首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In July 2003, a house with a seasonally adjusted annual average radon concentration of 49 000 Bq m(-3) was identified near Castleisland in County Kerry (SW Ireland). The possibility that other houses with similar extreme radon concentrations could be present in the surrounding area triggered the setting up of a localised radon survey, the so-called 'Castleisland Radon Survey' (CRS). To this end, approximately 2500 householders living in four 10 x 10 km2 grid squares from the Irish grid closest to the town of Castleisland were invited to participate. Four hundred and eighteen householders responded to the invitation (17% response rate) and 383 home results were used for further analysis. In the 400 km2 encompassing the four studied grid squares, 14% of the homes were found to have a seasonally adjusted annual average radon concentration above the national reference level of 200 Bq m(-3) while 2% above 800 Bq m(-3). An average radon concentration of 147 Bq m(-3) was calculated. This can be compared with the average radon concentration of 98 Bq m(-3) calculated for the same four grid squares on the basis of 80 measurements carried out during the Irish National Radon Survey (NRS) which was conducted between 1992 and 1997. The fourth highest radon concentration (6184 Bq m(-3)) and three of the ten highest ever measured in Ireland were all identified during the CRS. This shows that localised and targeted radon surveys are an invaluable tool for the identification of homes at highest risk from high radon concentrations. Two of the four grid squares investigated during the CRS are currently designated as high radon areas (defined as areas where 10% or more of all houses are predicted to exceed 200 Bq m(-3)) as predicted by the NRS. A thorough statistical analysis of the CRS and NRS data was carried out and indicated that both datasets could be merged and used to refine the original NRS predictions. The results indicate that two of the four studied grid squares could potentially be redesignated. The practical feasibility and overall benefit of updating the Irish radon map in light of this analysis is described.  相似文献   

2.
Nationwide survey of radon levels in Korea   总被引:2,自引:0,他引:2  
Kim CK  Lee SC  Lee DM  Chang BU  Rho BH  Kang HD 《Health physics》2003,84(3):354-360
A nationwide radon survey was conducted to provide data on the annual average indoor radon concentration in Korean homes. This survey also provided data on the variation of radon concentration with season, house type, and building age. The arithmetic mean (AM) of annual radon concentration in Korean homes was 53.4 +/- 57.5 Bq m(-3). The indoor radon concentration showed a lognormal distribution with a geometric mean (GM) and its standard deviation (GSD) of 43.3 +/- 1.8 Bq m(-3). The radon concentrations in the traditional Korean-style houses were about two times higher than those in apartments and row houses. The average annual outdoor radon concentration was 23.3 Bq m(-3). The average annual effective dose to the general public from radon was 1.63 mSv y(-1).  相似文献   

3.
This paper presents the results of a survey of radon concentrations in Irish primary and post-primary schools. The objective of this survey was to assess the distribution of radon in Irish schools and to identify those requiring remedial work to reduce radon exposure to children and staff. All primary and post-primary schools were invited to participate in the survey. Indoor radon concentrations were measured during the academic year using integrating passive alpha track-etch detectors with a measurement period from three to nine months. The survey was carried out on a phased basis from 1998 to 2004 and is one of the most comprehensive of its kind undertaken in Europe. Measurements were completed in 38 531 ground floor classrooms and offices in 3826 schools, representing over 95% of the approximate 4000 primary and post-primary schools in Ireland. Of these, 984 schools had radon concentrations greater than 200 Bq m(-3) in 3028 rooms and 329 schools had radon concentrations in excess of 400 Bq m(-3) in 800 rooms. The average radon concentration in schools was 93 Bq m(-3). This results in an annual average effective dose to an Irish child from exposure to radon of 0.3 mSv per year, assuming that the long-term radon concentration is equal to the radon concentration present during the working hours and that the annual average occupancy is 1000 h per year. A programme of remediation of schools with radon concentrations above 200 Bq m(-3) has been put in place.  相似文献   

