首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various forms of synaptic plasticity underlying motor learning have already been well characterized at cerebellar parallel fibre (PF)–Purkinje cell (PC) synapses. Inhibitory interneurones play an important role in controlling the excitability and synchronization of PCs. We have therefore tested the possibility that excitatory synapses between PFs and stellate cells (SCs) are also able to exhibit long-term changes in synaptic efficacy. In the present study, we show that long-term potentiation (LTP) and long-term depression (LTD) were induced at these synapses by a low frequency stimulation protocol (2 Hz for 60 s) and that pairing this low frequency stimulation protocol with postsynaptic depolarization induced a marked shift of synaptic plasticity in favour of LTP. This LTP was cAMP independent, but required nitric oxide (NO) production from pre- and/or postsynaptic elements, depending on the stimulation or pairing protocol used, respectively. In contrast, LTD was not dependent on NO production but it required activation of postsynaptic group II and possibly of group I metabotropic glutamate receptors. Finally, stimulation of PFs at 8 Hz for 15 s also induced LTP at PF–SC synapses. But in this case, LTP was cAMP dependent, as was also observed at PF–PC synapses for presynaptic LTP induced in the same conditions. Thus, long-term changes in synaptic efficacy can be accomplished by PF–SCs synapses as well as by PF–PC synapses, suggesting that both types of plasticity might co-operate during cerebellar motor learning.  相似文献   

2.
Endocannabinoids are potent regulators of synaptic strength. They are generally thought to modify neurotransmitter release through retrograde activation of presynaptic type 1 cannabinoid receptors (CB1Rs). In the cerebellar cortex, CB1Rs regulate several forms of synaptic plasticity at synapses onto Purkinje cells, including presynaptically expressed short-term plasticity and, somewhat paradoxically, a postsynaptic form of long-term depression (LTD). Here we have generated mice in which CB1Rs were selectively eliminated from cerebellar granule cells, whose axons form parallel fibers. We find that in these mice, endocannabinoid-dependent short-term plasticity is eliminated at parallel fiber, but not inhibitory interneuron, synapses onto Purkinje cells. Further, parallel fiber LTD is not observed in these mice, indicating that presynaptic CB1Rs regulate long-term plasticity at this synapse.  相似文献   

3.
Changes in synaptic efficacy at the parallel fiber (PF)-Purkinje cell (PC) synapse are postulated to be a cellular basis for motor learning. Although long-term efficacy changes lasting more than an hour at this synapse, i.e., long-term potentiation and depression, have been extensively studied, relatively short lasting synaptic efficacy changes, namely short-term potentiation (STP) lasting for tens of minutes, have not been discussed to date. Here we report that this synapse shows an apparent STP reliably by a periodic burst pattern of homosynaptic stimulation. This STP is presynaptically expressed, since it accompanies with a reduced paired-pulse facilitation and is resistant to postsynaptic Ca(2+) reduction by BAPTA injection or in P/Q-type Ca channel knockout cerebella. This novel type of synaptic plasticity at the PF-PC synapse would be a clue for understanding the presynaptic mechanisms of plasticity at this synapse.  相似文献   

4.
Activity-dependent developmental maturation of the neocortical network is thought to involve the stabilization and potentiation of immature synapses. In particular, N-methyl-d-aspartate (NMDA) receptor-dependent long-term plasticity that is expressed presynaptically appears to be crucial for the selection of functionally adequate synapses. However, presynaptic expression of long-term plasticity in neocortical neurons has mainly been studied indirectly by electrophysiological techniques. Here we analyzed presynaptic plasticity directly by repeated imaging of actively cycling presynaptic vesicles with the styryl dye FM4-64 in cultured neocortical neurons at 34 degrees C. To monitor long-term changes, stimulation-induced saturating FM4-64 staining and subsequent destaining was performed twice with an interval of 1.5 h between stainings and with the first staining serving as a plasticity stimulus. In the vast majority of presynaptic release sites, we found an increase in the mean fluorescence intensity after the second staining indicating an enhanced number of cycling synaptic vesicles. Most intriguingly, we additionally observed the appearance of new active release sites. As demonstrated by the addition of the NMDA receptor antagonist d-2-amino-5-phosphonopentanoic acid (d-AP5), both plasticity phenomena were strictly dependent on NMDA receptor activation. This suggests that a subpopulation of release sites was functionally silent during the first round of staining. Moreover, we studied a potential role of brain-derived neurotrophic factor (BDNF) in this type of presynaptic plasticity by imaging BDNF-deficient neocortical neurons. The increase in fluorescence intensity was strongly inhibited in BDNF-knockout neurons and was absent in wild-type neurons in the presence of BDNF scavenging trkB receptor bodies. These results indicate that BDNF might play an important role as a plasticity-related messenger molecule in neocortical neurons.  相似文献   

