首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spectrum of neuromuscular disorders among intensive care unit (ICU) patients has shifted toward disorders acquired within the ICU and away from “traditional” neuromuscular disorders that lead to ICU admission. We sought to assess this spectrum by determining the causes and relative frequencies of neuromuscular disorders that led to electromyography (EMG) examinations in our ICU population. Ninety-two patients were studied over a 4½-year period. Twenty-six (28%) had neuromuscular disorders (mainly Guillain–Barré syndrome, myopathy, and motor neuron disease) that led to ICU admission. Among patients who developed weakness in the ICU, there was a predominance of organ transplant patients and patients with the systemic inflammatory response syndrome and multiorgan dysfunction. Thirty-nine (42%) developed acute myopathy (consistent with critical illness myopathy in most), and 13% developed acute axonal sensorimotor polyneuropathy (mainly critical illness polyneuropathy). Patients with acute myopathy and acute axonal sensorimotor polyneuropathy had similar functional outcomes. We conclude that among patients who underwent EMG in our ICU population, acute myopathy is three times as common as acute axonal polyneuropathy, and the outcomes from acute myopathy and acute axonal polyneuropathy may be similar. © 1998 John Wiley & Sons, Inc. Muscle Nerve 21:610–617, 1998.  相似文献   

2.
Critical Illness Polyneuropathy (CIP) and Myopathy (CIM), either singly or in combination, are a common complication of critical illness. Both disorders may lead to severe weakness and require mechanical ventilation. CIP, as initially described by Bolton et al., in 1984, is a sensorimotor polyneuropathy that is often a complication of sepsis and multiorgan failure. In Japan, Horinouchi et al., first reported a case in 1994. CIM has been referred to by a number of different terms (acute quadriplegic myopathy, thick filament myopathy, acute necrotizing myopathy of intensive care, rapidly evolving myopathy with myosin-deficiency fibers) in the literature. A variety of serious problems (e.g., pneumonia, severe asthma, and lung or liver transplantation) and the concomitant use of high-dose intravenous corticosteroids and nondepolarizing neuromuscular blocking agents predispose to CIM. In Japan, Kawada et al., reported a first case as acute quadriplegic myopathy in 2000. There is no specific treatment for CIP and CIM. Minimizing the use of corticosteroids and nondepolarizing neuromuscular blocking agents in a critical illness setting may prove helpful in preventing the occurrence of these disorders. The prognosis is directly related to the age of the patient and the seriousness of the underlying illness.  相似文献   

3.
One of the major concerns of the health care community and the public surrounding the SARS-CoV-2 pandemic is the availability and use of ventilators. Unprecedented surges of patients presented to intensive care units across the country, with older adults making up a large proportion of the patient population. This paper illustrates contemporary approaches to critical illness myopathy (CIM), critical illness polyneuropathy (CIP), and critical illness polyneuromyopathy (CIPNM) in older patients, including incidence, risk factors, mechanisms for pathology, diagnosis, contemporary treatment approaches, and outcomes. We hope that the following analysis may help educate clinicians and ultimately decrease the duration of the mechanical ventilation required by these patients, resulting in improved clinical outcomes and an increase in ventilator availability for other patients in need.  相似文献   

4.
Critical illness myopathy (CIM) is a frequent cause of generalized weakness in the intensive care unit. Prolonged compound muscle action potential (CMAP) durations have been described in this patient population, and this study presents further data on CMAP duration in normal controls and patients with CIM. The findings highlight the importance of testing multiple nerve muscle combinations in weak, critically ill patients. Recognition of this pattern, which has not been widely described, can facilitate the diagnosis of CIM. Muscle Nerve, 2009  相似文献   

5.
Critical illness polyneuropathy and myopathy:a systematic review   总被引:1,自引:0,他引:1  
Critical illness polyneuropathy and critical illness myopathy are frequent complications of severe illness that involve sensorimotor axons and skeletal muscles, respectively. Clinically, they manifest as limb and respiratory muscle weakness. Critical illness polyneuropathy/myopathy in isolation or combination increases intensive care unit morbidity via the inability or difficulty in weaning these patients off mechanical ventilation. Many patients continue to suffer from decreased exercise capacity and compromised quality of life for months to years after the acute event. Substantial progress has been made lately in the understanding of the pathophysiology of critical illness polyneuropathy and myopathy. Clinical and ancillary test results should be carefully interpreted to differentiate critical illness polyneuropathy/myopathy from similar weaknesses in this patient population. The present review is aimed at providing the latest knowledge concerning the pathophysiology of critical illness polyneuropathy/myopathy along with relevant clinical, diagnostic, differentiating, and treatment information for this debilitat- ing neurological disease.  相似文献   

