首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison between hepatic and nonhepatic vitamin K-dependent carboxylase   总被引:2,自引:0,他引:2  
C Vermeer 《Haemostasis》1986,16(3-4):239-245
Vitamin K-dependent carboxylase is a microsomal enzyme system involved in the carboxylation of protein-bound glutamic acid residues. In mammals, the enzyme is found in many different types of tissue. Hence carboxylated ('Gla-containing') proteins are widely distributed in nature. Neither in vitro nor in vivo differences have been observed with respect to the vitamin K-binding sites of the various carboxylases. Differences between the substrate-binding sites could only be compared after suitable substrates became available. These substrates were prepared from descarboxyprothrombin, osteocalcin and a sperm Gla protein. Substantial differences were detected between the Michaelis constants of various carboxylases for the three substrates mentioned above. It is concluded that vitamin K-dependent carboxylase is a group name for a family of isoenzymes.  相似文献   

2.
Primary structure of bovine vitamin K-dependent protein S.   总被引:9,自引:6,他引:9       下载免费PDF全文
Protein S is a vitamin K-dependent plasma protein that functions as a cofactor to activated protein C in the inactivation of coagulation factors Va and VIIIa. The nucleotide sequence of a full-length cDNA clone, obtained from a bovine liver library, was determined and the amino acid sequence was deduced. In addition, 95% of the structure was determined by protein sequencing. Protein S consists of 634 amino acids in a single polypeptide chain and has one asparagine-linked carbohydrate side chain. The cDNA sequence showed that the protein has a leader sequence, 41 amino acid residues long. The amino-terminal part of the molecule containing gamma-carboxyglutamic acid is followed by a region, residues 42-75, with two peptide bonds that are very sensitive to cleavage by thrombin. Residues 76-244 have four cysteinerich repeat sequences, each about 40 residues long, that are homologous to the precursor of mouse epidermal growth factor. In contrast to the other vitamin K-dependent plasma proteins, the carboxyl-terminal part of protein S is not homologous to the serine proteases.  相似文献   

3.
Cyanide is a competitive inhibitor of carbon dioxide in the vitamin K-dependent glutamate carboxylase system, which plays a central role in the function of the blood clotting cascade. The mechanism of cyanide inhibition has been obscure for some time. At pH 7.2, cyanide (pKa = 9.21) will exist in solution as hydrogen cyanide to the extent of 99%. Hydrogen cyanide is linear triatomic molecule able to serve as a surrogate for carbon dioxide at the enzyme active site. Hydrogen cyanide is an acid; it will quench the deprotonated glutamate carbanion precursor to gamma-carboxyglutamate, resulting in inhibition of the carboxylation sequence.  相似文献   

4.
Vitamin K-dependent carboxylase catalyzes the modification of specific glutamic acids to gamma-carboxyglutamic acid in several blood-coagulation proteins. This modification is required for the blood-clotting activity of these proteins and has thus been the subject of intense investigation. We have now identified the bovine vitamin K-dependent carboxylase and purified it to near homogeneity by an affinity procedure that uses the 59-amino acid peptide FIXQ/S (residues -18 to 41 of factor IX with mutations Arg----Gln at residue -4 and Arg----Ser at residue -1). The carboxylase as purified has a molecular weight of 94,000. It is also the major protein that can be cross-linked to iodinated FIXQ/S and is the only protein whose cross-linking is prevented by a synthetic factor IX propeptide. The degree of purification is about 7000-fold with reference to ammonium sulfate-fractionated microsomal protein from liver.  相似文献   

5.
J W Suttie  P C Preusch 《Haemostasis》1986,16(3-4):193-215
Vitamin K is required as a cofactor for a microsomal enzyme that converts glutamyl residues in precursor proteins to gamma-carboxyglutamyl residues in completed proteins. These residues are essential for the biological function of prothrombin, factors VII, IX, and X, protein C, and protein S. Current data suggest that recognition of protein substrates by the carboxylase requires an unidentified protein-protein interaction in addition to the Glu substrate binding site. The primary vitamin K-dependent event has now been shown to be the abstraction of the gamma-hydrogen of the substrate Glu residue with the concurrent formation of vitamin K 2,3-epoxide. Coumarin anticoagulants appear to inhibit the microsomal vitamin K epoxide reductase and one of a number of microsomal quinone reductases. They therefore block vitamin K action by preventing the recycling of vitamin K epoxide to the quinone and to the active cofactor form, the hydroquinone. Excess vitamin K can reverse a coumarin anticoagulant effect as the nonsensitive quinone reductase can continue to furnish the active coenzyme.  相似文献   