5.
The induction of long-term potentiation (LTP) and long-term depression (LTD) of excitatory postsynaptic currents was investigated in proximal synapses of layer 2/3 pyramidal cells of the rat medial prefrontal cortex. The spike timing-dependent plasticity (STDP) induction protocol of negative timing, with postsynaptic leading presynaptic stimulation of action potentials (APs), induced LTD as expected from the classical STDP rule. However, the positive STDP protocol of presynaptic leading postsynaptic stimulation of APs predominantly induced a presynaptically expressed LTD rather than the expected postsynaptically expressed LTP. Thus the induction of plasticity in layer 2/3 pyramidal cells does not obey the classical STDP rule for positive timing. This unusual STDP switched to a classical timing rule if the slow Ca(2+)-dependent, K(+)-mediated afterhyperpolarization (sAHP) was inhibited by the selective blocker N-trityl-3-pyridinemethanamine (UCL2077), by the β-adrenergic receptor agonist isoproterenol, or by the cholinergic agonist carbachol. Thus we demonstrate that neuromodulators can affect synaptic plasticity by inhibition of the sAHP. These findings shed light on a fundamental question in the field of memory research regarding how environmental and behavioral stimuli influence LTP, thereby contributing to the modulation of memory.  相似文献   

6.
Hippocampal mossy fiber synapses show an unusual form of long-term potentiation (LTP) that is independent of NMDA receptor activation and is expressed presynaptically. Using receptor antagonists, as well as receptor knockout mice, we found that presynaptic kainate receptors facilitate the induction of mossy fiber long-term potentiation (LTP), although they are not required for this form of LTP. Most importantly, these receptors impart an associativity to mossy fiber LTP such that activity in neighboring mossy fiber synapses, or even associational/commissural synapses, influences the threshold for inducing mossy fiber LTP. Such a mechanism greatly increases the computational power of this form of plasticity.  相似文献   

7.
Acute alcohol consumption causes deficits in motor coordination and gait, suggesting an involvement of cerebellar circuits, which play a role in the fine adjustment of movements and in motor learning. It has previously been shown that ethanol modulates inhibitory transmission in the cerebellum and affects synaptic transmission and plasticity at excitatory climbing fiber (CF) to Purkinje cell synapses. However, it has not been examined thus far how acute ethanol application affects long-term depression (LTD) and long-term potentiation (LTP) at excitatory parallel fiber (PF) to Purkinje cell synapses, which are assumed to mediate forms of cerebellar motor learning. To examine ethanol effects on PF synaptic transmission and plasticity, we performed whole cell patch-clamp recordings from Purkinje cells in rat cerebellar slices. We found that ethanol (50 mM) selectively blocked PF-LTD induction, whereas it did not change the amplitude of excitatory postsynaptic currents at PF synapses. In contrast, ethanol application reduced voltage-gated calcium currents and type 1 metabotropic glutamate receptor (mGluR1)-dependent responses in Purkinje cells, both of which are involved in PF-LTD induction. The selectivity of these effects is emphasized by the observation that ethanol did not impair PF-LTP and that PF-LTP could readily be induced in the presence of the group I mGluR antagonist AIDA or the mGluR1a antagonist LY367385. Taken together, these findings identify calcium currents and mGluR1-dependent signaling pathways as potential ethanol targets and suggest that an ethanol-induced blockade of PF-LTD could contribute to the motor coordination deficits resulting from alcohol consumption.  相似文献   