6.
Critical illness polyneuropathy (CIP) and myopathy (CIM) are complications of critical illness that present with muscle weakness and failure to wean from the ventilator. In addition to prolonging mechanical ventilation and hospitalisation, CIP and CIM increase hospital mortality in patients who are critically ill and cause chronic disability in survivors of critical illness. Structural changes associated with CIP and CIM include axonal nerve degeneration, muscle myosin loss, and muscle necrosis. Functional changes can cause electrical inexcitability of nerves and muscles with reversible muscle weakness. Microvascular changes and cytopathic hypoxia might disrupt energy supply and use. An acquired sodium channelopathy causing reduced muscle membrane and nerve excitability is a possible unifying mechanism underlying CIP and CIM. The diagnosis of CIP, CIM, or combined CIP and CIM relies on clinical, electrophysiological, and muscle biopsy investigations. Control of hyperglycaemia might reduce the severity of these complications of critical illness, and early rehabilitation in the intensive care unit might improve the functional recovery and independence of patients.  相似文献   

7.
Introduction: In severe acute quadriplegic myopathy in intensive care unit (ICU) patients, muscle fibers are electrically inexcitable; in critical illness polyneuropathy, the excitability remains normal. Conventional electrodiagnostic methods do not provide the means to adequately differentiate between them. In this study we aimed to further optimize the methodology for the study of critically ill ICU patients and to create a reference database in healthy controls. Methods: Different electrophysiologic protocols were tested to find sufficiently robust and reproducible techniques for clinical diagnostic applications. Results: Many parameters show large test–retest variability within the same healthy subject. Reference values have been collected and described as a basis for studies of weakness in critical illness. Conclusions: Using the ratio of neCMAP/dmCMAP (response from nerve and direct muscle stimulation), refractory period, and stimulus–response curves may optimize the electrodiagnostic differentiation of patients with critical illness myopathy from those with critical illness polyneuropathy. Muscle Nerve 53 : 555–563, 2016  相似文献   

8.
《Clinical neurophysiology》2020,131(12):2809-2816
ObjectiveCoronavirus disease 2019 (COVID-19) has a high incidence of intensive care admittance due to the severe acute respiratory syndrome (SARS). Intensive care unit (ICU)-acquired weakness (ICUAW) is a common complication of ICU patients consisting of symmetric and generalised weakness. The aim of this study was to determine the presence of myopathy, neuropathy or both in ICU patients affected by COVID-19 and whether ICUAW associated with COVID-19 differs from other aetiologies.MethodsTwelve SARS CoV-2 positive patients referred with the suspicion of critical illness myopathy (CIM) or polyneuropathy (CIP) were included between March and May 2020. Nerve conduction and concentric needle electromyography were performed in all patients while admitted to the hospital. Muscle biopsies were obtained in three patients.ResultsFour patients presented signs of a sensory-motor axonal polyneuropathy and seven patients showed signs of myopathy. One muscle biopsy showed scattered necrotic and regenerative fibres without inflammatory signs. The other two biopsies showed non-specific myopathic findings.ConclusionsWe have not found any distinctive features in the studies of the ICU patients affected by SARS-CoV-2 infection.SignificanceFurther studies are needed to determine whether COVID-19-related CIM/CIP has different features from other aetiologies. Neurophysiological studies are essential in the diagnosis of these patients.  相似文献   

9.
Neuromuscular weakness commonly develops in the setting of critical illness. This weakness delays recovery and often causes prolonged ventilator dependence. An axonal sensory-motor polyneuropathy, critical illness polyneuropathy (CIP), is seen in up to one third of critically ill patients with the systemic inflammatory response syndrome (usually due to sepsis). An acute myopathy, critical illness myopathy (CIM), frequently develops in a similar setting, often in association with the use of corticosteroids and/or nondepolarizing neuromuscular blocking agents. These patients are often difficult to evaluate due to the limitations imposed by the critical care setting and may be further complicated by the presence of both CIP and CIM in varying degrees. This paper reviews the clinical and electrophysiologic features of these disorders, as well as the putative pathophysiology. In the case of CIM, an animal model has provided evidence that weakness in this disorder is caused by muscle membrane inexcitability due to altered membrane sodium currents and loss of myosin thick filaments.  相似文献   