6.
Three alternatively spliced forms of the amyloid precursor protein (APP), APP-695, APP-751, and APP-770, were expressed in the baculovirus expression vector system. The recombinant proteins were secreted into the culture medium by infected insect cells, and APP molecules were detected in insect cells and medium 2 days after infection with the recombinant APP-baculoviruses. A partial sequence of the NH2 terminus of the secreted protein revealed identity with the native secreted protein and showed that the signal peptide was recognized and properly cleaved in insect cells. Purified secreted recombinant APP-751 comigrated with protease nexin 2 purified from platelets and fibroblasts. A 15-kDa COOH-terminal fragment of APP was also detected in cells infected with recombinant baculoviruses, suggesting that recombinant APP proteins were cleaved at the COOH-terminal end like native APP protein. Recombinant APP-751 and APP-770 formed complexes with epidermal growth factor-binding protein, whereas APP-695 did not. In addition, recombinant APP-751 and APP-770 inhibited trypsin and chymotrypsin activity, whereas APP-695 did not. Growth of a human fibroblast cell line, A-1, that required APP for complete growth, was restored upon addition of secreted recombinant APP-695 or APP-751. Thus, the appropriately sized, secreted recombinant APP proteins produced in this expression system are biologically active.  相似文献   

7.
Coagulation factor IX is a serine protease for which high-level expression of biologically active protein in heterologous cells is limited due to inefficient proteolytic removal of the propeptide as well as vitamin K-dependent carboxylation of multiple amino-terminal glutamic acid residues. We have overexpressed the vitamin K-dependent gamma-carboxylase cDNA and monitored its ability to improve factor IX processing in Chinese hamster ovary (CHO) cells. From amino acid sequence analysis of bovine liver vitamin K-dependent gamma-carboxylase, degenerate oligonucleotides were used to isolate a 3.5-kbp bovine cDNA that encoded a 758-residue open reading frame. Expression of the cDNA in COS-1 and CHO cells yielded 17- and 16-fold increases in the in vitro gamma-carboxylase activity of microsomal preparations, respectively. Anti-serum raised against a predicted peptide sequence reacted with a 94-kDa polypeptide in the partially purified bovine liver preparation as well as in stably transfected CHO cells. The amount of antibody reactivity correlated with the increased ability to carboxylate a peptide substrate in vitro. These results strongly support the conclusion that the cDNA encodes the vitamin K-dependent gamma-carboxylase. Transient transfection of the gamma-carboxylase expression vector into factor IX-expressing CHO cells did not improve the specific procoagulant activity of secreted factor IX. In contrast, transfection of an expression vector encoding the propeptide processing enzyme PACE (paired basic amino acid cleaving enzyme) did improve the specific activity of secreted factor IX by 3-fold. These results demonstrate that the ability of CHO cells to modify glutamic acid residues to gamma-carboxyglutamic acid in secreted factor IX is not limited by the expression of the vitamin K-dependent gamma-carboxylase alone.  相似文献   

8.
9.
The heavy chain and the essential and the regulatory light chains of chicken gizzard heavy meromyosin (HMM) were coexpressed in Spodoptera frugiperda (fall armyworm) cells infected with a mixture of two recombinant Autographa californica baculoviruses. Soluble HMM consisting of the heavy chain and the two types of light chains was obtained. The recombinant HMM was purified from the virus-infected cells and characterized. The regulatory light chain of the isolated recombinant HMM was phosphorylated by myosin light chain kinase in the presence of calmodulin in a Ca(2+)-dependent manner. The ATPase of the recombinant HMM was activated by rabbit skeletal muscle actin when myosin light chain kinase, calmodulin, and Ca2+ were present in the reaction medium. Chicken gizzard tropomyosin enhanced the actin-activated ATPase activity. The recombinant HMM decorated actin filaments, displaying the characteristic arrowhead pattern along the filaments. This report on a functional recombinant double-headed smooth muscle myosin fragment opens the way to detailed studies on the molecule.  相似文献   

