulin with total cholesterol (TC) and low density lipoprotein LDL cholesterol (LDL-C), triglycerides (TG), lipoprotein(a) [Lp(a)] levels apolipoprotein (a) [apo (a)] isoforms in 100 free-living "healthy" octo-nonagenarians. METHODS AND RESULTS: Fasting insulin was positively correlated with TG, whereas a negative relation was found with TC and LDL-C (r = -0.29 and r = -0.28 respectively; p < 0.01), LDL-C/apo B, HDL-C and apo A-I levels. Fasting insulin was also inversely correlated with Lp(a) levels (r = -0.22; p < 0.03), whereas the latter were significantly related with TC and LDL-C (r = 0.30 and r = 0.31; p < 0.005), TG (r = 0.21; p < 0.05) and apo B (r = 0.26; p < 0.02). There was a negative relation between Lp(a) levels and apo(a) isoforms: the greater the apo(a) molecular weight, the lower the Lp(a) level (p < 0.0001). Fasting insulin increased with apo(a) size, though the difference in insulin levels among apo(a) isoforms was not significant (p = 0.4). Multiple regression analysis showed that fasting insulin was the best predictor of LDL-C (R2 = 0.14; p = 0.002) irrespective of age, gender, BMI, waist circumference and TG, while apo(a) isoform size, BMI and waist circumference were related with Lp(a) irrespective of TC and LDL-C, TG and apo B (R2 = 0.35 to 0.37; p < 0.0001). CONCLUSIONS: These results suggest that fasting insulin levels significantly influence LDL-C metabolism in old age. Lp(a) levels seem to be very strongly related to genetic background, although an indirect relation with insulin through adiposity and/or other associated lipid abnormalities cannot be ruled out.  相似文献   

14.
《Atherosclerosis》1999,142(1):233-239
High serum lipoprotein(a) (Lp(a)) concentration which is largely determined by genetic factors, mainly the apolipoprotein(a) (apo(a)) polymorphism, is associated with ischemic cerebrovascular disease. The aim of this study was to investigate whether apo(a) size was associated with acute ischemic stroke in young adults for which causal factors often remain undetermined. Lipid parameters, Lp(a) concentration and apo(a) isoform size distribution were determined in 90 young patients (37.4±8.7 years) with acute cerebral ischemia, and compared to those of control subjects with similar age and sex ratio. Apo(a) size was expressed as its apparent number of kringle 4 (Kr 4) repeats. Serum Lp(a) concentrations were significantly higher in patients than in controls (median values: 0.18 vs. 0.07 g/l, P=0.009) and were as expected inversely related to the number of kringle 4 repeats in both controls (r2=−0.61, P<0.001) and patients (r2=−0.56, P<0.001). However there was no difference in the apo(a) isoform size distributions between the two groups (median isoform size: 27 vs. 27 Kr 4, P=0.25). Lp(a) levels were increased as well in patients with size apo(a) isoform≤22 Kr 4 as in those with isoforms>25 Kr 4. Multivariate analysis showed that apo(a) phenotype did not appear as a risk factor for cerebrovascular infarction. Thus, our results indicate that serum Lp(a) was significantly increased in young people with ischemic stroke but fail to reveal a role of small-sized apo(a) isoforms in the occurrence of this event. They suggest that other factors, genetic or environmental in nature, than the apo(a) size contribute to increase the serum Lp(a) concentrations in these young patients.  相似文献   

15.
It has been reported that euthyroid normolipidemic males and postmenopausal females exhibit significantly higher serum lipoprotein (a) (Lp(a)) levels compared with age- and sex-matched normolipidemic controls. However, it is well known that there is an inverse correlation between Lp(a) concentration and apolipoprotein (a) (apo(a)) isoform size. Thus, it is imperative to exclude differences in apo(a) isoform frequencies between subjects with or without thyroid autoimmunity in order to verify if there is an association between thyroid autoimmunity and increased Lp(a) concentration. To exclude such an effect of different apo(a) isoform frequencies, we determined apo(a) phenotypes in 22 patients (9 males and 13 postmenopausal females) with thyroid autoimmunity and in 64 (29 males and 35 females) age- and sex-matched individuals without thyroid autoimmunity (control group). There were no significant differences in the values of lipid parameters between the two groups, including Lp(a). We did not detect any significant differences in the apo(a) phenotype frequencies between the two groups. Additionally, in neither of the subgroups formed according to the presence of low molecular vs high molecular weight apo(a) isoforms were there any significant differences in median serum Lp(a) levels between patients with and without thyroid autoimmunity. Thus, our results contradict the previously reported association between thyroid autoimmunity and Lp(a) concentrations.  相似文献   