10.
Neuromuscular disorders that are diagnosed in the intensive care unit (ICU) usually cause substantial limb weakness and contribute to ventilatory dysfunction. Although some lead to ICU admission, ICU-acquired disorders, mainly critical illness myopathy (CIM) and critical illness polyneuropathy (CIP), are more frequent and are associated with considerable morbidity. Approximately 25% to 45% of patients admitted to the ICU develop CIM, CIP, or both. Their clinical features often overlap; therefore, nerve conduction studies and electromyography are particularly helpful diagnostically, and more sophisticated electrodiagnostic studies and histopathologic evaluation are required in some circumstances. A number of prospective studies have identified risk factors for CIP and CIM, but their limitations often include the inability to separate CIM from CIP. Animal models reveal evidence of a channelopathy in both CIM and CIP, and human studies also identified axonal degeneration in CIP and myosin loss in CIM. Outcomes are variable. They tend to be better with CIM, and some patients have longstanding disabilities. Future studies of well-characterized patients with CIP and CIM should refine our understanding of risk factors, outcomes, and pathogenic mechanisms, leading to better interventions.  相似文献   

11.
Sepsis may cause not only failure of parenchymal organs but can also cause damage to peripheral nerves and skeletal muscles. It is now recognized that sepsis-mediated disorders of the peripheral nerves and the muscle, called critical illness polyneuropathy (CIP) and critical illness myopathy, are responsible for weakness and muscle atrophy occurring de novo in intensively treated patients. CIP represents an acute axonal neuropathy that develops during treatment of severely ill patients and remits spontaneously, once the critical condition is under control. The course is monophasic and self-limiting. Among the critical illness myopathies, three main types have been identified: a non-necrotizing “cachectic” myopathy (critical illness myopathy in the strict sense), a myopathy with selective loss of myosin filaments (“thick filament myopathy”) and an acute necrotizing myopathy of intensive care. Clinical manifestations of both critical illness myopathies and CIP include delayed weaning from the respirator, muscle weakness, and prolonging of the mobilization phase. The pathogenesis of these neuromuscular complications of sepsis is not understood in detail but most authors assume that the inflammatory factors that mediate systemic inflammatory response and multiple organ failure are closely involved. In thick filament myopathy and acute necrotizing myopathy, administration of steroids and neuromuscular blocking agents may act as triggers. Specific therapies have not been discovered. Stabilization of the underlying critical condition and elimination of sepsis appear to be of major importance. Steroids and muscle relaxants should be avoided or administered at the lowest dose possible. Received: 12 April 2001, Accepted: 23 April 2001  相似文献   

12.
Areflexic quadriplegia that occurs in the intensive care unit (ICU) is commonly ascribed to critical illness polyneuropathy based upon electrophysiology or muscle light microscopy. However, electron microscopy often documents a selective thick filament loss myopathy. Eight ICU patients who developed areflexic quadriplegia underwent biopsy. Seven patients had received steroids, and 2 had also received paralytic agents. Electrodiagnostic studies revealed absent or low-amplitude motor responses in 7. Sensory responses were normal in 5 of 6 and absent in 1. Initial electromyography revealed absent (n = 3), small (n = 3), or polyphasic (n = 1) motor unit potentials, and diffuse fibrillation potentials (n = 5). In all 8, light microscopy of muscle revealed numerous atrophic-angulated fibers and corelike lesions, and electron microscopy revealed extensive thick filament loss. Morphology of sural and intramuscular nerves, and, in one autopsied case, of the obturator nerve and multiple nerve roots, was normal. Although clinical, electrodiagnostic, and light microscopic features mimicked denervating disease, muscle electron microscopy revealed thick filament loss, and nerve histology was normal. This suggests that areflexic ICU quadriplegia is a primary myopathy and not an axonal polyneuropathy.  相似文献   

13.
《Clinical neurophysiology》2021,132(6):1347-1357
ObjectiveTo investigate the sensitivity of muscle velocity recovery cycles (MVRCs) for detecting altered membrane properties in critically ill patients, and to compare this to conventional nerve conduction studies (NCS) and quantitative electromyography (qEMG).MethodsTwenty-four patients with intensive care unit acquired weakness (ICUAW) and 34 healthy subjects were prospectively recruited. In addition to NCS (median, ulnar, peroneal, tibial and sural nerves) and qEMG (biceps brachii, vastus medialis and anterior tibial muscles), MVRCs with frequency ramp were recorded from anterior tibial muscle.ResultsMVRC and frequency ramp parameters showed abnormal muscle fiber membrane properties with up to 100% sensitivity and specificity. qEMG showed myopathy in 15 patients (63%) while polyneuropathy was seen in 3 (13%). Decreased compound muscle action potential (CMAP) amplitude (up to 58%) and absent F-waves (up to 75%) were frequent, but long duration CMAPs were only seen in one patient with severe myopathy.ConclusionsAltered muscle fiber membrane properties can be detected in patients with ICUAW not yet fulfilling diagnostic criteria for critical illness myopathy (CIM). MVRCs may therefore serve as a tool for early detection of evolving CIM.SignificanceCIM is often under-recognized by intensivists, and large-scale longitudinal studies are needed to determine its incidence and pathogenesis.  相似文献   