10.
A 39-residue peptide from the tryptic digestion of bovine blood clotting factor X has been isolated by specific adsorption on barium citrate. The amino- and carboxyl-terminal sequences of the peptide were determined and compared to the vitamin K-dependent Ca2+-binding region from bovine prothrombin. The factor X peptide was found to contain gamma-carboxyglutamic acid residues, and the results of independent analysis are consistent with all 14 glutamic acid residues as gamma-carboxyglutamic acid. The similarity of the factor X peptide to the prothrombin peptide supports the hypothesis that the vitamin K-dependent blood clotting proteins are descended from a common ancestral gene.  相似文献   

11.
Hemopexin (Hx), the major heme-binding plasma glycoprotein, scavenges circulating heme and performs an antioxidant function. In the present study, human Hx was expressed in a baculovirus system and its presumed essential His residues were mutated to Thr as a means of investigating their participation in heme binding. The recombinant Hx proteins were purified by sequential chromatography on Con A-agarose and SP-Sepharose. The purified recombinant wild-type Hx retained its heme binding. The binding constant for heme was considerably reduced, however, suggesting that glycosylation contributes critically to the heme binding property of Hx. Mutation either at His-127 or at His-56 plus His-127, but not at His-56 per se, reduced the affinity for heme by an order of magnitude relative to wild-type Hx. It is concluded that His-127 contributes to the high affinity for heme. We recorded proton NMR spectra to investigate the possibility that the degree of high-spin content is increased by deletion of an axial His-iron coordination. 1H NMR data indicate that each of the single-mutant heme-Hx complexes is predominantly low-spin, perhaps owing to coordination of the heme iron by the Thr side-chain oxygen or water oxygen coordinating to the iron.  相似文献   

12.
beta-Hydroxyaspartic acid in vitamin K-dependent protein C.   总被引:5,自引:8,他引:5       下载免费PDF全文
Previous work has shown that the light chain of protein C, an anticoagulant plasma protein, contains an unusual amino acid [Fernlund, P. & Stenflo, J. (1982) J. Biol. Chem. 257, 12170-12179]. To determine the structure of this amino acid a heptapeptide, CMCys-Ile-X-Gly-Leu-Gly-Gly (residues 69-75 in the light chain), was isolated from enzymatic digests of the light chain. According to automatic Edman sequence analysis, 1H NMR spectroscopy, and mass spectrometry the heptapeptide had beta-hydroxyaspartic acid in its third position, which corresponds to position 71 in the light chain of protein C. Analysis of acid and aminopeptidase M hydrolysates of the heptapeptide showed the beta-hydroxyaspartic acid to be the erythro form. Acid hydrolysis of protein C released approximately equal to 1 mol of beta-hydroxyaspartic acid per mol of protein. The function of this amino acid, which, to the best of our knowledge, has not been found previously in proteins, is unknown.  相似文献   

13.
Full-length and truncated human BCL2 lacking the entire C-terminal hydrophobic domain have been overexpressed in Spodoptera frugiperda insect cells with the baculovirus expression system. Immunoblot analysis with BCL2-specific antibodies revealed that both full-length and truncated BCL2 are expressed as multiple immunoreactive species, suggesting posttranslational modifications. The expression of the full-length but not the truncated BCL2 extended the survival of baculovirus-infected cells by preventing virus-induced DNA cleavage. This result is consistent with the reported protective effect of BCL2 against apoptosis in mammalian lymphocytes and suggests a conserved function in evolution. Subcellular fractionation and indirect immunofluorescence studies in intact cells demonstrated that the recombinant full-length and truncated BCL2 proteins were expressed predominantly as nuclear membrane-associated proteins. These results imply that BCL2 must utilize hydrophobic domains other than the deleted domain for its association with the subcellular membranes. Metabolic labeling of insect cells expressing the full-length and the truncated form of BCL2 with 32P(i) demonstrated that BCL2 is a phosphoprotein.  相似文献   

