首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remyelination is an extremely efficient process in the adult rodent central nervous system yet the source of new oligodendroglia that appear following primary demyelination is still subject to much debate. Using a reliable marker for oligodendroglial progenitor cells in vivo, the NG2 chondroitin sulphate proteoglycan, we have evaluated the response of endogenous NG2+ cells in the adult rat brain stem and cerebellum to inflammatory demyelinating lesions in an experimentally induced animal model of multiple sclerosis (MS), antibody augmented experimental allergic encephalomyelitis (ADEAE). We have manipulated T-cell mediated EAE in Lewis rats by injecting in addition, either anti-myelin/oligodendroglial glycoprotein (MOG) antibodies to induce inflammatory demyelination, or non-specific mouse immunoglobulins to induce an inflammatory response without demyelination. We have examined the relationship of NG2+ progenitor cells to microglia (OX-42+), astrocytes (GFAP+) and mature oligodendroglia (CNP+), in the normal and demyelinated CNS. In the normal CNS NG2-expressing cells are closely intermingled with other glia but represent a distinct cell population. A prominent inflammatory response, identified by the presence of large perivascular and periventricular accumulations of reactive OX42+ macrophages/microglia, occurred in animals with ADEAE at 7–9 days post injection (DPI), coinciding with severe clinical symptoms. In animals injected with anti-MOG antibodies inflammation was followed by the appearance of large areas of demyelination at 11–14 DPI, at which point the animals had recovered clinically. The response of NG2+ cells was different depending on whether the inflammation was accompanied by demyelination. In the presence of inflammation, NG2+ cells responded by an increase in immunoreactivity and an alteration in their morphology, exhibiting enlarged cell bodies and an increased number of intensely stained processes. In areas of demyelination NG2+ cells had fewer intensely stained processes reminiscent of progenitor cells seen during development. Quantitative analysis revealed a 3-fold increase in the number of NG2+ cells in demyelinated lesions at 11 DPI, whereas no change was observed in areas of inflammation in the absence of demyelination. Mitotic figures were only seen in NG2+ cells in areas of demyelination. NG2+ cell numbers appeared to return to control levels following remyelination. These results suggest that endogenous oligodendroglial progenitors divide and/or migrate, in response to signals triggered by demyelinating rather than inflammatory events, to generate a large progenitor population sufficient to promote the rapid and successful remyelination observed in this model.  相似文献   

2.
Oligodendrocyte precursor cells (OPCs) are one of the potential treating tools for multiple sclerosis (MS). Therefore, the cell number and differentiation of OPCs in a demyelinated spinal cord are crucial for improvement of reparative process. In the present study, we investigated whether "Governor Vessel (GV)" electro-acupuncture (EA) could efficiently promote increase in cell number and differentiation of OPCs into oligodendrocytes, remyelination and functional recovery in the demyelinated spinal cord. The spinal cord of adult Sprague-Dawley rats was microinjected with ethidium bromide (EB) at T10, to establish a demyelinated model. Six groups of animals were performed for the experiment. After 15 days EA treatment, neurotrophin-3 (NT-3) level and number of NG2-positive OPCs were significantly increased. Compared with the sham group, more NG2-positive OPCs were distributed between neurofilament (NF)-positive nerve fibres or closely associated with them in the lesion site and nearby tissue. In rats given longer EA treatment for 30 days, the number of adenomatous polyposis coli (APC)-positive oligodendrocytes was increased. Concomitantly, the number of newly formed myelins was increased. This was coupled by increase in endogenous oligodendrocyte involved in myelin formation. Furthermore, behavioural test and spinal cord evoked potential detection demonstrated a significant functional recovery in the EA+EB day 30 group. Our results suggest EA treatment can promote NT-3 expression, increase the cell number and differentiation of endogenous OPCs, and remyelination in the demyelinated spinal cord as well as the functional improvement of demyelinated spinal cord.  相似文献   