4.
The present study's objective was to control the quality of different mitigation methods for unusually high indoor radon (222Rn) concentrations of up to 274,000 Bq m(-3) in a village (Umhausen, 2,600 inhabitants) in western Tyrol, Austria. Five years after mitigation, five different remedial actions were examined on their quality by means of measuring indoor radon concentrations with charcoal liquid scintillation radon detectors and with a continuously recording AlphaGuard detector. Mitigation method in house 1--a mechanical intake and outlet ventilation system with heat exchanger in the basement, combined with a soil depressurization system--was characterized by long-term stability. With most favorable air pressure (+100 Pa) in the basement, mean basement radon concentrations in the winter were reduced from 200,000 Bq m(-3) to 3,000 Bq m(-3) by this method 5 y after mitigation. Acting against experts' instructions, the inhabitants had switched off the ventilation system most of the time to minimize power consumption although it had been proven that ventilation reduced mean basement radon concentration by a factor of about 3 in the winter and about 15 in the summer. Mitigation method in house 2-soil depressurization with two fans and loops of drainage tubes to withdraw radon from the region below the floor and outside the basement walls, and from soil below that part of the house with no basement-had been the most successful remedial measure until the winter of 1999 (i.e., 6 y after mitigation), when micro-cracks opened and consequently mean basement radon concentration increased from 250 Bq m(-3) to 1,500 Bq m(-3). Measures to block these microcracks and to minimize soil drying are being developed. Five years after mitigation, the remedial method used in house 3--a multilayer floor construction, where a fan was used to suck radon from a layer between bottom slab and floor-reduced winter mean radon concentration from 25,000 Bq m(-3) to 1,200 Bq m(-3), with the ventilation on and the basement door open. Mitigation method in house 4--a basement sealing technique--was unsuccessful with almost identical radon concentrations during all the five years since mitigation had started. Mitigation method in house 5--a waterproof basement technique especially for future homes--reduced mean basement radon concentration below 300 Bq m(-3) and mean ground floor radon concentration below 200 Bq m(-3), which is the Austrian action level for newly constructed buildings. These findings indicate that even in areas with extremely high radon concentrations, effective mitigation of indoor radon can be achieved provided that house-specific long-term, stable mitigation techniques are applied.  相似文献   

5.
Soto J  Gómez J 《Health physics》1999,76(4):398-401
Recent international recommendations have included exposure to natural radiation as one of the sources to monitor in certain occupationally exposed groups. Among those mentioned are workers in thermal spas, who may be exposed to high radiation doses due to the high concentration of radon in the indoor air of the spa. This paper presents the methodology and the results of an evaluation of radiation doses to the staff in different thermal spas in Spain. Different series of samples were collected and measurements made for the radon concentrations in water in 54 spas and in air in 20 spas. In six of the latter group, the air radon concentration was studied in different working areas occupied by the employees. The radon concentrations in water were between <2 and 775 x 10(3) Bq m(-3). The radon concentrations in air were between <10 and 5,200 Bq m(-3). The latter were used to estimate the dose received by each occupational group in the spa by taking into account the radon concentration in their main working area. By means of an exposure-dose conversion factor of 1.43 Sv per J h m(-3), the estimated effective doses were found to lie between 1 and 44 mSv y(-1). This upper limit is higher than the recommended annual limit of 20 mSv y(-1) for an occupational dose.  相似文献   

6.
Lu X  Zhang X 《Health physics》2006,91(6):619-623
22Rn air concentrations in the Lantian Xishui karst cave of Shaanxi, China, were measured by continuous monitoring during a complete annual cycle (March 2004-February 2005) and annual doses for tour guides and visitors were estimated. The 22Rn air concentrations in the cave vary between a minimum of 383.6 Bq m(-3) and a maximum of 2,015.7 Bq m(-3), with an annual average of 1,100.4 Bq m(-3). Distinct seasonal variation of radon air concentrations inside the cave was observed. The maximum average radon concentration occurred in summer and the minimum average radon concentration occurred in winter. The annual effective dose to tour guides varies between an average of 1.2 mSv and 4.9 mSv depending on different equilibrium factors together with different dose conversion factors proposed in the literature, which is lower than the international recommendations. In all cases, the annual effective doses to visitors are well under the 1 mSv maximum suggested dose for a member of the public for one year.  相似文献   