8.
Long-term potentiation (LTP) of parallel fiber–Purkinje cell (PF–PC) synapses in the cerebellum has been suggested to underlie aspects of motor learning. Previous in vitro studies have primarily used low frequency PF stimulation conditioning paradigms to generate either presynaptic PF–PC LTP (4–8 Hz) or postsynaptic PF–PC LTP (1 Hz). Little is known about the conditions that evoke PF–PC LTP in vivo. High frequency stimulation in vivo increases PC responsiveness to peripheral stimuli; however, neither the site of action nor the signaling pathways involved have been examined. Using flavoprotein autofluorescence optical imaging in the FVB mouse in vivo, this report describes that a conditioning stimulation consisting of a high frequency burst of PF stimulation (100 Hz, 15 pulse trains every 3 s for 5 min) evokes a long-term increase in the response to PF stimulation. Following the conditioning stimulation, the response to PF stimulation increases over 20 min to ∼130% above baseline and this potentiation persists for at least 2 h. Field potential recordings of the responses to PF stimulation show that the postsynaptic component is potentiated but the presynaptic, parallel fiber volley is not. Paired-pulse facilitation does not change after the conditioning stimulation, suggesting the potentiation occurs postsynaptically. Blocking non-NMDA (N-methyl-d-aspartic acid) ionotropic glutamate receptors with DNQX (6,7-dinitroquinoxaline-2,3-dione disodium salt, 50 μM, bath application) during the conditioning stimulation has no effect on the long-term increase in fluorescence. However, blocking subtype I metabotropic glutamate receptors (mGLuR1) with LY367385 (200 μM) during the conditioning stimulation abolishes the long-term increase in fluorescence. Blocking GABAergic neurotransmission is not required to evoke this long-term potentiation. Blocking GABAA receptors reduces but does not eliminate the long-term potentiation. Therefore, this study demonstrates that high frequency PF stimulation generates long-term potentiation of PF–PC synapses in vivo. This novel form of LTP is generated primarily postsynaptically and is mediated by mGluR1 receptors.  相似文献   

9.
Controversy exists regarding the site of modification of synaptic transmission during long-term plasticity in the mammalian hippocampus. Here we used a fluorescent marker of presynaptic activity, FM 1-43, to directly image changes in presynaptic function during both short-term and long-term forms of plasticity at presynaptic boutons of CA3-CA1 excitatory synapses in acute hippocampal slices. We demonstrated enhanced presynaptic function during long-term potentiation (LTP) induced either chemically (with tetraethylammonium), or by high-frequency (200-Hz) electrical stimulation. Both of these forms of LTP required activation of L-type voltage-gated calcium channels and NMDA receptors in the postsynaptic CA1 neuron. These results thus implied that a long-lasting increase in the efficacy of synaptic transmission is likely to depend, at least in part, on enhanced transmitter release from the presynaptic neuron.  相似文献   

10.
Recent evidence suggests that functional and silent synapses are not only postsynaptically different but also presynaptically distinct. The presynaptic differences may be of functional importance in memory formation because a proposed mechanism for long-term potentiation is the conversion of silent synapses into functional ones. However, there is little direct experimentally evidence of these differences. We have investigated the transmitter release properties of functional and silent Schaffer collateral synapses and show that on the average functional synapses displayed a lower percentage of failures and higher excitatory postsynaptic current (EPSC) amplitudes than silent synapses at +60 mV. Moreover, functional but not silent synapses show paired-pulse facilitation (PPF) at +60 mV and thus presynaptic short-term plasticity will be distinct in the two types of synapse. We examined whether intraterminal endoplasmic reticulum Ca2+ stores influenced the release properties of these synapses. Ryanodine (100 microM) and thapsigargin (1 microM) increased the percentage of failures and decreased both the EPSC amplitude and PPF in functional synapses. Caffeine (10 mM) had the opposite effects. In contrast, silent synapses were insensitive to both ryanodine and caffeine. Hence we have identified differences in the release properties of functional and silent synapses, suggesting that synaptic terminals of functional synapses express regulatory molecular mechanisms that are absent in silent synapses.  相似文献   

11.
Long-term forms of synaptic plasticity that may underlie learning and memory have been suggested to depend on changes in the number of synapses between presynaptic and postsynaptic neurons. Here we have investigated a form of synaptic plasticity in cultures of hippocampal CA3 and CA1 neurons related to the late phase of long-term potentiation, which depends on cAMP and protein synthesis. Using the fluorescent dye FM 1-43 to label active presynaptic terminals, we find that a membrane permeable analog of cAMP enhances the number of active presynaptic terminals and that this effect requires protein synthesis.  相似文献   