14.
Bristol  JA; Ratcliffe  JV; Roth  DA; Jacobs  MA; Furie  BC; Furie  B 《Blood》1996,88(7):2585-2593
Prothrombin is a vitamin K-dependent blood coagulation protein that undergoes posttranslational gamma-carboxylation and propeptide cleavage during biosynthesis. The propeptide contains the gamma-carboxylation recognition site that directs gamma-carboxylation. To identify the intracellular sites of carboxylation and propeptide cleavage, we monitored the synthesis of prothrombin in Chinese hamster ovary cells stably transfected with the prothrombin cDNA by immunofluorescent staining. The vitamin K-dependent carboxylase was located in the endoplasmic reticulum and Golgi complex. Antibodies specific to prothrombin processing intermediates were used for immunocytolocalization. Anti-des-gamma-carboxyprothrombin antibodies stained only the endoplasmic reticulum whereas antiproprothrombin antibodies (specific for the propeptide) and antiprothrombin:Mg(II) antibodies (which bind the carboxylated forms of proprothrombin and prothrombin) stained both the endoplasmic reticulum and the Golgi complex. Antiprothrombin:Ca(II)-specific antibodies (which bind only to the carboxylated form of prothrombin lacking the propeptide) stained only the Golgi complex and secretory vesicles, and colocalized with antimannosidase II and anti-p200 in the juxtanuclear Golgi complex. These results indicate that uncarboxylated proprothrombin undergoes complete gamma-carboxylation in the endoplasmic reticulum and that gamma-carboxylation precedes propeptide cleavage during prothrombin biosynthesis.  相似文献   

15.
Vitamin K-dependent (VKD) proteins require modification by the VKD-γ-glutamyl carboxylase, an enzyme that converts clusters of glus to glas in a reaction that requires vitamin K hydroquinone, for their activity. We have discovered that the carboxylase also carboxylates itself in a reaction dependent on vitamin K. When pure human recombinant carboxylase was incubated in vitro with 14CO2 and then analyzed after SDS/PAGE, a radiolabeled band corresponding to the size of the carboxylase was observed. Subsequent gla analysis of in vitro-modified carboxylase by base hydrolysis and HPLC showed that all of the radioactivity could be attributed to gla residues. Quantitation of gla, asp, and glu residues indicated 3 mol gla/mol carboxylase. Radiolabeled gla was acid-labile, confirming its identity, and was not observed if vitamin K was not included in the in vitro reaction. Carboxylase carboxylation also was detected in baculovirus(carboxylase)-infected insect cells but not in mock-infected insect cells, which do not express endogenous VKD proteins or carboxylase. Finally, we showed that the carboxylase was carboxylated in vivo. Carboxylase was purified from recombinant carboxylase BHK cells cultured in the presence or absence of vitamin K and analyzed for gla residues. Carboxylation of the carboxylase only was observed with carboxylase isolated from BHK cells cultured in vitamin K, and 3 mol gla/mol carboxylase were detected. Analyses of carboxylase and factor IX carboxylation in vitro suggest a possible role for carboxylase carboxylation in factor IX turnover, and in vivo studies suggest a potential role in carboxylase stability. The discovery of carboxylase carboxylation has broad implications for the mechanism of VKD protein carboxylation and Warfarin-based anti-coagulant therapies that need to be considered both retrospectively and in the future.  相似文献   