7.
National legislation, which implements European Council Directive 96/29/EURATOM in Ireland, sets a reference level of 400 Bq m(-3) averaged over any 3 month period for radon exposure in the workplace and also empowers the Radiological Protection Institute of Ireland to direct employers to have radon measurements carried out. This legislation came into effect in May 2000. Radon measurements have already been completed in show caves and other underground workplaces. Between 1998 and 2001, over 33 800 individual radon measurements were carried out in all ground floor offices and classrooms in 3444 schools nationwide as part of a programme undertaken jointly with the Department of Education and Science. Where the average indoor radon concentration in one or more rooms exceeded 200 Bq m(-3), remedial measures were implemented. For concentrations up to 400 Bq m(-3) this involved increased ventilation while for higher concentrations an active sump was normally installed. The results of the survey, as well as the effectiveness of the different remedial strategies, are discussed. In the case of other above ground workplaces, different approaches have been adopted. As a first step, workplaces in two known high radon areas were directed to have radon measurements carried out. This programme had limited success because of problems in obtaining accurate workplace databases and a general lack of awareness on the part of employers of the issues involved. From a sample of 2610 employers directed to measure radon, only 408 actually completed measurements and 37 workplaces were identified as having average 3 month average radon concentrations above 400 Bq m(-3). A total of 1356 employers ignored all correspondence, some of which was sent by registered post and signed for on receipt. Current initiatives are focused on the provision of information and include newspaper advertising as well as publications aimed specifically at both employer and employee representative groups. The ability to provide accurate information that encourages both measurement and remediation is seen as central to an effective radon workplace programme.  相似文献   

8.
The indoor radon (222Rn) concentration has been measured by charcoal detectors in 278 buildings in the region of Brussels, Belgium. The correlation with the nature of the subsoil can be studied in detail thanks to the available geotechnical map. With a geometrical mean indoor radon concentration of 19 Bq m(-3), Brussels can be considered as generally unaffected by the radon problem. No value higher than 400 Bq m(-3) (the EU reference level for existing houses) was measured in an occupied room. However, two factors that may enhance the risk are identified: the absence of a basement or a ventilated crawl space, and the presence of loess, under the house. About one third of the houses without basements or ventilated crawl spaces built on loess show an indoor radon concentration above 200 Bq m(-3) (the EU reference level for new houses).  相似文献   

9.
An advisory reference level of 200 Bq m(-3) and a statutory reference level of 400 Bq m(-3) apply to radon exposure in Irish schools. Following the results of a national survey of radon in Irish schools, several hundred classrooms were identified in which the reference levels were exceeded and a remediation program was put in place. This paper provides an initial analysis of the effectiveness of that remediation program. All remediation techniques proved successful in reducing radon concentrations. Active systems such as radon sumps and fan assisted under-floor ventilation were generally applied in rooms with radon concentrations above 400 Bq m(-3). These proved most effective with average radon reduction factors of 9 to 34 being achieved for radon sumps and 13 to 57 for fan assisted under-floor ventilation. Both of these techniques achieved maximum radon reduction factors in excess of 100. The highest average reduction factors were associated with the highest initial radon concentrations. Passive remediation systems such as wall and window vents were used to increase background ventilation in rooms with radon concentrations below 400 Bq m(-3) and achieved average radon reductions of approximately 55%. Following the installation of active remediation systems, the radon concentration in adjacent rooms, i.e., rooms in which the radon concentration was already below 200 Bq m(-3) and therefore did not require remediation, was further reduced by an average of 25%. The long-term effectiveness of a number of radon sump systems with at least three years operation showed no evidence of fan failures. This study showed an apparent increase in sump effectiveness with time as indicated by an increase in radon reduction factors during this period.  相似文献   