12.
Tamura H  Ikegaya Y  Shiosaka S 《Neuroscience》2006,138(4):1049-1053
The capacity of activity-dependent synaptic modification is essential in processing and storing information, yet little is known about how synaptic plasticity alters the input-output conversion efficiency at the synapses. In the adult mouse hippocampus in vivo, we carefully compared the input-output relationship, in terms of presynaptic activity levels versus postsynaptic potentials, before and after the induction of synaptic plasticity and found that synaptic plasticity led synapses to respond more robustly to inputs, that is, synaptic gain was increased as a function of synaptic activity with an expansive, power-law nonlinearity, i.e. conforming to the so-called gamma curve. In extreme cases, long-term potentiation and depression coexist in the same synaptic pathway with long-term potentiation dominating over long-term depression at higher levels of presynaptic activity. These findings predict a novel function of synaptic plasticity, i.e. a contrast-enhancing filtering of neural information through a gamma correction-like process.  相似文献   

13.
The high density of cannabinoid receptors in the cerebellum and the degradation of motor coordination produced by cannabinoid intoxication suggest that synaptic transmission in the cerebellum may be strongly regulated by cannabinoid receptors. Therefore the effects of exogenous cannabinoids on synapses received by Purkinje cells were investigated in rat cerebellar slices. Parallel fiber-evoked (PF) excitatory postsynaptic currents (EPSCs) were strongly inhibited by bath application of the cannabinoid receptor agonist WIN 55212-2 (5 microM, 12% of baseline EPSC amplitude). This effect was completely blocked by the cannabinoid CB1 receptor antagonist SR 141716. It is unlikely that this was the result of alterations in axonal excitability because fiber volley velocity and kinetics were unchanged and a cannabinoid-induced decrease in fiber volley amplitude was very minor (93% of baseline). WIN 55212-2 had no effect on the amplitude or frequency of spontaneously occurring miniature EPSCs (mEPSCs), suggesting that the effect of CB1 receptor activation on PF EPSCs was presynaptically expressed, but giving no evidence for modulation of release processes after Ca(2+) influx. EPSCs evoked by climbing fiber (CF) stimulation were less powerfully attenuated by WIN 55212-2 (5 microM, 74% of baseline). Large, action potential-dependent, spontaneously occurring inhibitory postsynaptic currents (sIPSCs) were either severely reduced in amplitude (<25% of baseline) or eliminated. Miniature IPSCs (mIPSCs) were reduced in frequency (52% of baseline) but not in amplitude, demonstrating suppression of presynaptic vesicle release processes after Ca(2+) influx and suggesting an absence of postsynaptic modulation. The decrease in mIPSC frequency was not large enough to account for the decrease in sIPSC amplitude, suggesting that presynaptic voltage-gated channel modulation was also involved. Thus, while CB1 receptor activation reduced neurotransmitter release at all major classes of Purkinje cell synapses, this was not accomplished by a single molecular mechanism. At excitatory synapses, cannabinoid suppression of neurotransmitter release was mediated by modulation of voltage-gated channels in the presynaptic axon terminal. At inhibitory synapses, in addition to modulation of presynaptic voltage-gated channels, suppression of the downstream vesicle release machinery also played a large role.  相似文献   

14.
Distinct functional roles in learning and memory are attributed to certain areas of the hippocampus and the parahippocampal region. The subiculum as a part of the hippocampal formation is the principal target of CA1 pyramidal cell axons and serves as an interface in the information processing between the hippocampus and the neocortex. Subicular pyramidal cells have been classified as bursting and regular firing cells. Here we report fundamental differences in long-term potentiation (LTP) between both cell types. Prolonged high-frequency stimulation induced NMDA receptor-dependent LTP in both cell types. While LTP relied on postsynaptic calcium in regular firing neurons, no increase in postsynaptic calcium was required in bursting cells. Furthermore, paired-pulse facilitation revealed that the site of LTP expression was postsynaptic in regular firing neurons, while presynaptic in burst firing neurons. Our findings on synaptic plasticity in the subiculum indicate that regular firing and bursting cells represent two functional units with distinct physiological roles in processing hippocampal output.  相似文献   