16.
17.
Hereditary combined deficiency of the vitamin K-dependent coagulation factors II, VII, IX, X, protein C, S and protein Z (VKCFD) is a very rare autosomal recessive inherited bleeding disorder. The phenotype may result from functional deficiency of either the gamma-glutamyl carboxylase (GGCX) or the vitamin K epoxide reductase (VKOR) complex. We report on the third case of VKCFD1 with mutations in the gamma-glutamyl carboxylase gene, which is remarkable because of compound heterozygosity. Two mutations were identified: a splice site mutation of exon 3 and a point mutation in exon 11, resulting in the replacement of arginine 485 by proline. Screening of 100 unrelated normal chromosomes by restriction fragment length polymorphism and denaturing high-performance liquid chromatography analysis excluded either mutation as a frequent polymorphism. Substitution of vitamin K could only partially normalize the levels of coagulation factors. It is suggested that the missense mutation affects either the propeptide binding site or the vitamin K binding site of GGCX.  相似文献   

18.
Spronk HM  Farah RA  Buchanan GR  Vermeer C  Soute BA 《Blood》2000,96(10):3650-3652
A mutation in the gamma-glutamyl carboxylase gene leading to a combined congenital deficiency of all vitamin K-dependent coagulation factors was identified in a Lebanese boy. He is the first offspring of consanguineous parents and was homozygous for a unique point mutation in exon 11, resulting in the conversion of a tryptophan codon (TGG) to a serine codon (TCG) at amino acid residue 501. Oral vitamin K(1) administration resulted in resolution of the clinical symptoms. Screening of several family members on this mutation with an RFLP technique revealed 10 asymptomatic members who were heterozygous for the mutation, confirming the autosomal recessive pattern of inheritance of this disease. In 50 nonrelated normal subjects, the mutation was not found. This is the second time a missense mutation in the gamma-glutamyl carboxylase gene is described that has serious impact on normal hemostasis.  相似文献   

19.
The vitamin K-dependent carboxylase catalyzes the posttranslational modification of specific glutamic acid residues to form gamma-carboxyglutamic acid residues within the vitamin K-dependent proteins. This enzyme recognizes the gamma-carboxylation recognition site on the propeptide of the precursor forms of the vitamin K-dependent blood coagulation proteins. To purify this enzyme to homogeneity, the carboxylase from bovine liver microsomes was solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), the protein was fractionated with ammonium sulfate, and then the enzyme was isolated by affinity chromatography using a synthetic peptide based upon the structure of the prothrombin propeptide. Elution with 10 mM propeptide yielded a single major band on SDS gel electrophoresis with a molecular weight of 77,000. In the presence of high concentrations of propeptide, only minimal carboxylase activity was measurable. Antibodies to the protein inhibited the carboxylase activity in crude preparations. In an alternative affinity purification strategy the propeptide was coupled through an NH2-terminal cysteine to an activated thiol-Sepharose column. The carboxylase-propeptide complex was eluted at 25 degrees C by reductive cleavage of the enzyme-propeptide complex in the presence of detergent and phospholipids. The eluted protein (Mr, 77,000) contained both stable vitamin K-dependent carboxylase and vitamin K epoxidase activity. The protein, purified by either method, was detected as a single band (Mr, 77,000) in a Western blot using anti-carboxylase antibodies. A 10,000-fold purification of carboxylase activity from crude microsomes was estimated. Purified bovine liver vitamin K-dependent carboxylase should facilitate the study of its structure and of the mechanism of action of vitamin K as a cofactor in the reaction catalyzed by this enzyme.  相似文献   

20.
Vitamin K is an essential cofactor for a microsomal carboxylase that converts glutamyl residues in endogenous precursor proteins to gamma-carboxyglutamyl residues in completed proteins. The same microsomal preparations convert vitamin K to its 2,3-epoxide, and it has been suggested that these two reactions (carboxylation and epoxidation) are coupled. Glutathione peroxidase, which reduces hydrogen peroxide and organic hydroperoxides, inhibits both of these reactions in a prepartion of microsomes solubilized by Triton X-100. Catalase has no effect. In the absence of vitamin K, and in the presence of NADPH, tert-butyl hydroperoxide acts as a weak vitamin K analog. At lower concentrations, tert-butyl hydroperoxide is an apparent competitive inhibitor of vitamin K for both the carboxylase and epoxidase reactions. These data are consistent with the hypothesis that both of these vitamin K-requiring reactions involve a common oxygenated intermediate, and that a hydroperoxide of the vitamin is the species involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号