10.
A radon survey has been carried out of indoor radon concentrations in dwellings located in the town of Metsovo, in north-western Greece. To measure indoor radon concentrations, CR-39 detectors were installed in randomly selected houses and were exposed for about 3 mo, during summer and winter. Gamma spectroscopy measurements of the soil's radium content also were performed. The indoor radon concentration levels varied from 17.6 to 750.4 Bq m(-3), while the radium concentration of soil varied from 4.9 to 97.1 Bq m(-3). Seasonal variation of the radon levels and the influence of house features and soil are discussed.  相似文献   

11.
Radon action level for high-rise buildings   总被引:1,自引:0,他引:1  
Leung JK  Tso MY  Ho CW 《Health physics》1999,76(5):537-543
Radon and its progeny are the major contributors to the natural radiation dose received by human beings. Many countries and radiological authorities have recommended radon action levels to limit the indoor radon concentrations and, hence, the annual doses to the general public. Since the sources of indoor radon and the methods for reducing its concentration are different for different types of buildings, social and economic factors have to be considered when setting the action level. But so far no action levels are specifically recommended for cities that have dwellings and offices all housed in high-rise buildings. In this study, an optimization approach was used to determine an action level for high-rise buildings based on data obtained through previous territory-wide radon surveys. A protection cost of HK$0.044 per unit fresh air change rate per unit volume and a detriment cost of HK$120,000 per person-Sv were used, which gave a minimum total cost at an action level of 200 Bq m(-3). The optimization analyses were repeated for different simulated radon distributions and living environment, which resulted in quite significantly different action levels. Finally, an action level of 200 Bq m(-3) was recommended for existing buildings and 150 Bq m(-3) for newly built buildings.  相似文献   

12.
杨芬芳  袁镛龄 《中国辐射卫生》2010,19(3):272-274,276
目的 探索辐射水平在我国锡矿山的分布情况,在此基础上提出放射卫生防护的建议,为保护锡矿山井下工人身体健康提供科学依据。方法 分析、应用文献资料和现场调查的测量结果,得到了锡矿山井下工作场所的辐射水平。结果 锡矿山井下环境中γ辐射空气吸收剂量率绝大部份属于正常本底辐射水平。早期,锡矿山井下工作场所空气中氡浓度及氡子体α潜能浓度浓典型值分别为3.12 kBq/m3和5.61μJ/m3。目前,绝大多数锡矿山井下工作场所空气中氡浓度及氡子体α潜能浓度,分别低于1 000 Bq/m3和3.57μJ/m3结论 锡矿山工作人员中凡个人年有效剂量大于1mSv或物料中天然铀比活度大于1 Bq/g的锡矿山均应进行放射卫生防护的审管。锡矿山井下工作场所空气中氡及氡子体α潜能浓度和井下环境中γ辐射空气吸收剂量率管理限值分别为1 000 Bq/m3、3.57μJ/m3和1μGy/h。锡矿山井下矿工个人剂量管理目标值定为10mSv/a。工作人员总的年有效剂量超过10 mSv时,工作人员应视为放射工作人员。  相似文献   

13.
Beach Sand Exploitation Centre at Cox's Bazar, Bangladesh, produces commercial grade concentrations of magnetite, ilmenite, zircon, etc., from the high-grade accumulations available along the beach and foredune of Cox's Bazar. Solid state nuclear track detectors (CR-39 foils) were used to determine indoor radon concentration of radioactive mineral sands and the technologically enhanced radiation level inside the pilot plant of the Centre. It is found that the concentrations at processed mineral stock areas are high, and the maximum concentration was found to be 2,103 +/- 331 Bq m(-3) (0.23 +/- 0.03 WL). The indoor concentration of radon and its decay products in the raw sand stock area and at other locations was in the range of 116 +/- 27 Bq m(-3) (0.03 +/- 0.003 WL) to 2,042 +/- 233 Bq m(-3) (0.22 +/- 0.03 WL).  相似文献   