15.
Hippocampal output is mediated via the subiculum, which is the principal target of CA1 pyramidal cells, and which sends projections to a variety of cortical and subcortical regions. Pyramidal cells in the subiculum display two different firing modes and are classified as being burst-spiking or regular-spiking. In a previous study, we found that low-frequency stimulation induces an NMDA receptor-dependent long-term depression (LTD) in burst-spiking cells and a metabotropic glutamate receptor-dependent long-term potentiation (LTP) in regular-spiking cells [P. Fidzinski, O. Shor, J. Behr, Target-cell-specific bidirectional synaptic plasticity at hippocampal output synapses, Eur. J. Neurosci., 27 (2008) 1111–1118]. Here, we present evidence that this bidirectional plasticity relies upon the co-activation of muscarinic acetylcholine receptors, as scopolamine blocks synaptic plasticity in both cell types. In addition, we demonstrate that the L-type calcium channel inhibitor nifedipine converts LTD to LTP in burst-spiking cells and LTP to LTD in regular-spiking cells, indicating that the polarity of synaptic plasticity is modulated by voltage-gated calcium channels. Bidirectional synaptic plasticity in subicular cells therefore appears to be governed by a complex signaling system, involving cell-specific recruitment of ligand and voltage-gated ion channels as well as metabotropic receptors. This complex regulation might be necessary for fine-tuning of synaptic efficacy at hippocampal output synapses.  相似文献   

16.
The mechanisms of the early (up to 1 h) and late (up to 3 h) phases of long-term potentiation were studied by analyzing the interaction between long-term potentiation and presynaptic paired-pulse facilitation. “Minimal” excitatory postsynaptic potentials were measured in pyramidal neurons in field CA1 of rat hippocampal slices in conditions of paired-pulse stimulation of the radial layer. In most neurons, paired-pulse facilitation decreased after induction of long-term potentiation, and this reduction lasted throughout the recording period (up to 3.5 h). Changes in paired-pulse facilitation correlated with the extent of long-term facilitation and with the initial level of paired-pulse facilitation, and the extent of facilitation depended on the initial level of paired-pulse facilitation. This latter relationship was different for the early and late phases of long-term potentiation and increased with time. Overall, the data obtained here demonstrate a significant role for presynaptic mechanisms in maintaining both the early and late phases of long-term potentiation. It is suggested that the basic mechanism of the early phase of potentiation is an increase in the probability that transmitter will be released, which also leads to an increase in the number of effective release sites, due to transformation of “presynaptically quiet” synapses into effective synapses. It is proposed that the development of the late phase is based on simultaneous pre- and postsynaptic structural transformations which increase the number of synaptically active zones. Translated from Rossiiskii Fiziologicheskii Zhurnal imeni I. M. Sechenova, Vol. 84, No. 5-6, pp. 426–435, May–June, 1998.  相似文献   

17.
Modulation of long-term plasticity by both the intrinsic activation of metabotropic glutamate receptors and dopamine released from the nigrostriatal pathway was investigated at excitatory striatal synapses. Intracellular recordings demonstrated that tetanic stimulation at an intensity equal to that used for synaptic sampling produced, on average, a slight long-term depression of excitatory postsynaptic potentials. The long-term response pattern was variable, however, with some cells showing potentiation and others no plasticity. Block of metabotropic glutamate receptors with 3-aminophosphonovaleric acid changed the pattern of responses, increasing the percentage of cells showing long-term potentiation. Similarly, 6-hydroxydopamine lesions to the substantia nigra changed the pattern of response to tetanic stimulation, increasing the expression of long-term potentiation. These data indicate that metabotropic glutamate receptor and dopamine receptor activation may function to regulate the expression of activity-dependent plasticity at corticostriatial synapses. Paired-pulse stimulation revealed that post-tetanic plasticity was negatively correlated with changes in paired-pulse plasticity in the control and 6-hydroxydopamine-lesioned groups, suggesting that the expression of long-term plasticity has a presynaptic component at corticostriatal synapses.  相似文献   