3.
Multiple sclerosis (MS) is a progressive demyelinating disease of the central nervous system (CNS). Many nerve axons are insulated by a myelin sheath and their demyelination not only prevents saltatory electrical signal conduction along the axons but also removes their metabolic support leading to irreversible neurodegeneration, which currently is untreatable. There is much interest in potential therapeutics that promote remyelination and here we explore use of leukaemia inhibitory factor (LIF), a cytokine known to play a key regulatory role in self-tolerant immunity and recently identified as a pro-myelination factor. In this study, we tested a nanoparticle-based strategy for targeted delivery of LIF to oligodendrocyte precursor cells (OPC) to promote their differentiation into mature oligodendrocytes able to repair myelin. Poly(lactic-co-glycolic acid)-based nanoparticles of ∼120 nm diameter were constructed with LIF as cargo (LIF-NP) with surface antibodies against NG-2 chondroitin sulfate proteoglycan, expressed on OPC. In vitro, NG2-targeted LIF-NP bound to OPCs, activated pSTAT-3 signalling and induced OPC differentiation into mature oligodendrocytes. In vivo, using a model of focal CNS demyelination, we show that NG2-targeted LIF-NP increased myelin repair, both at the level of increased number of myelinated axons, and increased thickness of myelin per axon. Potency was high: a single NP dose delivering picomolar quantities of LIF is sufficient to increase remyelination.Impact statementNanotherapy-based delivery of leukaemia inhibitory factor (LIF) directly to OPCs proved to be highly potent in promoting myelin repair in vivo: this delivery strategy introduces a novel approach to delivering drugs or biologics targeted to myelin repair in diseases such as MS.  相似文献   

4.
5.
The mechanisms limiting myelin repair in human central nervous system (CNS) remain unknown. Models of induced-demyelination in the nonhuman primate CNS may provide the necessary grounds to unravel these mechanisms and to investigate the development of strategies to promote myelin repair. To address this issue, we developed a model of focal demyelination in the adult Macaca fascicularis CNS. Lesions were induced by microinjection of lysolecithin in the optic nerve and the profile of remyelination was compared to that of lysolecithin-induced lesions of the spinal cord. In both structures, the time-course of demyelination as well as the onset of remyelination were found to be similar to that in the rodent CNS. While spinal cord lesions were remyelinated within 6 weeks, optic nerve lesions remained demyelinated for up to 3 months post-injection.The failure of remyelination in the optic nerve correlated with a reduced density of NG2+ oligodendrocyte progenitor cells, the presence of oligodendrocytes that fail to ensheath naked axons in the lesion and the absence of astrocyte recruitment in the lesion compared with spinal cord lesions. Our present data suggest that the reduced oligodendrocyte progenitor population, the improper activation of oligodendrocytes at the onset of remyelination in the optic nerve, and possibly, the involvement of astrocytes contribute to the chronicity of the optic nerve lesion. This model of chronic demyelination in the macaque optic nerve stresses its pertinence to unraveling the mechanisms limiting remyelination in multiple sclerosis.  相似文献   

6.
In multiple sclerosis (MS), one of the most frequent demyelinating diseases in man, remyelination of demyelinating lesions exists but is often incomplete. Also reported in experimental models of demyelination, this phenomenom confirms the regenerating potential of the demyelinated central nervous system (CNS) and, in particular, the existence of an endogenous mechanism of oligodendrocyte renewal. Failure in efficient remyelination could result from exhaustion of the pool of remyelinating cells, loss of axons and absence of a permissive environment for remyelination. Identifying the nature and the origin of the cells capable of generating new oligodendrocytes for remyelination could contribute to strategies to activate these cells, and thereby enhance their potential for myelin repair. Within the adult CNS, several cell types are capable of generating new oligodendrocytes following myelin damage: post-mitotic oligodendrocytes frequently found at the lesion site, oligodendrocyte progenitors whose existence has been confirmed both in vitro and in vivo, and multipotent cells localized in the germinative areas of the brain and the spinal cord. Although restricted to particular sites of the CNS, these multipotent cells, which maintain the capacity to self-renew and to migrate throughout adulthood, could constitute a powerful source of remyelinating cells. The study of the mechanisms of proliferation, migration and differentiation of these cells in response to demyelination should allow the definition of new strategies to promote endogenous remyelination and develop therapeutic approaches for demyelinating diseases such as MS. This goal is an appealing alternative to the transplantation of myelin-forming cells and should efficiently complement strategies aimed at reducing neuronal loss and inflammation.  相似文献   