14.
It is now well established that radon and its daughter products account for nearly half of the average population exposure to ionizing radiations and that radon is the greatest single source of natural radiation to the population. Radon and its daughters are alpha-emitters, which are more biologically damaging than beta- and gamma-radiations. A nationwide survey of radon concentration was conducted by the National Institute of Radiological Sciences in order to estimate the contribution of radon and its daughters to the population dose in Japan. Authors surveyed indoor radon concentrations in Fukuoka and Kagoshima prefectures as part of this project. A passive type radon dosimeter, in which a sheet of polycarbonate film as the alpha-ray detector was mounted, was used to measure indoor radon concentrations. The resulting distribution of the average annual indoor radon concentrations in both prefectures can be characterized by an arithmetic mean of 24.4 Bq/m3 and a standard deviation of 13.1 Bq/m3, by a geometric mean of 22.2 Bq/m3, and by a median of 20.7 Bq/m3. The geometric means of the distributions for Fukuoka and Kagoshima were 25.4, and 18.4 Bq/m3, respectively. Radon concentrations were also generally high in winter and low in summer. Regarding the analysis of correlations between the concentrations and construction materials, radon concentrations were generally high in Japanese houses with earthen walls and in concrete structures. These results showed that seasons, the type of building materials, and regional differences were significant factors in the variation of indoor radon concentration.  相似文献   

15.
Tso MY  Leung JK 《Health physics》2000,78(5):555-558
In densely populated cities such as Hong Kong where people live and work in high-rise buildings that are all built with concrete, the indoor gamma dose rate and indoor radon concentration are not wide ranging. Indoor gamma dose rates (including cosmic rays) follow a normal distribution with an arithmetic mean of 0.22 +/- 0.04 microGy h(-1), whereas indoor radon concentrations follow a log-normal distribution with geometric means of 48 +/- 2 Bq m(-3) and 90 +/- 2 Bq m(-3) for the two main categories of buildings: residential and non-residential. Since different occupations result in different occupancy in different categories of buildings, the annual total dose [indoor and outdoor radon effective dose + indoor and outdoor gamma absorbed dose (including cosmic ray)] to the population in Hong Kong was estimated based on the number of people for each occupation; the occupancy of each occupation; indoor radon concentration distribution and indoor gamma dose rate distribution for each category of buildings; outdoor radon concentration and gamma dose rate; and indoor and outdoor cosmic ray dose rates. The result shows that the annual doses for every occupation follow a log-normal distribution. This is expected since the total dose is dominated by radon effective dose, which has a log-normal distribution. The annual dose to the population of Hong Kong is characterized by a log-normal distribution with a geometric mean of 2.4 mSv and a geometric standard deviation of 1.3 mSv.  相似文献   

16.
In the UK, Action Levels for radon have been established at 400 Bq m(-3) for the workplace and 200 Bq m(-3) for the home. We have estimated the dose received by occupants of rooms with radon levels near or above the Action Level, using hourly radon readings, and a questionnaire to record occupancy. In the workplace, results for 73 staff suggest that doses are lower than expected, partly due to part-time working and partly due to the mobility of staff. The 75% quantile for the series, corrected to a 37 hour week, is 5.2 mSv at 400 Bq m(-3). Compared to the current annual limit for radiation workers, the Action Level could be increased, but the current Action Level is compatible with the recent EEC Directive requiring a lower dose limit. However, when raised radon levels in the workplace were reduced by remediation in the series we studied, the dose reduction to staff was consistently around half of the radon level reduction. Although it would be appropriate to study more locations, this suggests an Action Level for remediated workplaces of 200 Bq m(-3). Finally, in a limited series of dose assessments in domestic properties, we found that doses could considerably exceed 5 mSv at the 200 Bq m(-3) Action Level, primarily because the sample included an example of high occupancy, in our case several Asian wives in purdah, whose occupancy was almost total.  相似文献   