18.
Hippocampal CA1 inhibitory interneurones control the excitability and synchronization of pyramidal cells, and participate in hippocampal synaptic plasticity. Pairing theta-burst stimulation (TBS) with postsynaptic depolarization, we induced long-term potentiation (LTP) of putative single-fibre excitatory postsynaptic currents (EPSCs) in stratum oriens/alveus (O/A) interneurones of mouse hippocampal slices. LTP induction was absent in metabotropic glutamate receptor 1 (mGluR1) knockout mice, was correlated with the postsynaptic presence of mGluR1a, and required a postsynaptic Ca2+ rise. Changes in paired-pulse facilitation and coefficient of variation indicated that LTP expression involved presynaptic mechanisms. LTP was synapse specific, occurring selectively at synapses modulated by presynaptic group II, but not group III, mGluRs. Furthermore, the TBS protocol applied in O/A induced a long-term increase of polysynaptic inhibitory responses in CA1 pyramidal cells, that was absent in mGluR1 knockout mice. These results uncover the mechanisms of a novel form of interneurone synaptic plasticity that can adaptively regulate inhibition of hippocampal pyramidal cells.  相似文献   

19.
Nitric oxide (NO) is a candidate retrograde messenger in long-term potentiation (LTP). The NO metabolic pathway is expressed in the cerebellar granule cell layer but its physiological role remained unknown. In this paper we have investigated the role of NO in cerebellar mossy fiber-granule cell LTP, which has postsynaptic N-methyl-d-aspartate (NMDA) receptor-dependent induction. Pre- and postsynaptic current changes were simultaneously measured by using extracellular focal recordings, and NO release was monitored with an electrochemical probe in P21 rat cerebellar slices. High-frequency mossy fiber stimulation induced LTP and caused a significant NO release (6.2 +/- 2.8 nM; n = 5) in the granular layer that was dependent on NMDA receptor as well as on nitric oxide synthase (NOS) activation. Preventing NO production by perfusing the NOS inhibitor 100 microM NG-nitro-l-arginine (L-NNA), blocking extracellular NO diffusion by 10 microM MbO2, or inhibiting the NO target guanylyl cyclase (sGC) with 10 microM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-dione (ODQ) prevented LTP. Moreover, the NO donor 10 microM 2-(N,N-diethylamino)-diazenolate-2-oxide.Na (DEA-NO) induced LTP, which was mutually occlusive with LTP generated by high-frequency stimulation, prevented by ODQ, and insensitive to NMDA channel blockade (50 microM APV + 25 microM 7-Cl-kyn) or interruption of mossy fiber stimulation. Thus NO is critical for LTP induction at the cerebellar mossy fiber-granule cell relay. Interestingly, LTP manipulations were accompanied by consensual changes in the presynaptic current, suggesting that NO acts as a retrograde signal-enhancing presynaptic terminal excitability.  相似文献   

20.
L.L. Voronin 《Neuroscience》1983,10(4):1051-1069
Long-term potentiation of field and single neuronal responses recorded in various hippocampal fields is described on the basis of author's and literary data. Most of intrahippocampal and extrinsic connections in both in vivo and in vitro hippocampal preparations show this phenomenon after one or several conditioning trains of comparatively short duration (20 s or less) at various frequencies (from 10 to 400 Hz). Properties of hippocampal potentiation are described. The properties include long term persistence (hours and days) of the potentiated response, its low frequency depression, self-restoration after the depression, specificity of the potentiation for the tetanized pathway, necessity of activation of a sufficient number of neuronal elements (‘cooperativity’) to produce the potentiation, possible involvement of ‘reinforcing’ brain structures during conditioning tetanization. These properties are distinct from those of ‘usual’ short-term post-tetanic potentiation and lead to the suggestion that the neuronal mechanisms underlying long-term potentiation are similar to those underlying memory and behavioralconditioned reflex. Neurophysiological mechanisms of long-term potentiation are discussed. The main mechanism consists in an increase in efficacy of excitatory synapses as shown by various methods including intracellular recording and quantal analysis. The latter favours presynaptic localization of the changes of synaptic efficacy showing increase in the number of transmitter quanta released per presynaptic impulse. However, changes in the number of subsynaptic receptors or localized changes in dendritic postsynaptic membrane are not excluded. Biochemical studies indicate the increase in transmitter release and calcium-dependent phosphorylation of pyruvate dehydrogenase after tetanization. Instances of persistent response facilitations at other levels of the vertebrate central nervous system (especially at neocortical level) are considered and compared with hippocampal long-term potentiation.

It is suggested that modifiable excitatory synapses necessary for learning have been identified in studies of long-term potentiation. These synapses are presumably modified as a result of close sequential activation of the following three structures: excitatory presynaptic fibers, the postsynaptic neuron and a ‘reinforcing’ brain system.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号