7.
In the present study, we hypothesized that thymosin beta 4 (Tbeta4) is a potential therapy of multiple sclerosis (MS). To test this hypothesis, SJL/J mice (n=21) were subjected to experimental autoimmune encephalomyelitis (EAE), an animal model of MS. EAE mice were treated with saline or Tbeta4 (6 mg/kg, n=10) every 3 days starting on the day of myelin proteolipid protein (PLP) immunization for total five doses. Neurological function, inflammatory infiltration, oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes were measured in the brain of EAE mice. Double immunohistochemical staining was used to detect proliferation and differentiation of OPCs. Tbeta4 was used to treat N20.1 cells (premature oligodendrocyte cell line) in vitro, and proliferation of N20.1 cells was measured by bromodeoxyuridine (BrdU) immunostaining. Tbeta4 treatment improved functional recovery after EAE. Inflammatory infiltrates were significantly reduced in the Tbeta4 treatment group compared to the saline groups (3.6±0.3/slide vs 5±0.5/slide, P<0.05). NG2+ OPCs (447.7±41.9 vs 195.2±31/mm2 in subventricular zone (SVZ), 75.1±4.7 vs 41.7±3.2/mm2 in white matter), CNPase+ mature oligodendrocytes (267.5±10.3 vs 141.4±22.9/mm2), BrdU+ with NG2+ OPCs (32.9±3.7 vs 17.9±3.6/mm2), BrdU+ with CNPase+ mature oligodendrocytes (18.2±1.7 vs 10.7±2.2/mm2) were significantly increased in the Tbeta4 treated mice compared to those of saline controls (P<0.05). These data indicate that Tbeta4 treatment improved functional recovery after EAE, possibly, via reducing inflammatory infiltrates, and stimulating oligodendrogenesis.  相似文献   

8.
In multiple sclerosis (MS), myelin-specific T cells are normally associated with destruction of myelin and axonal damage. However, in acute MS plaque, remyelination occurs concurrent with T-cell infiltration, which raises the question of whether T cells might stimulate myelin repair. We investigated the effect of myelin-specific T cells on oligodendrocyte formation at sites of axonal damage in the mouse hippocampal dentate gyrus. Infiltrating T cells specific for myelin proteolipid protein stimulated proliferation of chondroitin sulfate NG2-expressing oligodendrocyte precursor cells early after induction via axonal transection, resulting in a 25% increase in the numbers of oligodendrocytes. In contrast, T cells specific for ovalbumin did not stimulate the formation of new oligodendrocytes. In addition, infiltration of myelin-specific T cells enhanced the sprouting response of calretinergic associational/commissural fibers within the dentate gyrus. These results have implications for the perception of MS pathogenesis because they show that infiltrating myelin-specific T cells can stimulate oligodendrogenesis in the adult central nervous system.  相似文献   

9.
Reports that chronically demyelinated multiple sclerosis brain and spinal cord lesions contained immature oligodendrocyte lineage cells have generated major interest aimed at the potential for promotion of endogenous repair. Despite the prominence of the optic nerve as a lesion site and its importance in clinical disease assessment, no detailed studies of multiple sclerosis‐affected optic nerve exist. This study aims to provide insight into the cellular pathology of chronic demyelination in multiple sclerosis through direct morphological and immunohistochemical analysis of optic nerve in conjunction with observations from an experimental cat optic nerve model of successful remyelination. Myelin staining was followed by immunohistochemistry to differentially label neuroglia. Digitally immortalized sections were then analyzed to generate quantification data and antigenic phenotypes including maturational stages within the oligodendrocyte lineage. It was found that some chronically demyelinated multiple sclerosis optic nerve lesions contained oligodendroglial cells and that heterogeneity existed in the presence of myelin sheaths, oligodendrocyte maturational stages and extent of axonal investment. The findings advance our understanding of oligodendrocyte activity in chronically demyelinated human optic nerve and may have implications for studies aimed at enhancement of endogenous repair in multiple sclerosis.  相似文献   