14.
Neuromuscular disorders increasingly are recognized as a complication in patients in the intensive care unit (ICU) and represent a common cause of prolonged ventilator dependency. The distinct syndromes of critical illness myopathy, prolonged neuromuscular blockade, and critical illness polyneuropathy (CIP) may arise as a consequence of sepsis, multi-organ failure, and exposure to various medications—notably, intravenous corticosteroids and neuromuscular blocking agents—but the pathophysiology of these disorders remains poorly understood. More than one syndrome may occur simultaneously, and the distinctions may be difficult in a particular patient, but a specific diagnosis usually can be established after careful clinical, electrodiagnostic, and, when necessary, histological evaluation. For example, asthmatics requiring treatment with corticosteroids and neuromuscular blocking agents may develop an acute myopathy characterized by generalized weakness, preserved eye movements, elevated creatine kinase levels, and myopathic motor units on electromyography (EMG). Muscle biopsy demonstrates distinctive features of thick (myosin) filament loss on ultrastructural studies. Conversely, those with a prolonged ICU course that is complicated by episodes of sepsis with failure to wean from the ventilator, distal or generalized flaccid limb weakness, and areflexia probably have CIP. EMG in these patients demonstrates reduced or absent motor and sensory potentials with neurogenic motor units. Prolonged neuromuscular blockade most commonly occurs in patients with renal failure who have received prolonged infusions of neuromuscular blockers. There is severe flaccid, areflexic paralysis with normal sensation, facial weakness, and ophthalmoparesis that persists for days or weeks after the neuromuscular blockers have been discontinued. Repetitive nerve stimulation shows a decrement of the compound muscle action potential and, in most cases, establishes a disorder of neuromuscular transmission. With the recent epidemic of West Nile virus infection, a clinical syndrome of acute flaccid paralysis with several features indistinguishable from poliomyelitis has emerged. This article critically examines the clinical, electrophysiological, and pathological features of these and other acute neuromuscular syndromes that arise in the context of ICU care and summarizes the current understanding of the pathophysiology and treatment of these disorders.  相似文献   

15.
R. Kollmar 《Der Nervenarzt》2016,87(3):236-245
Intensive care unit acquired weakness (ICUAW) is a frequent and severe complication of intensive care management. Within ICUAW critical illness polyneuropathy (CIP) and myopathy (CIM) can be differentiated. The major symptom of ICUAW is progressive quadriparesis, which makes weaning from the respirator more difficult, can appear early after admission to an ICU and can often be detected several months after discharge from the ICU. The pathophysiology of ICUAW is multifactorial and complex. Potential therapeutic approaches are the early and sufficient therapy of mulitorgan dysfunction, optimal control of glucose levels as well as early and intensive physiotherapy. This review article discusses the data on incidence, pathophysiology, diagnostic approaches and prognosis of ICUAW.  相似文献   

16.
Acquired neuromuscular weakness due to critical illness polyneuropathy and myopathy (CIPNM) frequently develops in patients hospitalized in the intensive care unit for more than 1 week. CIPNM may present with muscle weakness and failure to wean from mechanical ventilation, but is discovered more often and earlier by electrophysiological examination. In this review, the incidence, clinical and electrophysiological features, differential diagnosis and prognosis of CIPNM will be described. Risk factors for CIPNM are sepsis or systemic inflammatory response syndrome and the severity of multi-organ failure. Presence of CIPNM is associated with higher mortality rate, prolonged duration of mechanical ventilation and prolonged rehabilitation. The majority of survivors with CIPNM have persistent functional disabilities and a reduced quality of life. There is need for new therapeutic strategies to prevent or minimize CIPNM in critically ill patients.  相似文献   