16.
Moderate alcohol consumption has been reported to provide protection against coronary heart disease. We studied serum lipid values in 380 men, including 184 controls (37 teetotalers and 147 moderate drinkers), 90 heavy drinkers, and 106 alcoholics. Total cholesterol values were significantly lower among alcoholics than controls (mean +/- SEM, 5.43 +/- 0.15 mmol/L [210 +/- 5.8 mg/dL] vs 6.01 +/- 0.08 mmol/L [232 +/- 3.1 mg/dL]), but their high-density lipoprotein (HDL) cholesterol values were higher (1.66 +/- 0.07 mmol/L [64 +/- 2.7 mg/dL] vs 1.14 +/- 0.02 mmol/L [44 +/- 0.8 mg/dL]). Accordingly, there was a highly significant difference in the HDL/total cholesterol ratio (0.32 +/- 0.13 vs 0.19 +/- 0.01). Heavy drinkers had significantly higher total cholesterol values than controls (6.30 +/- 0.13 mmol/L [244 +/- 5.0 mg/dL] vs 6.01 +/- 0.08 mmol/L [232 +/- 3.1 mg/dL]); the same was true of HDL cholesterol values (1.25 +/- 0.07 mmol/L [48 +/- 2.7 mg/dL] vs 1.14 +/- 0.02 mmol/L [44 +/- 0.8 mg/dL]). No significant difference was found in the HDL/total cholesterol ratio between controls and heavy drinkers or between teetotalers and moderate drinkers. Therefore, moderate alcohol intake apparently does not change HDL/total cholesterol ratio; if moderate drinking is protective against coronary heart disease, the mechanism is probably not via lipids.  相似文献   

17.
To investigate plasma concentrations of lipoprotein(a) [Lp(a)] and apolipoprotein(a) [apo(a)] polymorphism in relation to the presence of microvascular and neurological complications in type 1 diabetes mellitus, 118 young diabetic patients and 127 age-matched controls were recruited. Lp(a) levels were higher in patients than in controls, but the apo(a) isoforms distribution did not differ between the two groups [higher prevalence of isoforms of high relative molecular mass (RMM) in both groups]. Microalbuminuric patients had Lp(a) levels significantly greater than normoalbuminuric patients, and normoalbuminuric patients showed higher Lp(a) levels than controls. Patients with retinopathy or neuropathy showed similar Lp(a) levels to those without retinopathy or neuropathy. No differences in apo(a) isoforms frequencies were observed between subgroups with and without complications (higher prevalence of isoforms of high RMM in every subgroup). However, among patients with retinopathy, those with proliferative retinopathy had higher Lp(a) levels and a different apo(a) isoforms distribution (higher prevalence of isoforms of low RMM) than those with non-proliferative and background retinopathy (higher prevalence of isoforms of high RMM). Our data suggest that young type 1 diabetic patients without microalbuminuria have Lp(a) levels higher than healthy subjects of the same age. Lp(a) levels are further increased in microalbuminuric patients. High Lp(a) levels and apo(a) isoforms of low RMM seem to be associated with the presence of proliferative retinopathy, but have no relation to neuropathy. Received: 23 June 1997 / Accepted in revised form: 27 November 1997  相似文献   