10.
Interferon-gamma (IFNgamma) is a pleiotropic cytokine that plays an important role in many inflammatory processes, including autoimmune diseases such as multiple sclerosis (MS). Demyelination is a hallmark of MS and a prominent pathological feature of several other inflammatory diseases of the central nervous system, including experimental autoimmune encephalomyelitis, an animal model of MS. Accordingly, in this study we followed the effect of IFNgamma in the demyelination and remyelination process by using an experimental autoimmune encephalomyelitis model of demyelination/remyelination after exposure of mice to the neurotoxic agent cuprizone. We show that demyelination in response to cuprizone is delayed in mice lacking the binding chain of IFNgamma receptor. In addition, IFNgammaR(-/-) mice exhibited an accelerated remyelination process after cuprizone was removed from the diet. Our results also indicate that the levels of IFNgamma were able to modulate the microglia/macrophage recruitment to the demyelinating areas. Moreover, the accelerated regenerative response showed by the IFNgammaR(-/-) mice was associated with a more efficient recruitment of oligodendrocyte precursor cells in the demyelinated areas. In conclusion, this study suggests that IFNgamma regulates the development and resolution of the demyelinating syndrome and may be associated with toxic effects on both mature oligodendrocytes and oligodendrocyte precursor cells.  相似文献   

11.
Multiple sclerosis is an autoimmune disease characterized by demyelination and axonal loss throughout the central nervous system. No regenerative treatment exists for patients who fail to respond to conventional immunosuppressive and immunomodulating drugs. In this scenario, stem cell therapy poses as a rational approach for neurological regeneration. Transplantation of embryonic-derived oligodendrocyte progenitor cells (OPCs) has been shown to promote remyelination and ameliorate animal models of neurodegenerative diseases. However, its therapeutic application is limited due to potential transplant rejection. In multiple sclerosis, an added concern is that transplant rejection would be most pronounced at sites of previous lesions, exacerbating a hyperactive immune response which could prevent remyelination and precipitate additional demyelination. Routine systemic immunosuppression may not be sufficient to prevent transplant rejection-associated immune reactions in the cerebral microenvironment. Mesenchymal stem cells (MSCs), due to their homing properties and inherent immunosuppressive nature, are a promising tool for clinical application targeted toward immunosuppression at sites of injury. In this study, we used a co-transplantation strategy to investigate the effect of syngeneic MSCs on the survival and remyelination abilities of allogeneic OPCs in adult nonimmunosuppressed shiverer mice. At all time points examined, cotransplantation with MSCs increased OPC engraftment, migration, and maturation in myelinating oligodendrocytes, which produced widespread myelination in the host corpus callosum. In addition, MSCs reduced microglia activation and astrocytosis in the brain of transplanted animals as well as T-cell proliferation in vitro. These data suggest that combining the immunomodulatory and trophic properties of MSCs with the myelinating ability of OPCs might be a suitable strategy for promoting neurological regeneration in demyelinating diseases.  相似文献   

12.
A functional role for EGFR signaling in myelination and remyelination   总被引:5,自引:0,他引:5  
Cellular strategies for oligodendrocyte regeneration and remyelination involve characterizing endogenous neural progenitors that are capable of generating oligodendrocytes during normal development and after demyelination, and identifying the molecular signals that enhance oligodendrogenesis from these progenitors. Using both gain- and loss-of-function approaches, we explored the role of epidermal growth factor receptor (EGFR) signaling in adult myelin repair and in oligodendrogenesis. We show that 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter-driven overexpression of human EGFR (hEGFR) accelerated remyelination and functional recovery following focal demyelination of mouse corpus callosum. Lesion repopulation by Cspg4+ (also known as NG2) Ascl1+ (also known as Mash1) Olig2+ progenitors and functional remyelination were accelerated in CNP-hEGFR mice compared with wild-type mice. EGFR overexpression in subventricular zone (SVZ) and corpus callosum during early postnatal development also expanded this NG2+Mash1+Olig2+ progenitor population and promoted SVZ-to-lesion migration, enhancing oligodendrocyte generation and axonal myelination. Analysis of hypomorphic EGFR-mutant mice confirmed that EGFR signaling regulates oligodendrogenesis and remyelination by NG2+Mash1+Olig2+ progenitors. EGFR targeting holds promise for enhancing oligodendrocyte regeneration and myelin repair.  相似文献   