17.
Sepsis may cause not only failure of parenchymal organs but can also cause damage to peripheral nerves and skeletal muscles. It is now recognized that sepsis-mediated disorders of the peripheral nerves and the muscle, called critical illness polyneuropathy (CIP) and critical illness myopathy, are responsible for weakness and muscle atrophy occurring de novo in intensively treated patients. CIP represents an acute axonal neuropathy that develops during treatment of severely ill patients and remits spontaneously, once the critical condition is under control. The course is monophasic and self-limiting. Among the critical illness myopathies, three main types have been identified: a nonnecrotizing "cachectic" myopathy (critical illness myopathy in the strict sense), a myopathy with selective loss of myosin filaments ("thick filament myopathy") and an acute necrotizing myopathy of intensive care. Clinical manifestations of both critical illness myopathies and CIP include delayed weaning from the respirator, muscle weakness, and prolonging of the mobilization phase. The pathogenesis of these neuromuscular complications of sepsis is not understood in detail but most authors assume that the inflammatory factors that mediate systemic inflammatory response and multiple organ failure are closely involved. In thick filament myopathy and acute necrotizing myopathy, administration of steroids and neuromuscular blocking agents may act as triggers. Specific therapies have not been discovered. Stabilization of the underlying critical condition and elimination of sepsis appear to be of major importance. Steroids and muscle relaxants should be avoided or administered at the lowest dose possible.  相似文献   

18.
Recent studies have demonstrated acquired muscle inexcitability in critical illness myopathy (CIM) and have used direct muscle stimulation (DMS) techniques to distinguish neuropathy from myopathy as a cause of weakness in the critically ill. The mechanisms underlying weakness in CIM are incompletely understood and DMS is only semiquantitative. We report results from a series of 32 patients with CIM and demonstrate significant slowing of muscle-fiber conduction velocity (MFCV) and muscle-fiber conduction block during the acute phase of CIM, which correlates with prolonged compound muscle action potential (CMAP) duration, clinical severity, and course. We also used a paired stimulation technique to explore the excitability of individual muscle fibers in vivo. We demonstrate altered muscle-fiber excitability in CIM patients. Serial studies help define the course of these pathophysiological changes. Parallels are made between CIM and hypokalemic periodic paralysis. Our findings provide further evidence for muscle membrane dysfunction being the principal underlying abnormality in CIM.  相似文献   

19.
《Clinical neurophysiology》2021,132(7):1733-1740
ObjectiveThe aim was to characterize the electrophysiological features and plasma biomarkers of critical illness polyneuropathy (CIN) and myopathy (CIM) in coronavirus disease 2019 (COVID-19) patients with intensive care unit acquired weakness (ICUAW).MethodsAn observational ICU cohort study including adult patients admitted to the ICU at Uppsala University Hospital, Uppsala, Sweden, from March 13th to June 8th 2020. We compared the clinical, electrophysiological and plasma biomarker data between COVID-19 patients who developed CIN/CIM and those who did not. Electrophysiological characteristics were also compared between COVID-19 and non-COVID-19 ICU patients.Results111 COVID-19 patients were included, 11 of whom developed CIN/CIM. Patients with CIN/CIM had more severe illness; longer ICU stay, more thromboembolic events and were more frequently treated with invasive ventilation for longer than 2 weeks. In particular CIN was more frequent among COVID-19 patients with ICUAW (50%) compared with a non-COVID-19 cohort (0%, p = 0.008). Neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAp) levels were higher in the CIN/CIM group compared with those that did not develop CIN/CIM (both p = 0.001) and correlated with nerve amplitudes.ConclusionsCIN/CIM was more prevalent among COVID-19 ICU patients with severe illness.SignificanceCOVID-19 patients who later developed CIN/CIM had significantly higher NfL and GFAp in the early phase of ICU care, suggesting their potential as predictive biomarkers for CIN/CIM.  相似文献   

20.
Critical illness polyneuropathy (CIP) is defined as a common complication of critically ilness patients who were admitted to the intensive care unit due to sepsis, multiple trauma and/or multi-organ failure. We aimed to present a patient who was diagnosed as CIP. He was admitted to our outpatient clinic due to weakness and pain in his lower extremities. He had been followed in an intensive care unit due to suicid five months ago. There were symmetrically and predominantly muscle weakness, sensory impairment, absence of deep tendon reflexes in his lower extremities. Electrophysiological evaluation demonstrated motor and sensory axonal distal polyneuropathy predominantly in lower extremities. At follow up, he had high fever, and elevated acute phase responses. Therefore source of infection was investigated and was suspected to a diagnosis of infective endocarditis. He was discharged to be hospitalized in cardiology clinic. With this case, we think that physiatrists should take into consideration a diagnosis of critical illness polyneuropathy in patients with symmetric motor weakness. In CIP, muscle weakness, sensory loss, neuropathic pain, and autonomic problems lengthened the rehabilitation period. Due to a diagnosis of infective endocarditis in our case, we point out that source of infection should be carefully investigated if there is acute phase responses in CIP patients even if during rehabilitation period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号