17.
汕头市环境中氡水平及所致居民剂量的分析   总被引:1,自引:0,他引:1  
本文报道了汕头市室内外环境中氡土气浓度及其子体潜能浓度。研究结果显示:本市环境天然辐射水平较高,室内外氡浓度分别为2004、1605Bq/m3,土气浓度分别为4185、3115Bq/m3,氡子体分别为000254、000268WL,土气子体分别为000331、000245WL。汕头市居民吸入氡土气及其子体所致的年有效剂量当量为126mSv,其中222Rn及其子体贡献了0903mSv,即氡及其子体所贡献的年有效剂量当量占75%,较接近于温带地区而高于全球正常本底地区(097mSv)的水平  相似文献   

18.
李万伟  李晓红 《现代预防医学》2012,39(10):2417-2419
目的初步了解日光温室中氡浓度的本底值和变化趋势,估算温室作业人员氡及其子体造成的年均辐射剂量,探讨温、湿度对氡浓度的影响。方法 2009年5月和10月分别对选定的2座温室进行调查,使用Model1027连续测氡仪和干湿球温度计对温室环境中的氡浓度、温度和相对湿度进行8h连续监测。结果在测定范围内,5月温室氡浓度、温湿度最大值分别为355.0Bq/m3、30.5℃和93%,10月各指标的最大值分别为235.4Bq/m3、37.5℃和72%;根据实际情况粗略估算的温室作业人员年均辐射剂量为0.8686mSv。结论温度和相对湿度可能是影响温室中氡浓度的重要因素;温室作业人员由于职业因素所造成的氡及其子体的辐射剂量略高于当地平均室内暴露所造成的辐射剂量,氡子体对作业人员健康的影响应引起重视。  相似文献   

19.
Since geographically coded information is frequently used in studies of the relationships between environmental factors and illness at the population level and by authorities for promotion of mitigation, knowledge about the validity of proxy measures is essential. This study was an evaluation of a geologically based map describing the risk for high radon levels, which was used by the municipal authorities to determine the necessity of remedial actions. Annual mean radon gas concentrations for a random sample of one-family homes selected from high-risk areas (n = 252) were compared with those of a random sample of homes from normal and low-risk areas (n = 259). No difference in geometric mean radon concentration was found between the areas, 101 Bq m(-3) and 103 Bq m(-3), respectively. The proportion of homes in each area with radon gas concentrations above the current Swedish administrative limit value for mitigation (400 Bq m(-3)) was similar, approximately 10%. We conclude that the radon risk map was unsuitable for identifying areas of concern. The findings also indicate that geologically based and geographically coded information as a proxy for human exposures can be safely used for scientific and administrative purposes only following validation.  相似文献   

20.
目的 了解崇明县室内外氡浓度水平并估算其所致公众的受照剂量。方法 根据2010年全国人口普查崇明县乡镇人口比例、房屋建筑类型、建筑年代和主体建筑材料等对测量样本进行分类选择。使用美国Durridge公司制造RAD7型电子氡气检测仪对室内外氡进行测量,数据采用SPSS 17.0软件进行统计分析。结果 本次调查的室内222Rn浓度范围为5.75~195.29 Bq/m3,平均浓度为(25.76±2.07) Bq/m3。约有73.89%的房屋内氡浓度低于40 Bq/m3。室外222Rn浓度的范围为5.70~19.32 Bq/m3,平均浓度为(9.92±1.43) Bq/m3。结论 本次调查的崇明县室内氡浓度均未超过国家推荐的控制限值。崇明县居民吸入氡所致人年均有效剂量为0.74 mSv。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号