13.
NG2: a component of the glial scar that inhibits axon growth   总被引:5,自引:0,他引:5  
NG2 is a high-molecular-weight chondroitin sulphate proteoglycan found on the surfaces of oligodendrocyte precursor cells (OPCs). Here we review the history and biology of OPCs with an emphasis on their functions after experimentally induced CNS injury. Injury to brain or spinal cord results in the rapid accumulation of NG2-expressing OPCs in the glial scar that forms at the injury site. The glial scar is considered a biochemical and physical barrier to successful axon regeneration and the functional properties of NG2 suggest that it, along with other macromolecules, participates in the creation of this growth-inhibitory environment. NG2 is an important target for therapies designed to promote successful axon regrowth.  相似文献   

14.
Remyelinating strategies for the treatment of multiple sclerosis   总被引:8,自引:0,他引:8  
Demyelination is the pathological hallmark of multiple sclerosis (MS) lesions. The concept of remyelination has gained acceptance in recent years, but naturally occurring remyelination is incomplete. To improve repair processes, a number of strategies have been explored experimentally and clinical trials are being carried out. In principle, remyelination can be achieved by either promoting endogenous repair mechanisms or by providing an exogenous source of myelinating cells via transplantation. Both approaches have been successful in animal models of demyelination. Besides, many studies have elucidated principal mechanisms of oligodendrocyte biology and remyelination in the central nervous system (CNS). This progress in knowledge also allowed for more specific interventions. First clinical trials to enhance endogenous remyelination have been performed, unfortunately with disappointingly negative results. This illustrates that experimental data cannot be easily transferred to human disease, and more detailed knowledge on the regulatory mechanisms of remyelination in MS is required. Recently, the first MS patient received a transplant of autologous Schwann cells. Many other cell types are being studied experimentally, including stem cells. Despite the ethical problems associated with an embryonic cell source, new developments in stem cell biology indicate that adult stem cells or bone marrow-derived cells may substitute for embryonic cells in the future. In this review, we describe the current views on oligodendrocyte biology, myelination and remyelination, and focus on recent developments leading to reconstructing, remyelinating strategies in MS.  相似文献   

15.
The mammalian adult central nervous system (CNS) is known to respond rapidly to demyelinating insults by regenerating oligodendrocytes for remyelination from a dividing precursor population. A widespread population of cells exists within the adult CNS that is thought to belong to the oligodendrocyte lineage, but which do not express proteins characteristic of mature myelinating oligodendrocytes, such as myelin basic protein (MBP) and 2,3-cyclic nucleotide 3-phosphodiesterase (CNP). Instead, these cells have phenotypic characteristics of a more immature stage of the oligodendrocyte lineage. They express the NG2 chondroitin sulphate proteoglycan, in addition to O4 and the platelet-derived growth factor alpha-receptor, all widely accepted as markers for oligodendrocyte progenitor cells (OPCs) throughout development. However, NG2+ cells residing in the adult CNS do not resemble embryonic or neonatal NG2+ cells in terms of their morphology or proliferation characteristics, but instead represent a unique type of glial cell that has the ability to react rapidly to CNS damage. In this review, we present the evidence that adult NG2+ cells are part of the oligodendrocyte lineage and are capable of giving rise to new oligodendrocytes under both normal and demyelinating conditions. We also review the literature that these cells may have multiple functional roles within the adult CNS, notwithstanding their primary role as OPCs.  相似文献   

16.
Recent studies revealed prominent cortical demyelination in patients with chronic multiple sclerosis (MS). Demyelination in white matter lesions is frequently accompanied by remyelination. This repair process, however, often remains incomplete and restricted to the lesion border. In the present study, we examined the frequency and extent of remyelination in cortical and white matter lesions in autopsy brain tissue of 33 patients with chronic MS. The majority of patients (29 of 33) harbored cortical demyelination. Remyelination of cortical lesions was identified light microscopically by the presence of thin and irregularly arranged myelin sheaths, and confirmed by electron microscopy. Extensive remyelination was found in 18%, remyelination restricted to the lesion border in 54%, and no remyelination in 28% of cortical lesions. A direct comparison of the extent of remyelination in white matter and cortical lesions of the same patients revealed that remyelination of cortical lesions was consistently more extensive. In addition, g-ratios of fibers in areas of "normal appearing cortex" yielded values consistent with remyelination. Our data confirm the high prevalence of cortical demyelination in chronic MS and imply that the propensity to remyelinate is high in cortical MS lesions.  相似文献   