18.
Lp(a) concentrations are largely determined by apo(a) isoform size, but several studies have shown that apo(a) isoforms could not entirely explain the increase of Lp(a) levels observed in patients with coronary heart disease (CHD). Since up to 90% of the variance in Lp(a) levels has been suggested to be attributable to the apo(a) locus, the hypothesis that polymorphisms of the apo(a) gene other than size could contribute to the increase of Lp(a) levels in CHD patients must be considered. This hypothesis was tested in the ECTIM Study comparing 594 patients with myocardial infarction and 682 control subjects in Northern Ireland and France. In addition to apo(a) phenotyping, five previously described polymorphisms of the apo(a) gene were genotyped: a (TTTTA)n repeat at position -1400 from the ATG, a G/A at -914, a C/T at -49, a G/A at -21 and a Met/Thr affecting amino acid 4168. As reported earlier [Parra HJ, Evans AE, Cambou JP, Amouyel P, Bingham A, McMaster D, Schaffer P, Douste-Blazy P, Luc G, Richard JL, Ducimetiere P, Fruchart JC, Cambien F. A case-control study of lipoprotein particles in two populations at contrasting risk for coronary heart disease. The ECTIM study. Arterioscler Thromb 1992; 12:701-707], mean Lp(a) levels were higher in cases than in controls (20.7 vs 14.6 mg/dl in Belfast, 17.2 vs 8.9 mg/dl in France, P < 0.001 for case-control and population differences). In the present study, mean apo(a) isoform size differed significantly between cases and controls (25.7 vs 26.6 kr in Belfast, 25.9 vs 27.4 kr in France, P < 0.001 for case-control and P = 0.13 for population difference). After adjustment for apo(a) isoforms, Lp(a) levels remained significantly higher in cases than in controls (difference, 4.6 mg/dl; P < 0.001). Genotype and allele frequencies did not differ significantly between cases and controls for any of the five polymorphisms studied. The five polymorphisms were in strong linkage disequilibrium and had a combined heterozygosity of 0.83. In multivariate regression analysis adjusted for apo(a) isoforms, only the (TTTTA)n polymorphism was significantly associated with Lp(a) levels; it explained 4.5% of Lp(a) variability in cases and 3.1% in controls. The Lp(a) case/control difference was not reduced after taking into account the (TTTTA)n effect. We conclude that the increase of Lp(a) levels observed in MI cases, and which was not directly attributable to apo(a) size variation, was not related to the five polymorphisms of the apo(a) gene considered.  相似文献   

19.
The cross-sectional relationship of endogenous androgens (testosterone, androstenedione, and dehydroepiandrosterone sulfate [DHEA-S]), estrogen (estradiol) and progestin (progesterone) to serum levels of lipoprotein cholesterol (very low-density [VLDL], low-density [LDL], and high-density lipoprotein [HDL]) and apolipoproteins (apo A-I and apo B) were studied in white (n = 251) and black (n = 258) adolescent boys, ages 11 to 17 years, as part of the Bogalusa Heart Study. Black boys had significantly higher levels of estradiol, HDL cholesterol, and apo A-I, and lower levels of androstenedione and VLDL cholesterol than white boys, independent of age and adiposity. Age was correlated strongly with testosterone and androstenedione, and moderately with DHEA-S and estradiol levels in both races. However, only in white boys was age consistently related to VLDL cholesterol (positively), HDL cholesterol (negatively), and apo A-I (negatively). Overall, testosterone was associated inversely with HDL cholesterol and apo A-I in white boys, while progesterone was related positively to apo A-I in both races after adjusting for age and adiposity. However, these relationships were found to differ with age. Partial correlations between levels of sex hormones and lipoproteins adjusted for age and adiposity showed no associations in the 11 to 12 year age group in boys of either race. A significant positive relation of testosterone to VLDL cholesterol, and inverse relations of testosterone to HDL cholesterol and apo A-I and DHEA-S to HDL cholesterol were apparent only in white boys in the 13 to 14 year age group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Lipoprotein(a) [Lp(a)] is a low-density lipoprotein (LDL) particle in which apolipoprotein B-100 (apo B) is attached to a large plasminogen-like protein called apolipoprotein(a) [apo(a)]. Apo(a) has several genetically determined phenotypes differing in molecular weight, to which Lp(a) concentrations in plasma are inversely correlated. LDL and apo B levels are often elevated in untreated hypothyroidism and lowered by thyroxine (T4) treatment, probably due to an increase in LDL receptors. We measured plasma concentrations of LDL, apo B, and Lp(a) in 13 patients with symptomatic primary hypothyroidism before and during T4 therapy. The mean concentration of LDL decreased significantly (P = .006) from 6.05 mmol/L to 4.07 mmol/L, and the mean concentration of apo B decreased significantly (P = .005) from 1.42 g/L to 1.12 g/L. Median Lp(a) concentrations remained unchanged (P = .77); they were 17.05 mg/dL before and 16.59 mg/dL during T4 treatment. In both the untreated condition and during substitution therapy, Lp(a) levels were higher in patients than in healthy controls, probably due to a relatively high frequency of the small Lp(a) phenotypes in our patients. Since Lp(a) contains apo B, which is a ligand for the LDL receptor, it is surprising that Lp(a) is not reduced along with LDL and apo B. These findings suggest that the catabolism of LDL and Lp(a) differ in some respect, and that thyroid hormones have little, if any, effect on Lp(a).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号