17.
To understand mechanisms that may underlie the progression of a demyelinated lesion to a chronic state, we have used the cuprizone model of chronic demyelination. In this study, we investigated the fate of oligodendrocytes during the progression of a demyelinating lesion to a chronic state and determined whether transplanted adult oligodendrocyte progenitors could remyelinate the chronically demyelinated axons. Although there is rapid regeneration of the oligodendrocyte population following an acute lesion, most of these newly regenerated cells undergo apoptosis if mice remain on a cuprizone diet. Furthermore, the oligodendrocyte progenitors also become progressively depleted within the lesion, which appears to contribute to the chronic demyelination. Interestingly, even if the mice are returned to a normal diet following 12 weeks of exposure to cuprizone, remyelination and oligodendrocyte regeneration does not occur. However, if adult O4+ progenitors are transplanted into the chronically demyelinated lesion of mice treated with cuprizone for 12 weeks, mature oligodendrocyte regeneration and remyelination occurs after the mice are returned to a normal diet. Thus, the formation of chronically demyelinated lesions induced by cuprizone appears to be the result of oligodendrocyte depletion within the lesion and not due to the inability of the chronically demyelinated axons to be remyelinated.  相似文献   

18.
Experimental autoimmune encephalomyelitis (EAE) is a basic and reliable model used to study clinical and pathological hallmarks of multiple sclerosis (MS) in rodents. Several studies suggest neural precursor cells (NPCs) as a significant research tool while reporting that transplanted NPCs are a promising therapeutic approach to treating neurological disorders, such as MS. The main objective was to approach a preclinical, in vivo scenario of oligodendrogenesis with NPCs, targeting the main chronic demyelinated lumbosacral milieu of EAE, via the least invasive delivery method which is lumbar puncture. We utilized MOG35‐55 peptide to induce EAE in C57BL/6 mice and prior to the acute relapse, we intervened with either the traceable GFP+ cellular therapy or saline solution in the intrathecal space of their lumbar spine. A BrdU injection, which enabled us to monitor endogenous proliferation, marked the endpoint 50 days post‐induction (50 dpi). Neuropathology with high‐throughput, triple immunofluorescent, and transmission electron microscopy (TEM) data were extracted and analyzed. The experimental treatment attenuated the chronic phase of EAE (50 dpi; score <1) following an acute, clinical relapse. Myelination and axonal integrity were rescued in the NPC‐treated animals along with suppressed immune populations. The differentiation profile of the exogenous NPCs and endogenous BrdU+ cells was location‐dependent where GFP+‐rich areas drove undifferentiated phenotypes toward the oligodendrocyte lineage. In situ oligodendrocyte enrichment was demonstrated through increased (p < 0.001) gap junction channels of Cx32 and Cx47, reliable markers for proliferative oligodendroglia syncytium. TEM morphometric analysis ultimately manifested an increased g‐ratio in lumbosacral fibers of the recovered animals (p < 0.001). Herein, we suggest that a single, lumbar intrathecal administration of NPCs capacitated a viable cellular load and resulted in clinical and pathological amelioration, stimulating resident OPCs to overcome the remyelination failure in EAE demyelinating locale.  相似文献   

19.
Protein tyrosine phosphatase receptor type Z (Ptprz) is widely expressed in the mammalian central nervous system and has been suggested to regulate oligodendrocyte survival and differentiation. We investigated the role of Ptprz in oligodendrocyte remyelination after acute, toxin-induced demyelination in Ptprz null mice. We found neither obvious impairment in the recruitment of oligodendrocyte precursor cells, astrocytes, or reactive microglia/macrophage to lesions nor a failure for oligodendrocyte precursor cells to differentiate and remyelinate axons at the lesions. However, we observed an unexpected increase in the number of dystrophic axons by 3 days after demyelination, followed by prominent Wallerian degeneration by 21 days in the Ptprz-deficient mice. Moreover, quantitative gait analysis revealed a deficit of locomotor behavior in the mutant mice, suggesting increased vulnerability to axonal injury. We propose that Ptprz is necessary to maintain central nervous system axonal integrity in a demyelinating environment and may be an important target of axonal protection in inflammatory demyelinating diseases, such as multiple sclerosis and periventricular leukomalacia.Remyelination after myelin breakdown that occurs in demyelinating disease, such as multiple sclerosis, restores function and protects axons, whereas its failure is associated with the axonal loss that accounts for irreversible deterioration in multiple sclerosis.1,2 Identifying pathways critically involved in remyelination is fundamental to the development of regenerative therapies that are currently missing in the treatment of demyelinating diseases.3 Protein tyrosine phosphatases are a diverse group of enzymes that, together with protein tyrosine kinases, regulate tyrosine phosphorylation and hence coordinate intracellular signaling responses. Protein receptor tyrosine phosphatase type Z (Ptprz; alias receptor-type protein tyrosine phosphatase β) is widely expressed by both neurons and glia in the developing and adult nervous system and has been implicated in neuronal migration, morphogenesis, synapse formation, and paranode formation.4–8Ptprz is also expressed in oligodendrocyte lineage cells and has been suggested to play a key role in oligodendrocyte differentiation and myelination.9–11 However, mice deficient in Ptprz do not display obvious behavioral phenotype, and their CNS development, including myelination, appears grossly normal.12 By contrast, when subject to immune-mediated demyelination by experimental autoimmune encephalomyelitis (EAE), Ptprz-deficient mice exhibit sustained paralysis and poor functional recovery. In the spinal cords of these mice, widespread apoptosis of oligodendrocytes has been observed, suggesting that Ptprz may influence functional recovery from demyelination by promoting oligodendrocyte survival.13We analyzed CNS remyelination in Ptprz-deficient mice using a simple toxin–based model of demyelination to avoid the ambiguities of interpretation implicit in immune-mediated models, such as EAE. We induced demyelination by injecting 1.0% lysolecithin into the spinal cord ventral funiculus, which results in a lesion of focal primary demyelination with relative preservation of axons.14 Unexpectedly, we observed extensive axonal loss and Wallerian degeneration after lysolecithin injection in the Ptprz null mice compared with wild-type (WT) mice. This result, although shedding little light on the role of Ptprz in remyelination, reveals an unexpected role of this protein in protecting axons that have undergone primary demyelination and therefore identifies it as a potential and exciting novel target for neuroprotection in demyelinating disease.  相似文献   

20.
Neuroinflammation is thought to play a pivotal role in the pathogenesis of periventricular white matter (PWM) damage (PWMD) induced by neonatal sepsis. Because the complement cascade is implicated in inflammatory response, this study was carried out to determine whether C3a is involved in PWMD, and, if so, whether it would induce axonal hypomyelination. Furthermore, we explored if C3a would act through its C3a receptor (C3aR) and thence inhibit maturation of oligodendrocyte precursor cells (OPCs) via the WNT/β‐catenin signal pathway. Sprague Dawley (SD) rats aged 1 day were intraperitoneally injected with lipopolysaccharide (LPS) (1 mg/kg). C3a was upregulated in activated microglia and astrocytes in the PWM up to 7 days after LPS injection. Concomitantly, enhanced C3aR expression was observed in NG2+ oligodendrocytes (OLs). Myelin proteins including CNPase, PLP, MBP and MAG were significantly reduced in the PWM of 28‐day septic rats. The number of PLP+ and MBP+ cells was markedly decreased. By electron microscopy, myelin sheath thickness was thinner and the average g‐ratios were higher. This was coupled with an increase in number of NG2+ cells and decreased number of CC1+ cells. Olig1, Olig2 and SOX10 protein expression was significantly reduced in the PWM after LPS injection. Very strikingly, C3aRa administration for the first 7 days could reverse the above‐mentioned pathological alterations in the PWM of septic rats. When incubated with C3a, expression of MBP, CNPase, PLP, MAG, Olig1, Olig2, SOX10 and CC1 in primary cultured OPCs was significantly downregulated as opposed to increased NG2. Moreover, WNT/β‐catenin signaling pathway was found to be implicated in inhibition of OPCs maturation and differentiation induced by C3a in vitro. As a corollary, it is speculated that C3a in the PWM of septic rats is closely associated with the disorder of OPCs differentiation and maturation through WNT/β‐catenin signaling pathway, which would contribute ultimately to axonal hypomyelination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号